Broadband multi-unit composite metamaterial for simultaneous sound wave and electromagnetic wave absorption

[Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorptio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials & design Ročník 251; s. 113671
Hlavní autori: Gao, Nansha, Zhang, Zhicheng, Liang, Xiao, Li, Yiting, Pan, Guang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2025
Elsevier
Predmet:
ISSN:0264-1275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorption which is from Fano resonance absorption peaks.•Digital multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies.
AbstractList We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies.
[Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorption which is from Fano resonance absorption peaks.•Digital multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies.
ArticleNumber 113671
Author Li, Yiting
Pan, Guang
Zhang, Zhicheng
Gao, Nansha
Liang, Xiao
Author_xml – sequence: 1
  givenname: Nansha
  orcidid: 0000-0002-4633-7050
  surname: Gao
  fullname: Gao, Nansha
  email: gaonansha@nwpu.edu.cn
  organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China
– sequence: 2
  givenname: Zhicheng
  surname: Zhang
  fullname: Zhang, Zhicheng
  organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China
– sequence: 3
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: Xiangtan University School of Mechanical Engineering and Mechanics, Xiangtan 411105 China
– sequence: 4
  givenname: Yiting
  surname: Li
  fullname: Li, Yiting
  organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China
– sequence: 5
  givenname: Guang
  surname: Pan
  fullname: Pan, Guang
  organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China
BookMark eNqFkMtOxCAUQFlo4jj6By76Ax2BttC6MFHjK5nEja7JBW4NY1smwGj8e1s7ceFCVyTAObn3HJODwQ9IyBmjK0aZON-sekgW44pTXq0YK4RkB2RBuShzxmV1RI5j3FDKuSzKBXm7Dh6shsFm_a5LLt8NLmXG91sfXcKsxwSjEIODLmt9yKKb_sGAfhez6Hcj-AHvmE0G7NCk4Ht4HTA5s3_Q0Ydtcn44IYctdBFP9-eSvNzdPt885Oun-8ebq3VuSlanvEEUstVWoGlFWWhZt9BoMFpzw1qDAqRkNQMmpKlE2UBRcMugKYC2lcGmWJLH2Ws9bNQ2uB7Cp_Lg1PeFD68Kwjhfhwq5FkaKurG8KsEKzUHQyhQ18BpRV6OrnF0m-BgDtj8-RtUUXG3UHFxNwdUcfMQufmHGJZgipACu-w--nGEcI707DCoah4NB68IYeNzC_S34AiTApsI
CitedBy_id crossref_primary_10_1088_1402_4896_ae00a7
crossref_primary_10_1016_j_asej_2025_103615
crossref_primary_10_1080_15376494_2025_2512190
crossref_primary_10_1002_advs_202508951
crossref_primary_10_1016_j_compositesa_2025_109246
crossref_primary_10_1007_s10854_025_15684_0
crossref_primary_10_1080_09205071_2025_2541239
crossref_primary_10_1016_j_physb_2025_417495
crossref_primary_10_1016_j_nanoen_2025_111101
crossref_primary_10_1109_ACCESS_2025_3574052
crossref_primary_10_1016_j_apmt_2025_102709
crossref_primary_10_1016_j_matdes_2025_114220
crossref_primary_10_1038_s41598_025_03483_w
crossref_primary_10_1002_sstr_202500352
crossref_primary_10_1016_j_sna_2025_116554
crossref_primary_10_1016_j_tws_2025_113652
crossref_primary_10_1016_j_jallcom_2025_182759
crossref_primary_10_1016_j_matchemphys_2025_131421
crossref_primary_10_1088_2053_1591_adec41
crossref_primary_10_3389_fphy_2025_1641031
crossref_primary_10_1002_admt_202500118
crossref_primary_10_1016_j_jsamd_2025_100934
crossref_primary_10_1002_adom_202500948
crossref_primary_10_1016_j_jobe_2025_113090
Cites_doi 10.1002/adem.202201577
10.1021/nl802509r
10.1121/1.4950708
10.1016/j.jsv.2020.115371
10.1080/10584587.2020.1803677
10.1021/nn2004603
10.1016/j.matdes.2024.112943
10.1016/j.carbon.2023.118376
10.1016/j.ijmecsci.2023.108480
10.1088/1361-6528/ab97d1
10.1016/j.apacoust.2023.109321
10.1016/j.matdes.2024.112709
10.1016/j.apacoust.2020.107845
10.1063/1.349482
10.1088/1361-6463/50/1/015301
10.1016/j.apacoust.2021.107969
10.1103/PhysRevApplied.18.044008
10.1016/j.carbon.2023.118166
10.1109/22.798002
10.1016/j.carbon.2018.09.006
10.1021/acsami.3c00337
10.1121/1.402824
10.3390/app8081247
10.1016/j.ymssp.2020.107504
10.1002/adom.202000200
10.1016/j.apacoust.2021.108552
10.1121/10.0003822
10.1103/PhysRev.124.1866
10.1146/annurev-matsci-070616-124032
10.1063/5.0212688
10.1002/smll.202305120
10.1016/j.jsv.2023.118229
10.1016/j.ress.2005.11.018
10.1063/5.0108807
10.1038/nmat3994
10.1016/j.compstruct.2021.114924
10.1016/j.carbon.2016.01.003
10.1002/advs.202206718
10.1002/advs.201801057
10.1017/S0022112087000727
10.1063/1.4938735
10.1002/admt.202100698
10.1016/j.ymssp.2023.110311
10.1063/5.0028135
10.1016/j.compstruct.2023.117805
10.1016/j.jsv.2019.114922
10.1063/1.5090355
10.1063/1.4919844
10.1016/j.carbon.2024.118834
10.1039/C8NR06143B
10.1063/1.4962328
10.1016/j.pmatsci.2022.100946
10.1002/adom.201800995
10.1016/j.compstruct.2021.113647
10.1016/j.optcom.2011.02.038
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2025.113671
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_e2b6c7689d254ad6b2a605c38a28eeb5
10_1016_j_matdes_2025_113671
S0264127525000917
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSH
SSM
SST
SSZ
T5K
WUQ
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c418t-9ee67fbd6ecf643b78fa9bacbb2c1fce6a77181a167c5649a332d1a93a0f5ce93
IEDL.DBID DOA
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-1275
IngestDate Fri Oct 03 12:47:02 EDT 2025
Tue Nov 18 20:56:44 EST 2025
Sat Nov 29 08:06:12 EST 2025
Sun Apr 06 06:53:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Composite metamaterial
Multifunctional stealth
Teaching–learning-based algorithm
Porous material
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-9ee67fbd6ecf643b78fa9bacbb2c1fce6a77181a167c5649a332d1a93a0f5ce93
ORCID 0000-0002-4633-7050
OpenAccessLink https://doaj.org/article/e2b6c7689d254ad6b2a605c38a28eeb5
ParticipantIDs doaj_primary_oai_doaj_org_article_e2b6c7689d254ad6b2a605c38a28eeb5
crossref_primary_10_1016_j_matdes_2025_113671
crossref_citationtrail_10_1016_j_matdes_2025_113671
elsevier_sciencedirect_doi_10_1016_j_matdes_2025_113671
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gao, Tang, Deng, Lu, Hou, Cheng (b0095) 2021; 175
Allard, Champoux (b0210) 1992; 91
Gao, Liu, Deng, Chen, Huang, Pan (b0090) 2024; 574
Shao, Liu, Ma, Long, Chen, Cheng, Liu (b0285) 2021; 149
Romero-García, Theocharis, Richoux, Pagneux (b0275) 2016; 139
Duan, Yu, Xian, Lu (b0045) 2021; 118
Konak, Coit, Smith (b0270) 2006; 91
Wu, Loke, Lu, Shrestha, Khoo, Lau (b0070) 2023; 8
Zhu, Lau, Lu, Jeon (b0115) 2019; 461
Johnson, Koplik, Dashen (b0215) 1987; 176
Ren, Meng, Xin, Lu (b0080) 2016; 119
Lv, Yang, Pan, Wu (b0030) 2022; 127
Yang, Sheng (b0265) 2018; 8
Liao, Hu, Xing, Luo (b0075) 2023; 206
Chen, Sun, Zhang, Chen, Xu, Fan, Cheng, Xu, Chen, Zhou, Li, Yang (b0050) 2024; 125
ISO 10534-2:1988, Acoustics – Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method, Standard, International Organization for Standardization, Geneva, CH, 1988.
Bao, Zhang, Bu, Zhang, Jiang, Xie (b0200) 2023; 15
ASTM-5568 Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave magnetic permeability of solid materials at Microwave.
Gao, Zhang, Deng, Guo, Cheng, Hou (b0005) 2022; 7
Zhu, Han, Tian, Gu, Chen, Zhang (b0305) 2011; 284
Liu, Yu, Xin (b0260) 2021; 263
Yang, Sheng (b0020) 2017; 47
Li, Sun, Xu, Wang, Peng, Yang, He, Li (b0180) 2019; 11
Chen, Gao, Li, Yan, Qu, Ma, Zhu (b0170) 2023; 10
W. D. Xu, L. J. Xie L, Y. B. Ying, Tunable transparent terahertz absorber for sensing and radiation warming[J], Carbon, 2023, 214: 118376.
Hao, Sonnefraud, Dorpe (b0315) 2008; 8
Long, Liu, Shao, Cheng, Tao, Qiu, Liu (b0280) 2020; 479
Chung (b0125) 2024
Liang, Wu, Fu, Huang, Zhang (b0245) 2023; 25
Zhang, Zhang, Xin (b0255) 2023; 196
Zhang, Song, Ma, Yang, Cao, Xie, Chen, Cheng, Wu, Cui (b0185) 2018; 3
Zhou, Chen, Chen, Chen, Fan, Ma (b0195) 2020; 8
Li, Zhang, Li, Guo (b0065) 2024; 238
Zhang, Xin (b0110) 2023; 256
de Priester, Aulitto, Arteaga (b0085) 2022; 188
Li, Zhang, Wu (b0130) 2024; 20
Yang, Lee, Kim (b0225) 2016; 50
Pendry, Holden, Robbins (b0290) 1999; 47
Zhang, Du, Tang, Zhao, Hu, Dong, Zhang, Liu, Wang, Peng, Zhang, Wu (b0135) 2024
Xiong, Zhang, Lv, Yang, Liang, Zhang, Lai, Cheng, Che (b0140) 2024
Vinoy, Jha (b0295) 1996
Ma, Yang, Xiao, Yang, Sheng (b0025) 2014; 13
Wu, Xiao, Yu, Zhao, Wang, Wen (b0040) 2019; 114
Liu, Luo, Liu, Lai (b0120) 2022; 18
Yang, Lee, Kim (b0230) 2015; 117
Jiang, Yun, Toor, Werner, Mayer (b0160) 2011; 5
Li, Fang, Huang, Pan, Xiao, Liu, Li, Hul (b0165) 2023; 212
Gao, W, Lu, Hou (b0105) 2021; 178
Wang, Murugadoss, Kong, He, Mai, Shao, Chen, Guo, Liu, Angaiah, Guo (b0015) 2018; 140
Cao, Liu, Sun, Che, Wu, Yang (b0205) 2024; 329
COMSOL Multiphysics® v. 6.0. COMSOL lnc, Stockholm, Sweden. 2023.
Gao, Wu, Lu, Zhong (b0100) 2021; 154
Venkatachalam, Bertin, Ducournau, Lampin, Hourlier (b0145) 2016; 100
Wang, Di, Gao, Wu (b0150) 2020; 31
Jiménez, Huang, Romero-García, Pagneux, Groby (b0055) 2016; 109
Gao, Guo, Deng, Cheng (b0190) 2022; 280
Yu, Besteiro, Huang, Wu, Fu, Tan, Jagadish, Wiederrecht, Govorov, Wang (b0035) 2019; 7
Li, Zhang, Qi, Liao, Kang, Zhang (b0010) 2019; 6
Guo, Li, Zeng, Lu, Ye, Wang (b0060) 2024; 241
Allard, Atalla (b0235) 2009
Fano (b0310) 1961; 124
Yin, Zhang, Feng, Wang, Dai, Tang (b0155) 2020; 211
Vergara, Almeida, Barbosa, Lenzi, de Sousa (b0250) 2022; 132
Champoux, Allard (b0220) 1991; 70
Li (10.1016/j.matdes.2025.113671_b0010) 2019; 6
Cao (10.1016/j.matdes.2025.113671_b0205) 2024; 329
10.1016/j.matdes.2025.113671_b0300
Gao (10.1016/j.matdes.2025.113671_b0090) 2024; 574
Ren (10.1016/j.matdes.2025.113671_b0080) 2016; 119
Konak (10.1016/j.matdes.2025.113671_b0270) 2006; 91
Romero-García (10.1016/j.matdes.2025.113671_b0275) 2016; 139
Yang (10.1016/j.matdes.2025.113671_b0230) 2015; 117
Wang (10.1016/j.matdes.2025.113671_b0015) 2018; 140
de Priester (10.1016/j.matdes.2025.113671_b0085) 2022; 188
Xiong (10.1016/j.matdes.2025.113671_b0140) 2024
Gao (10.1016/j.matdes.2025.113671_b0105) 2021; 178
Li (10.1016/j.matdes.2025.113671_b0165) 2023; 212
Zhu (10.1016/j.matdes.2025.113671_b0115) 2019; 461
Liu (10.1016/j.matdes.2025.113671_b0120) 2022; 18
Bao (10.1016/j.matdes.2025.113671_b0200) 2023; 15
10.1016/j.matdes.2025.113671_b0175
Chen (10.1016/j.matdes.2025.113671_b0050) 2024; 125
Zhu (10.1016/j.matdes.2025.113671_b0305) 2011; 284
Hao (10.1016/j.matdes.2025.113671_b0315) 2008; 8
Zhang (10.1016/j.matdes.2025.113671_b0110) 2023; 256
Vergara (10.1016/j.matdes.2025.113671_b0250) 2022; 132
Shao (10.1016/j.matdes.2025.113671_b0285) 2021; 149
Guo (10.1016/j.matdes.2025.113671_b0060) 2024; 241
Wang (10.1016/j.matdes.2025.113671_b0150) 2020; 31
Zhang (10.1016/j.matdes.2025.113671_b0185) 2018; 3
Li (10.1016/j.matdes.2025.113671_b0065) 2024; 238
Liao (10.1016/j.matdes.2025.113671_b0075) 2023; 206
Johnson (10.1016/j.matdes.2025.113671_b0215) 1987; 176
Long (10.1016/j.matdes.2025.113671_b0280) 2020; 479
Chung (10.1016/j.matdes.2025.113671_b0125) 2024
Liang (10.1016/j.matdes.2025.113671_b0245) 2023; 25
Wu (10.1016/j.matdes.2025.113671_b0040) 2019; 114
Fano (10.1016/j.matdes.2025.113671_b0310) 1961; 124
10.1016/j.matdes.2025.113671_b0320
Jiménez (10.1016/j.matdes.2025.113671_b0055) 2016; 109
Lv (10.1016/j.matdes.2025.113671_b0030) 2022; 127
Gao (10.1016/j.matdes.2025.113671_b0100) 2021; 154
Duan (10.1016/j.matdes.2025.113671_b0045) 2021; 118
Wu (10.1016/j.matdes.2025.113671_b0070) 2023; 8
Venkatachalam (10.1016/j.matdes.2025.113671_b0145) 2016; 100
Yang (10.1016/j.matdes.2025.113671_b0265) 2018; 8
Yang (10.1016/j.matdes.2025.113671_b0225) 2016; 50
Li (10.1016/j.matdes.2025.113671_b0180) 2019; 11
Zhang (10.1016/j.matdes.2025.113671_b0135) 2024
Zhang (10.1016/j.matdes.2025.113671_b0255) 2023; 196
Yang (10.1016/j.matdes.2025.113671_b0020) 2017; 47
Yu (10.1016/j.matdes.2025.113671_b0035) 2019; 7
Champoux (10.1016/j.matdes.2025.113671_b0220) 1991; 70
Gao (10.1016/j.matdes.2025.113671_b0190) 2022; 280
Jiang (10.1016/j.matdes.2025.113671_b0160) 2011; 5
Chen (10.1016/j.matdes.2025.113671_b0170) 2023; 10
10.1016/j.matdes.2025.113671_b0240
Yin (10.1016/j.matdes.2025.113671_b0155) 2020; 211
Vinoy (10.1016/j.matdes.2025.113671_b0295) 1996
Allard (10.1016/j.matdes.2025.113671_b0235) 2009
Liu (10.1016/j.matdes.2025.113671_b0260) 2021; 263
Zhou (10.1016/j.matdes.2025.113671_b0195) 2020; 8
Gao (10.1016/j.matdes.2025.113671_b0005) 2022; 7
Ma (10.1016/j.matdes.2025.113671_b0025) 2014; 13
Pendry (10.1016/j.matdes.2025.113671_b0290) 1999; 47
Allard (10.1016/j.matdes.2025.113671_b0210) 1992; 91
Gao (10.1016/j.matdes.2025.113671_b0095) 2021; 175
Li (10.1016/j.matdes.2025.113671_b0130) 2024; 20
References_xml – start-page: 97
  year: 1996
  end-page: 138
  ident: b0295
  article-title: Radar absorbing materials: from theory to design and characterization[M]
– volume: 178
  year: 2021
  ident: b0105
  article-title: Teaching-learning-based optimization of an ultra-broadband parallel sound absorber[J]
  publication-title: Appl. Acoust.
– volume: 18
  year: 2022
  ident: b0120
  article-title: Hydroacoustic high absorption with broadband and wide-angle impedance matching[J]
  publication-title: Phys. Rev. Appl
– volume: 25
  year: 2023
  ident: b0245
  article-title: A Compact Tunable Broadband Acoustic Metastructure with Continuous Gradient Spiral Channels[J]
  publication-title: Adv. Eng. Mater.
– volume: 574
  year: 2024
  ident: b0090
  article-title: Design and performance of ultra-broadband composite meta-absorber in the 200Hz-20kHz range[J]
  publication-title: J. Sound Vib.
– year: 2024
  ident: b0140
  article-title: Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption[J]
  publication-title: Carbon
– volume: 3
  year: 2018
  ident: b0185
  article-title: A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously[J]
  publication-title: Adv. Mater. Technol.
– volume: 47
  start-page: 83
  year: 2017
  end-page: 114
  ident: b0020
  article-title: Sound absorption structures: From porous media to acoustic metamaterials[J]
  publication-title: Annu. Rev. Mat. Res.
– volume: 15
  start-page: 13565
  year: 2023
  end-page: 13575
  ident: b0200
  article-title: Combinatorial structural engineering of multichannel hierarchical hollow microspheres assembled from centripetal Fe/C nanosheets to achieve effective integration of sound absorption and microwave absorption[J]
  publication-title: ACS Appl. Mater. Interfaces
– reference: ISO 10534-2:1988, Acoustics – Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method, Standard, International Organization for Standardization, Geneva, CH, 1988.
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: b0270
  article-title: Multi-objective optimization using genetic algorithms: a tutorial[J]
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2024
  ident: b0135
  article-title: Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance[J]
  publication-title: Small
– volume: 211
  start-page: 82
  year: 2020
  end-page: 101
  ident: b0155
  article-title: Recent progress in ferrite microwave absorbing composites[J]
  publication-title: Integr. Ferroelectr.
– volume: 31
  year: 2020
  ident: b0150
  article-title: Design of MOF-derived hierarchical Co@ C@ RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent[J]
  publication-title: Nanotechnology
– reference: ASTM-5568 Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave magnetic permeability of solid materials at Microwave.
– volume: 175
  year: 2021
  ident: b0095
  article-title: Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J]
  publication-title: Appl. Acoust.
– volume: 241
  year: 2024
  ident: b0060
  article-title: Hierarchical-porous acoustic metamaterials: A synergic approach to enhance broadband sound absorption[J]
  publication-title: Mater. Des.
– volume: 127
  year: 2022
  ident: b0030
  article-title: Electromagnetic absorption materials: Current progress and new frontiers[J]
  publication-title: Prog. Mater Sci.
– volume: 284
  start-page: 3129
  year: 2011
  end-page: 3133
  ident: b0305
  article-title: Thermal broadband tunable Terahertz metamaterials[J]
  publication-title: Opt. Commun.
– volume: 188
  year: 2022
  ident: b0085
  article-title: Frequency stop-band optimization in micro-slit resonant metamaterials[J]
  publication-title: Appl. Acoust.
– volume: 8
  year: 2020
  ident: b0195
  article-title: Ultrathin electromagnetic–acoustic amphibious stealth coats[J]
  publication-title: Adv. Opt. Mater.
– volume: 114
  year: 2019
  ident: b0040
  article-title: Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J]
  publication-title: Appl. Phys. Lett.
– volume: 263
  year: 2021
  ident: b0260
  article-title: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J]
  publication-title: Compos. Struct.
– volume: 149
  start-page: 2072
  year: 2021
  end-page: 2080
  ident: b0285
  article-title: Multiband asymmetric sound absorber enabled by ultrasparse Mie resonators[J]
  publication-title: J. Acoust. Soc. Am.
– volume: 329
  year: 2024
  ident: b0205
  article-title: CNTs/PVA composite aerogel for efficient microwave and acoustic absorption[J]
  publication-title: Compos. Struct.
– volume: 125
  year: 2024
  ident: b0050
  article-title: A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption[J]
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 4641
  year: 2011
  end-page: 4647
  ident: b0160
  article-title: Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating[J]
  publication-title: ACS Nano
– volume: 10
  year: 2023
  ident: b0170
  article-title: Broadband solar metamaterial absorbers empowered by transformer‐based deep learning[J]
  publication-title: Adv. Sci.
– reference: W. D. Xu, L. J. Xie L, Y. B. Ying, Tunable transparent terahertz absorber for sensing and radiation warming[J], Carbon, 2023, 214: 118376.
– volume: 70
  start-page: 1975
  year: 1991
  end-page: 1979
  ident: b0220
  article-title: Dynamic tortuosity and bulk modulus in air‐saturated porous media[J]
  publication-title: J. Appl. Phys.
– volume: 6
  year: 2019
  ident: b0010
  article-title: Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]
  publication-title: Adv. Sci.
– volume: 13
  start-page: 873
  year: 2014
  end-page: 878
  ident: b0025
  article-title: Acoustic metasurface with hybrid resonances[J]
  publication-title: Nat. Mater.
– year: 2024
  ident: b0125
  article-title: A review of microwave absorption and reflection by cement‐based materials, with emphasis on electromagnetic interference shielding and admixture effects[J]
  publication-title: Adv. Funct. Mater.
– volume: 154
  year: 2021
  ident: b0100
  article-title: Hybrid composite meta-porous structure for improving and broadening sound absorption[J]
  publication-title: Mech. Syst. Sig. Process.
– volume: 212
  year: 2023
  ident: b0165
  article-title: Ultra-wideband, polarization-insensitive flexible metamaterial absorber base on laser printed graphene using equivalent circuit design method[J]
  publication-title: Carbon
– volume: 238
  year: 2024
  ident: b0065
  article-title: Design of a broadband composite noise reduction metamaterial with integrated vibration reduction and sound absorption and insulation[J]
  publication-title: Mater. Des.
– volume: 206
  year: 2023
  ident: b0075
  article-title: Quasi-perfect and wideband absorption with gradient non-uniform micro-slit array absorber via a hierarchical optimization method[J]
  publication-title: Appl. Acoust.
– volume: 479
  year: 2020
  ident: b0280
  article-title: Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes
  publication-title: J. Sound Vib.
– volume: 100
  start-page: 158
  year: 2016
  end-page: 164
  ident: b0145
  article-title: Kapton-derived carbon as efficient terahertz absorbers[J]
  publication-title: Carbon
– volume: 124
  start-page: 1866
  year: 1961
  ident: b0310
  article-title: Effects of configuration interaction on intensities and phase shifts[J]
  publication-title: Phys. Rev.
– volume: 7
  year: 2022
  ident: b0005
  article-title: Acoustic metamaterials for noise reduction: a review[J]
  publication-title: Adv. Mater. Technol.
– volume: 140
  start-page: 696
  year: 2018
  end-page: 733
  ident: b0015
  article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]
  publication-title: Carbon
– volume: 91
  start-page: 3346
  year: 1992
  end-page: 3353
  ident: b0210
  article-title: New empirical equations for sound propagation in rigid frame fibrous materials[J]
  publication-title: J. Acoust. Soc. Am.
– volume: 256
  year: 2023
  ident: b0110
  article-title: Coiled-up structure with porous material lining for enhanced sound absorption[J]
  publication-title: Int. J. Mech. Sci.
– volume: 8
  start-page: 1247
  year: 2018
  ident: b0265
  article-title: An integration strategy for acoustic metamaterials to achieve absorption by design[J]
  publication-title: Appl. Sci.
– volume: 47
  start-page: 2075
  year: 1999
  end-page: 2084
  ident: b0290
  article-title: Magnetism from conductors and enhanced nonlinear phenomena[J]
  publication-title: IEEE T Microw Theory
– volume: 11
  start-page: 1692
  year: 2019
  end-page: 1699
  ident: b0180
  article-title: Electromagnetic and acoustic double-shielding graphene-based metastructures[J]
  publication-title: Nanoscale
– volume: 8
  year: 2023
  ident: b0070
  article-title: Transformation from Helmholtz to membrane resonance by electro‐adhesive zip of a double‐layer micro‐slit acoustic absorber[J]
  publication-title: Adv. Mater. Technol.
– volume: 7
  year: 2019
  ident: b0035
  article-title: Broadband metamaterial absorbers[J]
  publication-title: Adv. Opt. Mater.
– volume: 196
  year: 2023
  ident: b0255
  article-title: Broadband low-frequency sound absorption of honeycomb sandwich panels with rough embedded necks[J]
  publication-title: Mech. Syst. Sig. Process.
– volume: 50
  year: 2016
  ident: b0225
  article-title: Multiple slow waves in metaporous layers for broadband sound absorption[J]
  publication-title: J. Phys. D Appl. Phys.
– volume: 461
  year: 2019
  ident: b0115
  article-title: Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J]
  publication-title: J. Sound Vib.
– volume: 109
  year: 2016
  ident: b0055
  article-title: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J]
  publication-title: Appl. Phys. Lett.
– volume: 118
  year: 2021
  ident: b0045
  article-title: Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband[J]
  publication-title: Appl. Phys. Lett.
– volume: 280
  year: 2022
  ident: b0190
  article-title: Design and study of a hybrid composite structure that improves electromagnetic shielding and sound absorption simultaneously[J]
  publication-title: Compos. Struct.
– year: 2009
  ident: b0235
  article-title: Propagation of sound in porous media: modelling sound absorbing materials[M]
– volume: 8
  start-page: 3983
  year: 2008
  end-page: 3988
  ident: b0315
  article-title: Symmetry breaking in plasmonicnanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]
  publication-title: Nano Lett.
– volume: 132
  year: 2022
  ident: b0250
  article-title: Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition[J]
  publication-title: J. Appl. Phys.
– volume: 119
  year: 2016
  ident: b0080
  article-title: Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure[J]
  publication-title: J. Appl. Phys.
– reference: COMSOL Multiphysics® v. 6.0. COMSOL lnc, Stockholm, Sweden. 2023.
– volume: 117
  year: 2015
  ident: b0230
  article-title: Metaporous layer to overcome the thickness constraint for broadband sound absorption[J]
  publication-title: J. Appl. Phys.
– volume: 139
  start-page: 3395
  year: 2016
  end-page: 3403
  ident: b0275
  article-title: Use of complex frequency plane to design broadband and sub-wavelength absorbers
  publication-title: J. Acoust. Soc. Am.
– volume: 20
  year: 2024
  ident: b0130
  article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption[J]
  publication-title: Small
– volume: 176
  start-page: 379
  year: 1987
  end-page: 402
  ident: b0215
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]
  publication-title: J. Fluid Mech.
– volume: 25
  issue: 10
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0245
  article-title: A Compact Tunable Broadband Acoustic Metastructure with Continuous Gradient Spiral Channels[J]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202201577
– volume: 8
  start-page: 3983
  issue: 11
  year: 2008
  ident: 10.1016/j.matdes.2025.113671_b0315
  article-title: Symmetry breaking in plasmonicnanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]
  publication-title: Nano Lett.
  doi: 10.1021/nl802509r
– volume: 139
  start-page: 3395
  issue: 6
  year: 2016
  ident: 10.1016/j.matdes.2025.113671_b0275
  article-title: Use of complex frequency plane to design broadband and sub-wavelength absorbers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4950708
– volume: 479
  year: 2020
  ident: 10.1016/j.matdes.2025.113671_b0280
  article-title: Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115371
– volume: 211
  start-page: 82
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2025.113671_b0155
  article-title: Recent progress in ferrite microwave absorbing composites[J]
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584587.2020.1803677
– volume: 5
  start-page: 4641
  issue: 6
  year: 2011
  ident: 10.1016/j.matdes.2025.113671_b0160
  article-title: Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating[J]
  publication-title: ACS Nano
  doi: 10.1021/nn2004603
– volume: 241
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0060
  article-title: Hierarchical-porous acoustic metamaterials: A synergic approach to enhance broadband sound absorption[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2024.112943
– ident: 10.1016/j.matdes.2025.113671_b0175
  doi: 10.1016/j.carbon.2023.118376
– volume: 256
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0110
  article-title: Coiled-up structure with porous material lining for enhanced sound absorption[J]
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108480
– volume: 31
  issue: 39
  year: 2020
  ident: 10.1016/j.matdes.2025.113671_b0150
  article-title: Design of MOF-derived hierarchical Co@ C@ RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent[J]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab97d1
– volume: 206
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0075
  article-title: Quasi-perfect and wideband absorption with gradient non-uniform micro-slit array absorber via a hierarchical optimization method[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109321
– volume: 238
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0065
  article-title: Design of a broadband composite noise reduction metamaterial with integrated vibration reduction and sound absorption and insulation[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2024.112709
– volume: 175
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0095
  article-title: Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107845
– volume: 70
  start-page: 1975
  issue: 4
  year: 1991
  ident: 10.1016/j.matdes.2025.113671_b0220
  article-title: Dynamic tortuosity and bulk modulus in air‐saturated porous media[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349482
– volume: 50
  issue: 1
  year: 2016
  ident: 10.1016/j.matdes.2025.113671_b0225
  article-title: Multiple slow waves in metaporous layers for broadband sound absorption[J]
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/50/1/015301
– volume: 178
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0105
  article-title: Teaching-learning-based optimization of an ultra-broadband parallel sound absorber[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.107969
– volume: 18
  issue: 4
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0120
  article-title: Hydroacoustic high absorption with broadband and wide-angle impedance matching[J]
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.18.044008
– volume: 212
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0165
  article-title: Ultra-wideband, polarization-insensitive flexible metamaterial absorber base on laser printed graphene using equivalent circuit design method[J]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118166
– volume: 47
  start-page: 2075
  issue: 11
  year: 1999
  ident: 10.1016/j.matdes.2025.113671_b0290
  article-title: Magnetism from conductors and enhanced nonlinear phenomena[J]
  publication-title: IEEE T Microw Theory
  doi: 10.1109/22.798002
– volume: 140
  start-page: 696
  year: 2018
  ident: 10.1016/j.matdes.2025.113671_b0015
  article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.006
– volume: 15
  start-page: 13565
  issue: 10
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0200
  article-title: Combinatorial structural engineering of multichannel hierarchical hollow microspheres assembled from centripetal Fe/C nanosheets to achieve effective integration of sound absorption and microwave absorption[J]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c00337
– volume: 91
  start-page: 3346
  issue: 6
  year: 1992
  ident: 10.1016/j.matdes.2025.113671_b0210
  article-title: New empirical equations for sound propagation in rigid frame fibrous materials[J]
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.402824
– volume: 8
  start-page: 1247
  issue: 8
  year: 2018
  ident: 10.1016/j.matdes.2025.113671_b0265
  article-title: An integration strategy for acoustic metamaterials to achieve absorption by design[J]
  publication-title: Appl. Sci.
  doi: 10.3390/app8081247
– volume: 154
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0100
  article-title: Hybrid composite meta-porous structure for improving and broadening sound absorption[J]
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107504
– volume: 8
  issue: 15
  year: 2020
  ident: 10.1016/j.matdes.2025.113671_b0195
  article-title: Ultrathin electromagnetic–acoustic amphibious stealth coats[J]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000200
– volume: 188
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0085
  article-title: Frequency stop-band optimization in micro-slit resonant metamaterials[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108552
– volume: 149
  start-page: 2072
  issue: 3
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0285
  article-title: Multiband asymmetric sound absorber enabled by ultrasparse Mie resonators[J]
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0003822
– volume: 124
  start-page: 1866
  issue: 6
  year: 1961
  ident: 10.1016/j.matdes.2025.113671_b0310
  article-title: Effects of configuration interaction on intensities and phase shifts[J]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.1866
– volume: 47
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.matdes.2025.113671_b0020
  article-title: Sound absorption structures: From porous media to acoustic metamaterials[J]
  publication-title: Annu. Rev. Mat. Res.
  doi: 10.1146/annurev-matsci-070616-124032
– volume: 125
  issue: 1
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0050
  article-title: A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption[J]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0212688
– year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0125
  article-title: A review of microwave absorption and reflection by cement‐based materials, with emphasis on electromagnetic interference shielding and admixture effects[J]
  publication-title: Adv. Funct. Mater.
– volume: 20
  issue: 11
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0130
  article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption[J]
  publication-title: Small
  doi: 10.1002/smll.202305120
– volume: 574
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0090
  article-title: Design and performance of ultra-broadband composite meta-absorber in the 200Hz-20kHz range[J]
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.118229
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 10.1016/j.matdes.2025.113671_b0270
  article-title: Multi-objective optimization using genetic algorithms: a tutorial[J]
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.11.018
– volume: 132
  issue: 13
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0250
  article-title: Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0108807
– volume: 13
  start-page: 873
  issue: 9
  year: 2014
  ident: 10.1016/j.matdes.2025.113671_b0025
  article-title: Acoustic metasurface with hybrid resonances[J]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3994
– volume: 280
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0190
  article-title: Design and study of a hybrid composite structure that improves electromagnetic shielding and sound absorption simultaneously[J]
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114924
– start-page: 97
  year: 1996
  ident: 10.1016/j.matdes.2025.113671_b0295
– ident: 10.1016/j.matdes.2025.113671_b0240
– volume: 100
  start-page: 158
  year: 2016
  ident: 10.1016/j.matdes.2025.113671_b0145
  article-title: Kapton-derived carbon as efficient terahertz absorbers[J]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.003
– ident: 10.1016/j.matdes.2025.113671_b0320
– volume: 8
  issue: 10
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0070
  article-title: Transformation from Helmholtz to membrane resonance by electro‐adhesive zip of a double‐layer micro‐slit acoustic absorber[J]
  publication-title: Adv. Mater. Technol.
– volume: 10
  issue: 13
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0170
  article-title: Broadband solar metamaterial absorbers empowered by transformer‐based deep learning[J]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206718
– volume: 6
  issue: 8
  year: 2019
  ident: 10.1016/j.matdes.2025.113671_b0010
  article-title: Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801057
– volume: 176
  start-page: 379
  year: 1987
  ident: 10.1016/j.matdes.2025.113671_b0215
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087000727
– volume: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.matdes.2025.113671_b0080
  article-title: Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4938735
– volume: 7
  issue: 6
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0005
  article-title: Acoustic metamaterials for noise reduction: a review[J]
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100698
– volume: 196
  year: 2023
  ident: 10.1016/j.matdes.2025.113671_b0255
  article-title: Broadband low-frequency sound absorption of honeycomb sandwich panels with rough embedded necks[J]
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2023.110311
– year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0135
  article-title: Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance[J]
  publication-title: Small
– year: 2009
  ident: 10.1016/j.matdes.2025.113671_b0235
– volume: 118
  issue: 7
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0045
  article-title: Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband[J]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0028135
– volume: 329
  year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0205
  article-title: CNTs/PVA composite aerogel for efficient microwave and acoustic absorption[J]
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117805
– volume: 461
  year: 2019
  ident: 10.1016/j.matdes.2025.113671_b0115
  article-title: Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J]
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.114922
– volume: 114
  issue: 15
  year: 2019
  ident: 10.1016/j.matdes.2025.113671_b0040
  article-title: Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5090355
– volume: 117
  issue: 17
  year: 2015
  ident: 10.1016/j.matdes.2025.113671_b0230
  article-title: Metaporous layer to overcome the thickness constraint for broadband sound absorption[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4919844
– year: 2024
  ident: 10.1016/j.matdes.2025.113671_b0140
  article-title: Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption[J]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.118834
– ident: 10.1016/j.matdes.2025.113671_b0300
– volume: 11
  start-page: 1692
  issue: 4
  year: 2019
  ident: 10.1016/j.matdes.2025.113671_b0180
  article-title: Electromagnetic and acoustic double-shielding graphene-based metastructures[J]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06143B
– volume: 109
  issue: 12
  year: 2016
  ident: 10.1016/j.matdes.2025.113671_b0055
  article-title: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4962328
– volume: 127
  year: 2022
  ident: 10.1016/j.matdes.2025.113671_b0030
  article-title: Electromagnetic absorption materials: Current progress and new frontiers[J]
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2022.100946
– volume: 7
  issue: 3
  year: 2019
  ident: 10.1016/j.matdes.2025.113671_b0035
  article-title: Broadband metamaterial absorbers[J]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800995
– volume: 263
  year: 2021
  ident: 10.1016/j.matdes.2025.113671_b0260
  article-title: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J]
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113647
– volume: 3
  issue: 8
  year: 2018
  ident: 10.1016/j.matdes.2025.113671_b0185
  article-title: A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously[J]
  publication-title: Adv. Mater. Technol.
– volume: 284
  start-page: 3129
  year: 2011
  ident: 10.1016/j.matdes.2025.113671_b0305
  article-title: Thermal broadband tunable Terahertz metamaterials[J]
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2011.02.038
SSID ssj0022734
Score 2.5671816
Snippet [Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound...
We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 113671
SubjectTerms Composite metamaterial
Multifunctional stealth
Porous material
Teaching–learning-based algorithm
Title Broadband multi-unit composite metamaterial for simultaneous sound wave and electromagnetic wave absorption
URI https://dx.doi.org/10.1016/j.matdes.2025.113671
https://doaj.org/article/e2b6c7689d254ad6b2a605c38a28eeb5
Volume 251
WOSCitedRecordID wos001413271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0264-1275
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0022734
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0264-1275
  databaseCode: AIEXJ
  dateStart: 20181205
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0022734
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQUECBOMVyyQVtxCZOYrsEBAKEVhSAtovG9hgtRxbtxe_jI1ktDTS0iS-NJ5k31vMbQk6RZZLbEhPoap7kovCXlRGSgkFhXbyAPNRPeb7nvZ7o9-XDQqkvzwmL8sDRcGeYqVI7TCyNS2XAlCoDh8A1E5AJRBXUS7tctslUk2p50ZZ4uuJV-XjRXpoLzC4HBQ16qe6sCCVNePojKAXt_oXYtBBvrjfJRgMU6Xlc4BZZwnqbrC_IB-6QN5dDg1FQGxp4gcnUfZ_Uk8Q9EwvpB07ArSL4GHXglI4Hvh3U6NJ9OvYFlegXzJD6EZp6OB_wUvt7jc0LNR6Owk9llzxdXz1e3iRN8YRE56mYJBKx5FaZErV1qENxYUEq0EplOrUaS-AuLKWQllwXZS6BscykIBl0baFRsj2yXA9r3CcUjXF5ETeCWcjRMmEE113Xn2mZQp52CGutV-lGWdwXuHivWgrZaxVtXnmbV9HmHZLMe31GZY0_2l_4jZm39brY4YHzlqrxluovb-kQ3m5r1UCMCB3cUINfpz_4j-kPyZofMnLYjsjyZDTFY7KqZ5PBeHRCVs5vr_p3J8GVvwFczvov
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+multi-unit+composite+metamaterial+for+simultaneous+sound+wave+and+electromagnetic+wave+absorption&rft.jtitle=Materials+%26+design&rft.au=Gao%2C+Nansha&rft.au=Zhang%2C+Zhicheng&rft.au=Liang%2C+Xiao&rft.au=Li%2C+Yiting&rft.date=2025-03-01&rft.issn=0264-1275&rft.volume=251&rft.spage=113671&rft_id=info:doi/10.1016%2Fj.matdes.2025.113671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2025_113671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon