Broadband multi-unit composite metamaterial for simultaneous sound wave and electromagnetic wave absorption
[Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorptio...
Uložené v:
| Vydané v: | Materials & design Ročník 251; s. 113671 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2025
Elsevier |
| Predmet: | |
| ISSN: | 0264-1275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorption which is from Fano resonance absorption peaks.•Digital multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz.
We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies. |
|---|---|
| AbstractList | We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies. [Display omitted] •Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound absorption coefficients reach at 0.836, 0.907, 0.957, and 0.97 in different frequencies.•Metal patch could affect the electromagnetic wave absorption which is from Fano resonance absorption peaks.•Digital multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and electromagnetic wave absorption. A theoretical model was established to calculate the sound absorption coefficient and the teaching–learning-based algorithm was used to optimize the geometric dimensions. The optimized average sound absorption coefficients were 0.836, 0.907, 0.957, and 0.97 within the frequency ranges of 1–500 Hz, 1–1000 Hz, 1–3000 Hz, and 1–20000 Hz, respectively. Complex plane analysis indicated that the broadband multi-unit composite metamaterial exhibits quasi-perfect sound absorption. In addition, the change of the metal patch comprises double-C open circular rings, and the bottom plate is composed of dielectric substrates and metal substrates could affect the electromagnetic wave absorption effects under TE and TM modes and explain the reason for the excitation of Fano resonance absorption peaks under the TE mode. Next, the optimized double-C open circular rings result in the broadband multi-unit composite metamaterial exhibiting an absorption coefficient exceeding 0.5 between 12 and 30 GHz. The advantage of this design were verified through acoustic impedance tube and bow-shaped reflectance system. These results provide a reference for the development of multifunctional stealth technologies. |
| ArticleNumber | 113671 |
| Author | Li, Yiting Pan, Guang Zhang, Zhicheng Gao, Nansha Liang, Xiao |
| Author_xml | – sequence: 1 givenname: Nansha orcidid: 0000-0002-4633-7050 surname: Gao fullname: Gao, Nansha email: gaonansha@nwpu.edu.cn organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China – sequence: 2 givenname: Zhicheng surname: Zhang fullname: Zhang, Zhicheng organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China – sequence: 3 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: Xiangtan University School of Mechanical Engineering and Mechanics, Xiangtan 411105 China – sequence: 4 givenname: Yiting surname: Li fullname: Li, Yiting organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China – sequence: 5 givenname: Guang surname: Pan fullname: Pan, Guang organization: Key Laboratory of Unmanned Underwater Vehicle, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072 China |
| BookMark | eNqFkMtOxCAUQFlo4jj6By76Ax2BttC6MFHjK5nEja7JBW4NY1smwGj8e1s7ceFCVyTAObn3HJODwQ9IyBmjK0aZON-sekgW44pTXq0YK4RkB2RBuShzxmV1RI5j3FDKuSzKBXm7Dh6shsFm_a5LLt8NLmXG91sfXcKsxwSjEIODLmt9yKKb_sGAfhez6Hcj-AHvmE0G7NCk4Ht4HTA5s3_Q0Ydtcn44IYctdBFP9-eSvNzdPt885Oun-8ebq3VuSlanvEEUstVWoGlFWWhZt9BoMFpzw1qDAqRkNQMmpKlE2UBRcMugKYC2lcGmWJLH2Ws9bNQ2uB7Cp_Lg1PeFD68Kwjhfhwq5FkaKurG8KsEKzUHQyhQ18BpRV6OrnF0m-BgDtj8-RtUUXG3UHFxNwdUcfMQufmHGJZgipACu-w--nGEcI707DCoah4NB68IYeNzC_S34AiTApsI |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ae00a7 crossref_primary_10_1016_j_asej_2025_103615 crossref_primary_10_1080_15376494_2025_2512190 crossref_primary_10_1002_advs_202508951 crossref_primary_10_1016_j_compositesa_2025_109246 crossref_primary_10_1007_s10854_025_15684_0 crossref_primary_10_1080_09205071_2025_2541239 crossref_primary_10_1016_j_physb_2025_417495 crossref_primary_10_1016_j_nanoen_2025_111101 crossref_primary_10_1109_ACCESS_2025_3574052 crossref_primary_10_1016_j_apmt_2025_102709 crossref_primary_10_1016_j_matdes_2025_114220 crossref_primary_10_1038_s41598_025_03483_w crossref_primary_10_1002_sstr_202500352 crossref_primary_10_1016_j_sna_2025_116554 crossref_primary_10_1016_j_tws_2025_113652 crossref_primary_10_1016_j_jallcom_2025_182759 crossref_primary_10_1016_j_matchemphys_2025_131421 crossref_primary_10_1088_2053_1591_adec41 crossref_primary_10_3389_fphy_2025_1641031 crossref_primary_10_1002_admt_202500118 crossref_primary_10_1016_j_jsamd_2025_100934 crossref_primary_10_1002_adom_202500948 crossref_primary_10_1016_j_jobe_2025_113090 |
| Cites_doi | 10.1002/adem.202201577 10.1021/nl802509r 10.1121/1.4950708 10.1016/j.jsv.2020.115371 10.1080/10584587.2020.1803677 10.1021/nn2004603 10.1016/j.matdes.2024.112943 10.1016/j.carbon.2023.118376 10.1016/j.ijmecsci.2023.108480 10.1088/1361-6528/ab97d1 10.1016/j.apacoust.2023.109321 10.1016/j.matdes.2024.112709 10.1016/j.apacoust.2020.107845 10.1063/1.349482 10.1088/1361-6463/50/1/015301 10.1016/j.apacoust.2021.107969 10.1103/PhysRevApplied.18.044008 10.1016/j.carbon.2023.118166 10.1109/22.798002 10.1016/j.carbon.2018.09.006 10.1021/acsami.3c00337 10.1121/1.402824 10.3390/app8081247 10.1016/j.ymssp.2020.107504 10.1002/adom.202000200 10.1016/j.apacoust.2021.108552 10.1121/10.0003822 10.1103/PhysRev.124.1866 10.1146/annurev-matsci-070616-124032 10.1063/5.0212688 10.1002/smll.202305120 10.1016/j.jsv.2023.118229 10.1016/j.ress.2005.11.018 10.1063/5.0108807 10.1038/nmat3994 10.1016/j.compstruct.2021.114924 10.1016/j.carbon.2016.01.003 10.1002/advs.202206718 10.1002/advs.201801057 10.1017/S0022112087000727 10.1063/1.4938735 10.1002/admt.202100698 10.1016/j.ymssp.2023.110311 10.1063/5.0028135 10.1016/j.compstruct.2023.117805 10.1016/j.jsv.2019.114922 10.1063/1.5090355 10.1063/1.4919844 10.1016/j.carbon.2024.118834 10.1039/C8NR06143B 10.1063/1.4962328 10.1016/j.pmatsci.2022.100946 10.1002/adom.201800995 10.1016/j.compstruct.2021.113647 10.1016/j.optcom.2011.02.038 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.matdes.2025.113671 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_doaj_org_article_e2b6c7689d254ad6b2a605c38a28eeb5 10_1016_j_matdes_2025_113671 S0264127525000917 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC BNPGV EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSH SSM SST SSZ T5K WUQ ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c418t-9ee67fbd6ecf643b78fa9bacbb2c1fce6a77181a167c5649a332d1a93a0f5ce93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0264-1275 |
| IngestDate | Fri Oct 03 12:47:02 EDT 2025 Tue Nov 18 20:56:44 EST 2025 Sat Nov 29 08:06:12 EST 2025 Sun Apr 06 06:53:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Composite metamaterial Multifunctional stealth Teaching–learning-based algorithm Porous material |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-9ee67fbd6ecf643b78fa9bacbb2c1fce6a77181a167c5649a332d1a93a0f5ce93 |
| ORCID | 0000-0002-4633-7050 |
| OpenAccessLink | https://doaj.org/article/e2b6c7689d254ad6b2a605c38a28eeb5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e2b6c7689d254ad6b2a605c38a28eeb5 crossref_primary_10_1016_j_matdes_2025_113671 crossref_citationtrail_10_1016_j_matdes_2025_113671 elsevier_sciencedirect_doi_10_1016_j_matdes_2025_113671 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials & design |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Gao, Tang, Deng, Lu, Hou, Cheng (b0095) 2021; 175 Allard, Champoux (b0210) 1992; 91 Gao, Liu, Deng, Chen, Huang, Pan (b0090) 2024; 574 Shao, Liu, Ma, Long, Chen, Cheng, Liu (b0285) 2021; 149 Romero-García, Theocharis, Richoux, Pagneux (b0275) 2016; 139 Duan, Yu, Xian, Lu (b0045) 2021; 118 Konak, Coit, Smith (b0270) 2006; 91 Wu, Loke, Lu, Shrestha, Khoo, Lau (b0070) 2023; 8 Zhu, Lau, Lu, Jeon (b0115) 2019; 461 Johnson, Koplik, Dashen (b0215) 1987; 176 Ren, Meng, Xin, Lu (b0080) 2016; 119 Lv, Yang, Pan, Wu (b0030) 2022; 127 Yang, Sheng (b0265) 2018; 8 Liao, Hu, Xing, Luo (b0075) 2023; 206 Chen, Sun, Zhang, Chen, Xu, Fan, Cheng, Xu, Chen, Zhou, Li, Yang (b0050) 2024; 125 ISO 10534-2:1988, Acoustics – Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method, Standard, International Organization for Standardization, Geneva, CH, 1988. Bao, Zhang, Bu, Zhang, Jiang, Xie (b0200) 2023; 15 ASTM-5568 Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave magnetic permeability of solid materials at Microwave. Gao, Zhang, Deng, Guo, Cheng, Hou (b0005) 2022; 7 Zhu, Han, Tian, Gu, Chen, Zhang (b0305) 2011; 284 Liu, Yu, Xin (b0260) 2021; 263 Yang, Sheng (b0020) 2017; 47 Li, Sun, Xu, Wang, Peng, Yang, He, Li (b0180) 2019; 11 Chen, Gao, Li, Yan, Qu, Ma, Zhu (b0170) 2023; 10 W. D. Xu, L. J. Xie L, Y. B. Ying, Tunable transparent terahertz absorber for sensing and radiation warming[J], Carbon, 2023, 214: 118376. Hao, Sonnefraud, Dorpe (b0315) 2008; 8 Long, Liu, Shao, Cheng, Tao, Qiu, Liu (b0280) 2020; 479 Chung (b0125) 2024 Liang, Wu, Fu, Huang, Zhang (b0245) 2023; 25 Zhang, Zhang, Xin (b0255) 2023; 196 Zhang, Song, Ma, Yang, Cao, Xie, Chen, Cheng, Wu, Cui (b0185) 2018; 3 Zhou, Chen, Chen, Chen, Fan, Ma (b0195) 2020; 8 Li, Zhang, Li, Guo (b0065) 2024; 238 Zhang, Xin (b0110) 2023; 256 de Priester, Aulitto, Arteaga (b0085) 2022; 188 Li, Zhang, Wu (b0130) 2024; 20 Yang, Lee, Kim (b0225) 2016; 50 Pendry, Holden, Robbins (b0290) 1999; 47 Zhang, Du, Tang, Zhao, Hu, Dong, Zhang, Liu, Wang, Peng, Zhang, Wu (b0135) 2024 Xiong, Zhang, Lv, Yang, Liang, Zhang, Lai, Cheng, Che (b0140) 2024 Vinoy, Jha (b0295) 1996 Ma, Yang, Xiao, Yang, Sheng (b0025) 2014; 13 Wu, Xiao, Yu, Zhao, Wang, Wen (b0040) 2019; 114 Liu, Luo, Liu, Lai (b0120) 2022; 18 Yang, Lee, Kim (b0230) 2015; 117 Jiang, Yun, Toor, Werner, Mayer (b0160) 2011; 5 Li, Fang, Huang, Pan, Xiao, Liu, Li, Hul (b0165) 2023; 212 Gao, W, Lu, Hou (b0105) 2021; 178 Wang, Murugadoss, Kong, He, Mai, Shao, Chen, Guo, Liu, Angaiah, Guo (b0015) 2018; 140 Cao, Liu, Sun, Che, Wu, Yang (b0205) 2024; 329 COMSOL Multiphysics® v. 6.0. COMSOL lnc, Stockholm, Sweden. 2023. Gao, Wu, Lu, Zhong (b0100) 2021; 154 Venkatachalam, Bertin, Ducournau, Lampin, Hourlier (b0145) 2016; 100 Wang, Di, Gao, Wu (b0150) 2020; 31 Jiménez, Huang, Romero-García, Pagneux, Groby (b0055) 2016; 109 Gao, Guo, Deng, Cheng (b0190) 2022; 280 Yu, Besteiro, Huang, Wu, Fu, Tan, Jagadish, Wiederrecht, Govorov, Wang (b0035) 2019; 7 Li, Zhang, Qi, Liao, Kang, Zhang (b0010) 2019; 6 Guo, Li, Zeng, Lu, Ye, Wang (b0060) 2024; 241 Allard, Atalla (b0235) 2009 Fano (b0310) 1961; 124 Yin, Zhang, Feng, Wang, Dai, Tang (b0155) 2020; 211 Vergara, Almeida, Barbosa, Lenzi, de Sousa (b0250) 2022; 132 Champoux, Allard (b0220) 1991; 70 Li (10.1016/j.matdes.2025.113671_b0010) 2019; 6 Cao (10.1016/j.matdes.2025.113671_b0205) 2024; 329 10.1016/j.matdes.2025.113671_b0300 Gao (10.1016/j.matdes.2025.113671_b0090) 2024; 574 Ren (10.1016/j.matdes.2025.113671_b0080) 2016; 119 Konak (10.1016/j.matdes.2025.113671_b0270) 2006; 91 Romero-García (10.1016/j.matdes.2025.113671_b0275) 2016; 139 Yang (10.1016/j.matdes.2025.113671_b0230) 2015; 117 Wang (10.1016/j.matdes.2025.113671_b0015) 2018; 140 de Priester (10.1016/j.matdes.2025.113671_b0085) 2022; 188 Xiong (10.1016/j.matdes.2025.113671_b0140) 2024 Gao (10.1016/j.matdes.2025.113671_b0105) 2021; 178 Li (10.1016/j.matdes.2025.113671_b0165) 2023; 212 Zhu (10.1016/j.matdes.2025.113671_b0115) 2019; 461 Liu (10.1016/j.matdes.2025.113671_b0120) 2022; 18 Bao (10.1016/j.matdes.2025.113671_b0200) 2023; 15 10.1016/j.matdes.2025.113671_b0175 Chen (10.1016/j.matdes.2025.113671_b0050) 2024; 125 Zhu (10.1016/j.matdes.2025.113671_b0305) 2011; 284 Hao (10.1016/j.matdes.2025.113671_b0315) 2008; 8 Zhang (10.1016/j.matdes.2025.113671_b0110) 2023; 256 Vergara (10.1016/j.matdes.2025.113671_b0250) 2022; 132 Shao (10.1016/j.matdes.2025.113671_b0285) 2021; 149 Guo (10.1016/j.matdes.2025.113671_b0060) 2024; 241 Wang (10.1016/j.matdes.2025.113671_b0150) 2020; 31 Zhang (10.1016/j.matdes.2025.113671_b0185) 2018; 3 Li (10.1016/j.matdes.2025.113671_b0065) 2024; 238 Liao (10.1016/j.matdes.2025.113671_b0075) 2023; 206 Johnson (10.1016/j.matdes.2025.113671_b0215) 1987; 176 Long (10.1016/j.matdes.2025.113671_b0280) 2020; 479 Chung (10.1016/j.matdes.2025.113671_b0125) 2024 Liang (10.1016/j.matdes.2025.113671_b0245) 2023; 25 Wu (10.1016/j.matdes.2025.113671_b0040) 2019; 114 Fano (10.1016/j.matdes.2025.113671_b0310) 1961; 124 10.1016/j.matdes.2025.113671_b0320 Jiménez (10.1016/j.matdes.2025.113671_b0055) 2016; 109 Lv (10.1016/j.matdes.2025.113671_b0030) 2022; 127 Gao (10.1016/j.matdes.2025.113671_b0100) 2021; 154 Duan (10.1016/j.matdes.2025.113671_b0045) 2021; 118 Wu (10.1016/j.matdes.2025.113671_b0070) 2023; 8 Venkatachalam (10.1016/j.matdes.2025.113671_b0145) 2016; 100 Yang (10.1016/j.matdes.2025.113671_b0265) 2018; 8 Yang (10.1016/j.matdes.2025.113671_b0225) 2016; 50 Li (10.1016/j.matdes.2025.113671_b0180) 2019; 11 Zhang (10.1016/j.matdes.2025.113671_b0135) 2024 Zhang (10.1016/j.matdes.2025.113671_b0255) 2023; 196 Yang (10.1016/j.matdes.2025.113671_b0020) 2017; 47 Yu (10.1016/j.matdes.2025.113671_b0035) 2019; 7 Champoux (10.1016/j.matdes.2025.113671_b0220) 1991; 70 Gao (10.1016/j.matdes.2025.113671_b0190) 2022; 280 Jiang (10.1016/j.matdes.2025.113671_b0160) 2011; 5 Chen (10.1016/j.matdes.2025.113671_b0170) 2023; 10 10.1016/j.matdes.2025.113671_b0240 Yin (10.1016/j.matdes.2025.113671_b0155) 2020; 211 Vinoy (10.1016/j.matdes.2025.113671_b0295) 1996 Allard (10.1016/j.matdes.2025.113671_b0235) 2009 Liu (10.1016/j.matdes.2025.113671_b0260) 2021; 263 Zhou (10.1016/j.matdes.2025.113671_b0195) 2020; 8 Gao (10.1016/j.matdes.2025.113671_b0005) 2022; 7 Ma (10.1016/j.matdes.2025.113671_b0025) 2014; 13 Pendry (10.1016/j.matdes.2025.113671_b0290) 1999; 47 Allard (10.1016/j.matdes.2025.113671_b0210) 1992; 91 Gao (10.1016/j.matdes.2025.113671_b0095) 2021; 175 Li (10.1016/j.matdes.2025.113671_b0130) 2024; 20 |
| References_xml | – start-page: 97 year: 1996 end-page: 138 ident: b0295 article-title: Radar absorbing materials: from theory to design and characterization[M] – volume: 178 year: 2021 ident: b0105 article-title: Teaching-learning-based optimization of an ultra-broadband parallel sound absorber[J] publication-title: Appl. Acoust. – volume: 18 year: 2022 ident: b0120 article-title: Hydroacoustic high absorption with broadband and wide-angle impedance matching[J] publication-title: Phys. Rev. Appl – volume: 25 year: 2023 ident: b0245 article-title: A Compact Tunable Broadband Acoustic Metastructure with Continuous Gradient Spiral Channels[J] publication-title: Adv. Eng. Mater. – volume: 574 year: 2024 ident: b0090 article-title: Design and performance of ultra-broadband composite meta-absorber in the 200Hz-20kHz range[J] publication-title: J. Sound Vib. – year: 2024 ident: b0140 article-title: Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption[J] publication-title: Carbon – volume: 3 year: 2018 ident: b0185 article-title: A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously[J] publication-title: Adv. Mater. Technol. – volume: 47 start-page: 83 year: 2017 end-page: 114 ident: b0020 article-title: Sound absorption structures: From porous media to acoustic metamaterials[J] publication-title: Annu. Rev. Mat. Res. – volume: 15 start-page: 13565 year: 2023 end-page: 13575 ident: b0200 article-title: Combinatorial structural engineering of multichannel hierarchical hollow microspheres assembled from centripetal Fe/C nanosheets to achieve effective integration of sound absorption and microwave absorption[J] publication-title: ACS Appl. Mater. Interfaces – reference: ISO 10534-2:1988, Acoustics – Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method, Standard, International Organization for Standardization, Geneva, CH, 1988. – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: b0270 article-title: Multi-objective optimization using genetic algorithms: a tutorial[J] publication-title: Reliab. Eng. Syst. Saf. – year: 2024 ident: b0135 article-title: Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance[J] publication-title: Small – volume: 211 start-page: 82 year: 2020 end-page: 101 ident: b0155 article-title: Recent progress in ferrite microwave absorbing composites[J] publication-title: Integr. Ferroelectr. – volume: 31 year: 2020 ident: b0150 article-title: Design of MOF-derived hierarchical Co@ C@ RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent[J] publication-title: Nanotechnology – reference: ASTM-5568 Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave magnetic permeability of solid materials at Microwave. – volume: 175 year: 2021 ident: b0095 article-title: Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J] publication-title: Appl. Acoust. – volume: 241 year: 2024 ident: b0060 article-title: Hierarchical-porous acoustic metamaterials: A synergic approach to enhance broadband sound absorption[J] publication-title: Mater. Des. – volume: 127 year: 2022 ident: b0030 article-title: Electromagnetic absorption materials: Current progress and new frontiers[J] publication-title: Prog. Mater Sci. – volume: 284 start-page: 3129 year: 2011 end-page: 3133 ident: b0305 article-title: Thermal broadband tunable Terahertz metamaterials[J] publication-title: Opt. Commun. – volume: 188 year: 2022 ident: b0085 article-title: Frequency stop-band optimization in micro-slit resonant metamaterials[J] publication-title: Appl. Acoust. – volume: 8 year: 2020 ident: b0195 article-title: Ultrathin electromagnetic–acoustic amphibious stealth coats[J] publication-title: Adv. Opt. Mater. – volume: 114 year: 2019 ident: b0040 article-title: Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J] publication-title: Appl. Phys. Lett. – volume: 263 year: 2021 ident: b0260 article-title: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J] publication-title: Compos. Struct. – volume: 149 start-page: 2072 year: 2021 end-page: 2080 ident: b0285 article-title: Multiband asymmetric sound absorber enabled by ultrasparse Mie resonators[J] publication-title: J. Acoust. Soc. Am. – volume: 329 year: 2024 ident: b0205 article-title: CNTs/PVA composite aerogel for efficient microwave and acoustic absorption[J] publication-title: Compos. Struct. – volume: 125 year: 2024 ident: b0050 article-title: A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption[J] publication-title: Appl. Phys. Lett. – volume: 5 start-page: 4641 year: 2011 end-page: 4647 ident: b0160 article-title: Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating[J] publication-title: ACS Nano – volume: 10 year: 2023 ident: b0170 article-title: Broadband solar metamaterial absorbers empowered by transformer‐based deep learning[J] publication-title: Adv. Sci. – reference: W. D. Xu, L. J. Xie L, Y. B. Ying, Tunable transparent terahertz absorber for sensing and radiation warming[J], Carbon, 2023, 214: 118376. – volume: 70 start-page: 1975 year: 1991 end-page: 1979 ident: b0220 article-title: Dynamic tortuosity and bulk modulus in air‐saturated porous media[J] publication-title: J. Appl. Phys. – volume: 6 year: 2019 ident: b0010 article-title: Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J] publication-title: Adv. Sci. – volume: 13 start-page: 873 year: 2014 end-page: 878 ident: b0025 article-title: Acoustic metasurface with hybrid resonances[J] publication-title: Nat. Mater. – year: 2024 ident: b0125 article-title: A review of microwave absorption and reflection by cement‐based materials, with emphasis on electromagnetic interference shielding and admixture effects[J] publication-title: Adv. Funct. Mater. – volume: 154 year: 2021 ident: b0100 article-title: Hybrid composite meta-porous structure for improving and broadening sound absorption[J] publication-title: Mech. Syst. Sig. Process. – volume: 212 year: 2023 ident: b0165 article-title: Ultra-wideband, polarization-insensitive flexible metamaterial absorber base on laser printed graphene using equivalent circuit design method[J] publication-title: Carbon – volume: 238 year: 2024 ident: b0065 article-title: Design of a broadband composite noise reduction metamaterial with integrated vibration reduction and sound absorption and insulation[J] publication-title: Mater. Des. – volume: 206 year: 2023 ident: b0075 article-title: Quasi-perfect and wideband absorption with gradient non-uniform micro-slit array absorber via a hierarchical optimization method[J] publication-title: Appl. Acoust. – volume: 479 year: 2020 ident: b0280 article-title: Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes publication-title: J. Sound Vib. – volume: 100 start-page: 158 year: 2016 end-page: 164 ident: b0145 article-title: Kapton-derived carbon as efficient terahertz absorbers[J] publication-title: Carbon – volume: 124 start-page: 1866 year: 1961 ident: b0310 article-title: Effects of configuration interaction on intensities and phase shifts[J] publication-title: Phys. Rev. – volume: 7 year: 2022 ident: b0005 article-title: Acoustic metamaterials for noise reduction: a review[J] publication-title: Adv. Mater. Technol. – volume: 140 start-page: 696 year: 2018 end-page: 733 ident: b0015 article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J] publication-title: Carbon – volume: 91 start-page: 3346 year: 1992 end-page: 3353 ident: b0210 article-title: New empirical equations for sound propagation in rigid frame fibrous materials[J] publication-title: J. Acoust. Soc. Am. – volume: 256 year: 2023 ident: b0110 article-title: Coiled-up structure with porous material lining for enhanced sound absorption[J] publication-title: Int. J. Mech. Sci. – volume: 8 start-page: 1247 year: 2018 ident: b0265 article-title: An integration strategy for acoustic metamaterials to achieve absorption by design[J] publication-title: Appl. Sci. – volume: 47 start-page: 2075 year: 1999 end-page: 2084 ident: b0290 article-title: Magnetism from conductors and enhanced nonlinear phenomena[J] publication-title: IEEE T Microw Theory – volume: 11 start-page: 1692 year: 2019 end-page: 1699 ident: b0180 article-title: Electromagnetic and acoustic double-shielding graphene-based metastructures[J] publication-title: Nanoscale – volume: 8 year: 2023 ident: b0070 article-title: Transformation from Helmholtz to membrane resonance by electro‐adhesive zip of a double‐layer micro‐slit acoustic absorber[J] publication-title: Adv. Mater. Technol. – volume: 7 year: 2019 ident: b0035 article-title: Broadband metamaterial absorbers[J] publication-title: Adv. Opt. Mater. – volume: 196 year: 2023 ident: b0255 article-title: Broadband low-frequency sound absorption of honeycomb sandwich panels with rough embedded necks[J] publication-title: Mech. Syst. Sig. Process. – volume: 50 year: 2016 ident: b0225 article-title: Multiple slow waves in metaporous layers for broadband sound absorption[J] publication-title: J. Phys. D Appl. Phys. – volume: 461 year: 2019 ident: b0115 article-title: Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J] publication-title: J. Sound Vib. – volume: 109 year: 2016 ident: b0055 article-title: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J] publication-title: Appl. Phys. Lett. – volume: 118 year: 2021 ident: b0045 article-title: Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband[J] publication-title: Appl. Phys. Lett. – volume: 280 year: 2022 ident: b0190 article-title: Design and study of a hybrid composite structure that improves electromagnetic shielding and sound absorption simultaneously[J] publication-title: Compos. Struct. – year: 2009 ident: b0235 article-title: Propagation of sound in porous media: modelling sound absorbing materials[M] – volume: 8 start-page: 3983 year: 2008 end-page: 3988 ident: b0315 article-title: Symmetry breaking in plasmonicnanocavities: subradiant LSPR sensing and a tunable Fano resonance[J] publication-title: Nano Lett. – volume: 132 year: 2022 ident: b0250 article-title: Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition[J] publication-title: J. Appl. Phys. – volume: 119 year: 2016 ident: b0080 article-title: Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure[J] publication-title: J. Appl. Phys. – reference: COMSOL Multiphysics® v. 6.0. COMSOL lnc, Stockholm, Sweden. 2023. – volume: 117 year: 2015 ident: b0230 article-title: Metaporous layer to overcome the thickness constraint for broadband sound absorption[J] publication-title: J. Appl. Phys. – volume: 139 start-page: 3395 year: 2016 end-page: 3403 ident: b0275 article-title: Use of complex frequency plane to design broadband and sub-wavelength absorbers publication-title: J. Acoust. Soc. Am. – volume: 20 year: 2024 ident: b0130 article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption[J] publication-title: Small – volume: 176 start-page: 379 year: 1987 end-page: 402 ident: b0215 article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J] publication-title: J. Fluid Mech. – volume: 25 issue: 10 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0245 article-title: A Compact Tunable Broadband Acoustic Metastructure with Continuous Gradient Spiral Channels[J] publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202201577 – volume: 8 start-page: 3983 issue: 11 year: 2008 ident: 10.1016/j.matdes.2025.113671_b0315 article-title: Symmetry breaking in plasmonicnanocavities: subradiant LSPR sensing and a tunable Fano resonance[J] publication-title: Nano Lett. doi: 10.1021/nl802509r – volume: 139 start-page: 3395 issue: 6 year: 2016 ident: 10.1016/j.matdes.2025.113671_b0275 article-title: Use of complex frequency plane to design broadband and sub-wavelength absorbers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4950708 – volume: 479 year: 2020 ident: 10.1016/j.matdes.2025.113671_b0280 article-title: Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115371 – volume: 211 start-page: 82 issue: 1 year: 2020 ident: 10.1016/j.matdes.2025.113671_b0155 article-title: Recent progress in ferrite microwave absorbing composites[J] publication-title: Integr. Ferroelectr. doi: 10.1080/10584587.2020.1803677 – volume: 5 start-page: 4641 issue: 6 year: 2011 ident: 10.1016/j.matdes.2025.113671_b0160 article-title: Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating[J] publication-title: ACS Nano doi: 10.1021/nn2004603 – volume: 241 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0060 article-title: Hierarchical-porous acoustic metamaterials: A synergic approach to enhance broadband sound absorption[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2024.112943 – ident: 10.1016/j.matdes.2025.113671_b0175 doi: 10.1016/j.carbon.2023.118376 – volume: 256 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0110 article-title: Coiled-up structure with porous material lining for enhanced sound absorption[J] publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108480 – volume: 31 issue: 39 year: 2020 ident: 10.1016/j.matdes.2025.113671_b0150 article-title: Design of MOF-derived hierarchical Co@ C@ RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent[J] publication-title: Nanotechnology doi: 10.1088/1361-6528/ab97d1 – volume: 206 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0075 article-title: Quasi-perfect and wideband absorption with gradient non-uniform micro-slit array absorber via a hierarchical optimization method[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109321 – volume: 238 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0065 article-title: Design of a broadband composite noise reduction metamaterial with integrated vibration reduction and sound absorption and insulation[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2024.112709 – volume: 175 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0095 article-title: Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107845 – volume: 70 start-page: 1975 issue: 4 year: 1991 ident: 10.1016/j.matdes.2025.113671_b0220 article-title: Dynamic tortuosity and bulk modulus in air‐saturated porous media[J] publication-title: J. Appl. Phys. doi: 10.1063/1.349482 – volume: 50 issue: 1 year: 2016 ident: 10.1016/j.matdes.2025.113671_b0225 article-title: Multiple slow waves in metaporous layers for broadband sound absorption[J] publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/50/1/015301 – volume: 178 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0105 article-title: Teaching-learning-based optimization of an ultra-broadband parallel sound absorber[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.107969 – volume: 18 issue: 4 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0120 article-title: Hydroacoustic high absorption with broadband and wide-angle impedance matching[J] publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.18.044008 – volume: 212 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0165 article-title: Ultra-wideband, polarization-insensitive flexible metamaterial absorber base on laser printed graphene using equivalent circuit design method[J] publication-title: Carbon doi: 10.1016/j.carbon.2023.118166 – volume: 47 start-page: 2075 issue: 11 year: 1999 ident: 10.1016/j.matdes.2025.113671_b0290 article-title: Magnetism from conductors and enhanced nonlinear phenomena[J] publication-title: IEEE T Microw Theory doi: 10.1109/22.798002 – volume: 140 start-page: 696 year: 2018 ident: 10.1016/j.matdes.2025.113671_b0015 article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J] publication-title: Carbon doi: 10.1016/j.carbon.2018.09.006 – volume: 15 start-page: 13565 issue: 10 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0200 article-title: Combinatorial structural engineering of multichannel hierarchical hollow microspheres assembled from centripetal Fe/C nanosheets to achieve effective integration of sound absorption and microwave absorption[J] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00337 – volume: 91 start-page: 3346 issue: 6 year: 1992 ident: 10.1016/j.matdes.2025.113671_b0210 article-title: New empirical equations for sound propagation in rigid frame fibrous materials[J] publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.402824 – volume: 8 start-page: 1247 issue: 8 year: 2018 ident: 10.1016/j.matdes.2025.113671_b0265 article-title: An integration strategy for acoustic metamaterials to achieve absorption by design[J] publication-title: Appl. Sci. doi: 10.3390/app8081247 – volume: 154 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0100 article-title: Hybrid composite meta-porous structure for improving and broadening sound absorption[J] publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107504 – volume: 8 issue: 15 year: 2020 ident: 10.1016/j.matdes.2025.113671_b0195 article-title: Ultrathin electromagnetic–acoustic amphibious stealth coats[J] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000200 – volume: 188 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0085 article-title: Frequency stop-band optimization in micro-slit resonant metamaterials[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108552 – volume: 149 start-page: 2072 issue: 3 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0285 article-title: Multiband asymmetric sound absorber enabled by ultrasparse Mie resonators[J] publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0003822 – volume: 124 start-page: 1866 issue: 6 year: 1961 ident: 10.1016/j.matdes.2025.113671_b0310 article-title: Effects of configuration interaction on intensities and phase shifts[J] publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.1866 – volume: 47 start-page: 83 issue: 1 year: 2017 ident: 10.1016/j.matdes.2025.113671_b0020 article-title: Sound absorption structures: From porous media to acoustic metamaterials[J] publication-title: Annu. Rev. Mat. Res. doi: 10.1146/annurev-matsci-070616-124032 – volume: 125 issue: 1 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0050 article-title: A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption[J] publication-title: Appl. Phys. Lett. doi: 10.1063/5.0212688 – year: 2024 ident: 10.1016/j.matdes.2025.113671_b0125 article-title: A review of microwave absorption and reflection by cement‐based materials, with emphasis on electromagnetic interference shielding and admixture effects[J] publication-title: Adv. Funct. Mater. – volume: 20 issue: 11 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0130 article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption[J] publication-title: Small doi: 10.1002/smll.202305120 – volume: 574 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0090 article-title: Design and performance of ultra-broadband composite meta-absorber in the 200Hz-20kHz range[J] publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2023.118229 – volume: 91 start-page: 992 issue: 9 year: 2006 ident: 10.1016/j.matdes.2025.113671_b0270 article-title: Multi-objective optimization using genetic algorithms: a tutorial[J] publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.11.018 – volume: 132 issue: 13 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0250 article-title: Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition[J] publication-title: J. Appl. Phys. doi: 10.1063/5.0108807 – volume: 13 start-page: 873 issue: 9 year: 2014 ident: 10.1016/j.matdes.2025.113671_b0025 article-title: Acoustic metasurface with hybrid resonances[J] publication-title: Nat. Mater. doi: 10.1038/nmat3994 – volume: 280 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0190 article-title: Design and study of a hybrid composite structure that improves electromagnetic shielding and sound absorption simultaneously[J] publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114924 – start-page: 97 year: 1996 ident: 10.1016/j.matdes.2025.113671_b0295 – ident: 10.1016/j.matdes.2025.113671_b0240 – volume: 100 start-page: 158 year: 2016 ident: 10.1016/j.matdes.2025.113671_b0145 article-title: Kapton-derived carbon as efficient terahertz absorbers[J] publication-title: Carbon doi: 10.1016/j.carbon.2016.01.003 – ident: 10.1016/j.matdes.2025.113671_b0320 – volume: 8 issue: 10 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0070 article-title: Transformation from Helmholtz to membrane resonance by electro‐adhesive zip of a double‐layer micro‐slit acoustic absorber[J] publication-title: Adv. Mater. Technol. – volume: 10 issue: 13 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0170 article-title: Broadband solar metamaterial absorbers empowered by transformer‐based deep learning[J] publication-title: Adv. Sci. doi: 10.1002/advs.202206718 – volume: 6 issue: 8 year: 2019 ident: 10.1016/j.matdes.2025.113671_b0010 article-title: Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J] publication-title: Adv. Sci. doi: 10.1002/advs.201801057 – volume: 176 start-page: 379 year: 1987 ident: 10.1016/j.matdes.2025.113671_b0215 article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J] publication-title: J. Fluid Mech. doi: 10.1017/S0022112087000727 – volume: 119 issue: 1 year: 2016 ident: 10.1016/j.matdes.2025.113671_b0080 article-title: Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure[J] publication-title: J. Appl. Phys. doi: 10.1063/1.4938735 – volume: 7 issue: 6 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0005 article-title: Acoustic metamaterials for noise reduction: a review[J] publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100698 – volume: 196 year: 2023 ident: 10.1016/j.matdes.2025.113671_b0255 article-title: Broadband low-frequency sound absorption of honeycomb sandwich panels with rough embedded necks[J] publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2023.110311 – year: 2024 ident: 10.1016/j.matdes.2025.113671_b0135 article-title: Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance[J] publication-title: Small – year: 2009 ident: 10.1016/j.matdes.2025.113671_b0235 – volume: 118 issue: 7 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0045 article-title: Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband[J] publication-title: Appl. Phys. Lett. doi: 10.1063/5.0028135 – volume: 329 year: 2024 ident: 10.1016/j.matdes.2025.113671_b0205 article-title: CNTs/PVA composite aerogel for efficient microwave and acoustic absorption[J] publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.117805 – volume: 461 year: 2019 ident: 10.1016/j.matdes.2025.113671_b0115 article-title: Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J] publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.114922 – volume: 114 issue: 15 year: 2019 ident: 10.1016/j.matdes.2025.113671_b0040 article-title: Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5090355 – volume: 117 issue: 17 year: 2015 ident: 10.1016/j.matdes.2025.113671_b0230 article-title: Metaporous layer to overcome the thickness constraint for broadband sound absorption[J] publication-title: J. Appl. Phys. doi: 10.1063/1.4919844 – year: 2024 ident: 10.1016/j.matdes.2025.113671_b0140 article-title: Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption[J] publication-title: Carbon doi: 10.1016/j.carbon.2024.118834 – ident: 10.1016/j.matdes.2025.113671_b0300 – volume: 11 start-page: 1692 issue: 4 year: 2019 ident: 10.1016/j.matdes.2025.113671_b0180 article-title: Electromagnetic and acoustic double-shielding graphene-based metastructures[J] publication-title: Nanoscale doi: 10.1039/C8NR06143B – volume: 109 issue: 12 year: 2016 ident: 10.1016/j.matdes.2025.113671_b0055 article-title: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4962328 – volume: 127 year: 2022 ident: 10.1016/j.matdes.2025.113671_b0030 article-title: Electromagnetic absorption materials: Current progress and new frontiers[J] publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2022.100946 – volume: 7 issue: 3 year: 2019 ident: 10.1016/j.matdes.2025.113671_b0035 article-title: Broadband metamaterial absorbers[J] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800995 – volume: 263 year: 2021 ident: 10.1016/j.matdes.2025.113671_b0260 article-title: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J] publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113647 – volume: 3 issue: 8 year: 2018 ident: 10.1016/j.matdes.2025.113671_b0185 article-title: A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously[J] publication-title: Adv. Mater. Technol. – volume: 284 start-page: 3129 year: 2011 ident: 10.1016/j.matdes.2025.113671_b0305 article-title: Thermal broadband tunable Terahertz metamaterials[J] publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.02.038 |
| SSID | ssj0022734 |
| Score | 2.5671816 |
| Snippet | [Display omitted]
•Digital multi-unit composite metamaterial achieves noise and electromagnetic wave absorption simultaneously.•Optimized average sound... We propose a broadband multi-unit composite metamaterial consisting of nine sub-units capable of simultaneously achieving broadband noise reduction and... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 113671 |
| SubjectTerms | Composite metamaterial Multifunctional stealth Porous material Teaching–learning-based algorithm |
| Title | Broadband multi-unit composite metamaterial for simultaneous sound wave and electromagnetic wave absorption |
| URI | https://dx.doi.org/10.1016/j.matdes.2025.113671 https://doaj.org/article/e2b6c7689d254ad6b2a605c38a28eeb5 |
| Volume | 251 |
| WOSCitedRecordID | wos001413271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0264-1275 databaseCode: DOA dateStart: 20190101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0022734 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0264-1275 databaseCode: AIEXJ dateStart: 20181205 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0022734 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQUECBOMVyyQVtxCZOYrsEBAKEVhSAtovG9hgtRxbtxe_jI1ktDTS0iS-NJ5k31vMbQk6RZZLbEhPoap7kovCXlRGSgkFhXbyAPNRPeb7nvZ7o9-XDQqkvzwmL8sDRcGeYqVI7TCyNS2XAlCoDh8A1E5AJRBXUS7tctslUk2p50ZZ4uuJV-XjRXpoLzC4HBQ16qe6sCCVNePojKAXt_oXYtBBvrjfJRgMU6Xlc4BZZwnqbrC_IB-6QN5dDg1FQGxp4gcnUfZ_Uk8Q9EwvpB07ArSL4GHXglI4Hvh3U6NJ9OvYFlegXzJD6EZp6OB_wUvt7jc0LNR6Owk9llzxdXz1e3iRN8YRE56mYJBKx5FaZErV1qENxYUEq0EplOrUaS-AuLKWQllwXZS6BscykIBl0baFRsj2yXA9r3CcUjXF5ETeCWcjRMmEE113Xn2mZQp52CGutV-lGWdwXuHivWgrZaxVtXnmbV9HmHZLMe31GZY0_2l_4jZm39brY4YHzlqrxluovb-kQ3m5r1UCMCB3cUINfpz_4j-kPyZofMnLYjsjyZDTFY7KqZ5PBeHRCVs5vr_p3J8GVvwFczvov |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+multi-unit+composite+metamaterial+for+simultaneous+sound+wave+and+electromagnetic+wave+absorption&rft.jtitle=Materials+%26+design&rft.au=Gao%2C+Nansha&rft.au=Zhang%2C+Zhicheng&rft.au=Liang%2C+Xiao&rft.au=Li%2C+Yiting&rft.date=2025-03-01&rft.issn=0264-1275&rft.volume=251&rft.spage=113671&rft_id=info:doi/10.1016%2Fj.matdes.2025.113671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2025_113671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |