Robot dynamics: A recursive algorithm for efficient calculation of Christoffel symbols

•Christoffel symbols of the first kind are calculated recursively.•Calculations based on inertial parameters and transformations matrices.•Execution time and numerical error as performance indicators.•Compares favourably with existing methods.•MATLAB running code is available. Christoffel symbols of...

Full description

Saved in:
Bibliographic Details
Published in:Mechanism and machine theory Vol. 142; p. 103589
Main Authors: Safeea, Mohammad, Neto, Pedro, Bearee, Richard
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2019
Elsevier
Subjects:
ISSN:0094-114X, 1873-3999
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Christoffel symbols of the first kind are calculated recursively.•Calculations based on inertial parameters and transformations matrices.•Execution time and numerical error as performance indicators.•Compares favourably with existing methods.•MATLAB running code is available. Christoffel symbols of the first kind are very important in robot dynamics. They are used for tuning various proposed robot controllers, for determining the bounds on Coriolis/Centrifugal matrix, for mathematical formulation of optimal trajectory calculation, among others. In the literature of robot dynamics, Christoffel symbols of the first kind are calculated from Lagrangian dynamics using an off-line generated symbolic formula. In this study we present a novel and efficient recursive, non-symbolic, method where Christoffel symbols of the first kind are calculated on-the-fly based on the inertial parameters of robot’s links and their transformation matrices. The proposed method was analyzed in terms of execution time, computational complexity and numerical error. Results show that the proposed algorithm compares favorably with existing methods.
AbstractList Christoffel symbols of the first kind are very important in robot dynamics. They are used for tuning various proposed robot controllers, for determining the bounds on Coriolis/Centrifugal matrix, for mathematical formulation of optimal trajectory calculation, among others. In the literature of robot dynamics, Christoffel symbols of the first kind are calculated from Lagrangian dynamics using an off-line generated symbolic formula. In this study we present a novel and efficient recursive, non-symbolic, method where Christoffel symbols of the first kind are calculated on-the-fly based on the inertial parameters of robot’s links and their transformation matrices. The proposed method was analyzed in terms of execution time, computational complexity and numerical error. Results show that the proposed algorithm compares favorably with existing methods.
•Christoffel symbols of the first kind are calculated recursively.•Calculations based on inertial parameters and transformations matrices.•Execution time and numerical error as performance indicators.•Compares favourably with existing methods.•MATLAB running code is available. Christoffel symbols of the first kind are very important in robot dynamics. They are used for tuning various proposed robot controllers, for determining the bounds on Coriolis/Centrifugal matrix, for mathematical formulation of optimal trajectory calculation, among others. In the literature of robot dynamics, Christoffel symbols of the first kind are calculated from Lagrangian dynamics using an off-line generated symbolic formula. In this study we present a novel and efficient recursive, non-symbolic, method where Christoffel symbols of the first kind are calculated on-the-fly based on the inertial parameters of robot’s links and their transformation matrices. The proposed method was analyzed in terms of execution time, computational complexity and numerical error. Results show that the proposed algorithm compares favorably with existing methods.
ArticleNumber 103589
Author Bearee, Richard
Safeea, Mohammad
Neto, Pedro
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Safeea
  fullname: Safeea, Mohammad
  email: ms@uc.pt
  organization: University of Coimbra, Department of Mechanical Engineering, Coimbra 3030-788, Portugal
– sequence: 2
  givenname: Pedro
  surname: Neto
  fullname: Neto, Pedro
  email: pedro.neto@dem.uc.pt
  organization: University of Coimbra, Department of Mechanical Engineering, Coimbra 3030-788, Portugal
– sequence: 3
  givenname: Richard
  surname: Bearee
  fullname: Bearee, Richard
  email: Richard.BEAREE@ensam.eu
  organization: Arts et Métiers, LISPEN, Lille 59800, France
BackLink https://hal.science/hal-02766276$$DView record in HAL
BookMark eNqNkE9LAzEQxYNUsK1-hxy8eNg62exuN-KlFmuFgiAq3kI2f9yU3Y0kaaHf3q3Vg556GAZm3nvD_EZo0LlOI3RJYEKAFNfrSatl3QpZx1o7v5ukQFi_onnJTtCQlFOaUMbYAA0BWJYQkr2foVEIawCY5hkdordnV7mI1a4TrZXhBs-w13Ljg91qLJoP522sW2ycx9oYK63uIpaikZtGROs67Aye196G6IzRDQ67tnJNOEenRjRBX_z0MXpd3L_Ml8nq6eFxPlslMiNlTFiVKZBCZSolBSWpBCiZzEtFRa4MEKUIk6oqhS5SZRiF1JSVzhXNKIA2KR2jq0NuLRr-6W0r_I47YflytuL7GaTTouhrS3rt3UErvQvBa8Oljd9PRC9swwnwPVW-5n-p8j1VfqDah9z-C_m9eqR9cbDrHsrWas_DHqnUyvbYI1fOHhf0BWS8oXQ
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2022_104241
crossref_primary_10_1007_s00707_023_03811_z
crossref_primary_10_3390_app13063912
crossref_primary_10_1186_s10033_024_01063_z
crossref_primary_10_1155_2020_3156787
crossref_primary_10_1109_LRA_2022_3192887
crossref_primary_10_35633_inmateh_75_36
crossref_primary_10_1016_j_nexres_2025_100703
crossref_primary_10_1016_j_mechmachtheory_2021_104585
Cites_doi 10.1177/0278364905054928
10.1109/TAC.2009.2028959
10.1109/9.83543
10.1002/rob.4620040604
10.1109/70.86088
10.1177/02783649922066628
10.1109/70.210803
10.1016/S0167-6911(00)00038-4
10.1109/TNN.2007.894070
10.1109/JRA.1987.1087090
10.1007/978-3-319-32552-1
10.1080/00207179.2013.875224
10.1002/oca.2234
10.1049/iet-cta.2012.0505
10.1109/9.402235
10.1163/156855395X00427
10.1115/1.3149599
10.1177/02783649922066619
10.1016/S0167-6911(00)00077-3
10.1115/1.4044216
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.mechmachtheory.2019.103589
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3999
ExternalDocumentID oai:HAL:hal-02766276v1
10_1016_j_mechmachtheory_2019_103589
S0094114X19311498
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c418t-9b4d0cad4d216312c0089c58d3a5df01dd19cdb8ae62df9302f8be5d34300ef23
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495898700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-114X
IngestDate Tue Oct 14 20:33:46 EDT 2025
Sat Nov 29 07:27:07 EST 2025
Tue Nov 18 21:46:22 EST 2025
Fri Feb 23 02:49:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Recursive algorithms
Christoffel symbols
Dynamicss
Bioengineering
Mechanics of Materials
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-9b4d0cad4d216312c0089c58d3a5df01dd19cdb8ae62df9302f8be5d34300ef23
ORCID 0000-0002-6186-0755
OpenAccessLink https://hal.science/hal-02766276
ParticipantIDs hal_primary_oai_HAL_hal_02766276v1
crossref_citationtrail_10_1016_j_mechmachtheory_2019_103589
crossref_primary_10_1016_j_mechmachtheory_2019_103589
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2019_103589
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Mechanism and machine theory
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Featherstone (bib0011) 2005; 24
Featherstone (bib0010) 1999; 18
Safeea, Bearee, Neto (bib0012) 2018
Luh, Walker, Paul (bib0008) 1980; 102
Qu, Dorsey (bib0018) 1991; 36
Siciliano, Khatib (bib0028) 2016
Cervantes, Alvarez-Ramirez (bib0017) 2001; 42
Khalil (bib0005) 2010
Tomei (bib0015) 1991; 7
Nagy, Vajk (bib0024) 2019
Neuman, Murray (bib0004) 1987; 4
Ortega, Loria, Kelly (bib0019) 1995; 40
Featherstone, Orin (bib0007) 2000
H. Hoifodt, Dynamic modeling and simulation of robot manipulators: the newton-euler formulation (2011).
Gunawardana, Ghorbel (bib0013) 1999; 14
Mulero-Martinez (bib0020) 2007; 18
Pfeiffer, Johanni (bib0022) 1987; 3
Liu, Yu (bib0003) 2013; 7
Siciliano, Sciavicco, Villani, Oriolo (bib0021) 2010
Lynch, Park (bib0026) 2017
Misner, Thorne, Wheeler (bib0002) 1973
Kelly (bib0014) 1993; 9
Lipp, Boyd (bib0023) 2014; 87
Reynoso-Mora, Chen, Tomizuka (bib0030) 2016; 37
Alvarez-Ramirez, Cervantes, Kelly (bib0016) 2000; 41
Craig (bib0029) 2005; vol. 3
Featherstone (bib0009) 1999; 18
LaValle (bib0027) 2006
Sciavicco, Siciliano, Villani (bib0001) 1995; 10
Verscheure, Demeulenäre, Swevers, De Schutter, Diehl (bib0031) 2009; 54
Yin, Yuh (bib0025) 1989
Featherstone (10.1016/j.mechmachtheory.2019.103589_bib0007) 2000
Gunawardana (10.1016/j.mechmachtheory.2019.103589_bib0013) 1999; 14
Featherstone (10.1016/j.mechmachtheory.2019.103589_bib0011) 2005; 24
Tomei (10.1016/j.mechmachtheory.2019.103589_bib0015) 1991; 7
Mulero-Martinez (10.1016/j.mechmachtheory.2019.103589_bib0020) 2007; 18
Lipp (10.1016/j.mechmachtheory.2019.103589_bib0023) 2014; 87
Kelly (10.1016/j.mechmachtheory.2019.103589_bib0014) 1993; 9
Sciavicco (10.1016/j.mechmachtheory.2019.103589_bib0001) 1995; 10
Reynoso-Mora (10.1016/j.mechmachtheory.2019.103589_bib0030) 2016; 37
Cervantes (10.1016/j.mechmachtheory.2019.103589_bib0017) 2001; 42
LaValle (10.1016/j.mechmachtheory.2019.103589_bib0027) 2006
10.1016/j.mechmachtheory.2019.103589_bib0006
Ortega (10.1016/j.mechmachtheory.2019.103589_bib0019) 1995; 40
Siciliano (10.1016/j.mechmachtheory.2019.103589_bib0021) 2010
Nagy (10.1016/j.mechmachtheory.2019.103589_bib0024) 2019
Verscheure (10.1016/j.mechmachtheory.2019.103589_bib0031) 2009; 54
Featherstone (10.1016/j.mechmachtheory.2019.103589_bib0009) 1999; 18
Liu (10.1016/j.mechmachtheory.2019.103589_bib0003) 2013; 7
Pfeiffer (10.1016/j.mechmachtheory.2019.103589_bib0022) 1987; 3
Craig (10.1016/j.mechmachtheory.2019.103589_bib0029) 2005; vol. 3
Alvarez-Ramirez (10.1016/j.mechmachtheory.2019.103589_bib0016) 2000; 41
Luh (10.1016/j.mechmachtheory.2019.103589_bib0008) 1980; 102
Lynch (10.1016/j.mechmachtheory.2019.103589_bib0026) 2017
Misner (10.1016/j.mechmachtheory.2019.103589_bib0002) 1973
Qu (10.1016/j.mechmachtheory.2019.103589_bib0018) 1991; 36
Neuman (10.1016/j.mechmachtheory.2019.103589_bib0004) 1987; 4
Featherstone (10.1016/j.mechmachtheory.2019.103589_bib0010) 1999; 18
Safeea (10.1016/j.mechmachtheory.2019.103589_bib0012) 2018
Yin (10.1016/j.mechmachtheory.2019.103589_bib0025) 1989
Siciliano (10.1016/j.mechmachtheory.2019.103589_bib0028) 2016
Khalil (10.1016/j.mechmachtheory.2019.103589_bib0005) 2010
References_xml – volume: 7
  start-page: 565
  year: 1991
  end-page: 570
  ident: bib0015
  article-title: Adaptive PD controller for robot manipulators
  publication-title: IEEE Trans. Rob. Autom.
– start-page: 826
  year: 2000
  end-page: 834
  ident: bib0007
  article-title: Robot dynamics: equations and algorithms
  publication-title: ICRA
– volume: 18
  start-page: 876
  year: 1999
  end-page: 892
  ident: bib0010
  article-title: A divide-and-conquer articulated-body algorithm for parallel o (log (n)) calculation of rigid-body dynamics. Part 2: trees, loops, and accuracy
  publication-title: Int. J. Rob. Res.
– volume: 7
  start-page: 921
  year: 2013
  end-page: 935
  ident: bib0003
  article-title: A survey of underactuated mechanical systems
  publication-title: IET Control Theory Appl.
– year: 2010
  ident: bib0021
  article-title: Robotics: Modelling, Planning and Control
– reference: H. Hoifodt, Dynamic modeling and simulation of robot manipulators: the newton-euler formulation (2011).
– volume: 40
  start-page: 1432
  year: 1995
  end-page: 1436
  ident: bib0019
  article-title: A semiglobally stable output feedback PI/sup 2/D regulator for robot manipulators
  publication-title: IEEE Trans. Autom. Control
– volume: 9
  start-page: 117
  year: 1993
  end-page: 119
  ident: bib0014
  article-title: Comments on adaptive pd controller for robot manipulators
  publication-title: IEEE Trans. Rob. Autom.
– start-page: 1812
  year: 1989
  end-page: 1817
  ident: bib0025
  article-title: An efficient algorithm for automatic generation of manipulator dynamic equations
  publication-title: Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on
– volume: 36
  start-page: 1081
  year: 1991
  end-page: 1084
  ident: bib0018
  article-title: Robust tracking control of robots by a linear feedback law
  publication-title: IEEE Trans. Autom. Control
– year: 2006
  ident: bib0027
  article-title: Planning Algorithms
– volume: 54
  start-page: 2318
  year: 2009
  end-page: 2327
  ident: bib0031
  article-title: Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
  publication-title: IEEE Trans. Autom. Control
– year: 2010
  ident: bib0005
  article-title: Dynamic modeling of robots using recursive newton-euler techniques
  publication-title: ICINCO2010
– year: 1973
  ident: bib0002
  article-title: Gravitation
– volume: 102
  start-page: 69
  year: 1980
  end-page: 76
  ident: bib0008
  article-title: On-line computational scheme for mechanical manipulators
  publication-title: J. Dyn. Syst. Meas.Control
– volume: 18
  start-page: 867
  year: 1999
  end-page: 875
  ident: bib0009
  article-title: A divide-and-conquer articulated-body algorithm for parallel o (log (n)) calculation of rigid-body dynamics. Part 1: basic algorithm
  publication-title: Int. J. Rob. Res.
– year: 2019
  ident: bib0024
  article-title: Non-convex time-optimal trajectory planning for robot manipulators
  publication-title: J. Dyn. Syst. Meas.Control
– volume: 42
  start-page: 37
  year: 2001
  end-page: 46
  ident: bib0017
  article-title: On the PID tracking control of robot manipulators
  publication-title: Syst. Control Lett.
– volume: vol. 3
  year: 2005
  ident: bib0029
  article-title: Introduction to Robotics: Mechanics and Control
– volume: 4
  start-page: 743
  year: 1987
  end-page: 769
  ident: bib0004
  article-title: Symbolically efficient formulations for computational robot dynamics
  publication-title: J. Rob. Syst.
– volume: 87
  start-page: 1297
  year: 2014
  end-page: 1311
  ident: bib0023
  article-title: Minimum-time speed optimisation over a fixed path
  publication-title: International Journal of Control
– start-page: 5614
  year: 2018
  end-page: 5619
  ident: bib0012
  article-title: Reducing the computational complexity of mass-matrix calculation for high DOF robots
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 10
  start-page: 317
  year: 1995
  end-page: 334
  ident: bib0001
  article-title: Lagrange and newton-euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects
  publication-title: Adv. Rob.
– volume: 14
  start-page: 45
  year: 1999
  end-page: 53
  ident: bib0013
  article-title: On the uniform boundedness of the coriolis/centrifugal terms in the robot equations of motion
  publication-title: Int. J. Rob. Autom.
– volume: 24
  start-page: 487
  year: 2005
  end-page: 500
  ident: bib0011
  article-title: Efficient factorization of the joint-space inertia matrix for branched kinematic trees
  publication-title: Int. J. Rob. Res.
– volume: 37
  start-page: 1263
  year: 2016
  end-page: 1281
  ident: bib0030
  article-title: A convex relaxation for the time-optimal trajectory planning of robotic manipulators along predetermined geometric paths
  publication-title: Optim. Control Appl. Methods
– volume: 18
  start-page: 865
  year: 2007
  end-page: 879
  ident: bib0020
  article-title: An improved dynamic neurocontroller based on Christoffel symbols
  publication-title: IEEE Trans. Neural Netw.
– year: 2017
  ident: bib0026
  article-title: Modern Robotics: Mechanics, Planning, and Control
– volume: 3
  start-page: 115
  year: 1987
  end-page: 123
  ident: bib0022
  article-title: A concept for manipulator trajectory planning
  publication-title: IEEE J. Rob. Autom.
– volume: 41
  start-page: 73
  year: 2000
  end-page: 83
  ident: bib0016
  article-title: PID regulation of robot manipulators: stability and performance
  publication-title: Syst. Control Lett.
– year: 2016
  ident: bib0028
  article-title: Springer Handbook of Robotics
– volume: 24
  start-page: 487
  issue: 6
  year: 2005
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0011
  article-title: Efficient factorization of the joint-space inertia matrix for branched kinematic trees
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364905054928
– volume: 54
  start-page: 2318
  issue: 10
  year: 2009
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0031
  article-title: Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2028959
– start-page: 826
  year: 2000
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0007
  article-title: Robot dynamics: equations and algorithms
– volume: 36
  start-page: 1081
  issue: 9
  year: 1991
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0018
  article-title: Robust tracking control of robots by a linear feedback law
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.83543
– volume: 4
  start-page: 743
  issue: 6
  year: 1987
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0004
  article-title: Symbolically efficient formulations for computational robot dynamics
  publication-title: J. Rob. Syst.
  doi: 10.1002/rob.4620040604
– volume: 7
  start-page: 565
  issue: 4
  year: 1991
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0015
  article-title: Adaptive PD controller for robot manipulators
  publication-title: IEEE Trans. Rob. Autom.
  doi: 10.1109/70.86088
– ident: 10.1016/j.mechmachtheory.2019.103589_bib0006
– year: 2010
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0005
  article-title: Dynamic modeling of robots using recursive newton-euler techniques
– volume: 18
  start-page: 876
  issue: 9
  year: 1999
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0010
  article-title: A divide-and-conquer articulated-body algorithm for parallel o (log (n)) calculation of rigid-body dynamics. Part 2: trees, loops, and accuracy
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783649922066628
– volume: 9
  start-page: 117
  issue: 1
  year: 1993
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0014
  article-title: Comments on adaptive pd controller for robot manipulators
  publication-title: IEEE Trans. Rob. Autom.
  doi: 10.1109/70.210803
– start-page: 5614
  year: 2018
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0012
  article-title: Reducing the computational complexity of mass-matrix calculation for high DOF robots
– volume: 41
  start-page: 73
  issue: 2
  year: 2000
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0016
  article-title: PID regulation of robot manipulators: stability and performance
  publication-title: Syst. Control Lett.
  doi: 10.1016/S0167-6911(00)00038-4
– start-page: 1812
  year: 1989
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0025
  article-title: An efficient algorithm for automatic generation of manipulator dynamic equations
– year: 2006
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0027
– volume: 14
  start-page: 45
  issue: 2
  year: 1999
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0013
  article-title: On the uniform boundedness of the coriolis/centrifugal terms in the robot equations of motion
  publication-title: Int. J. Rob. Autom.
– volume: vol. 3
  year: 2005
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0029
– year: 1973
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0002
– volume: 18
  start-page: 865
  issue: 3
  year: 2007
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0020
  article-title: An improved dynamic neurocontroller based on Christoffel symbols
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.894070
– volume: 3
  start-page: 115
  issue: 2
  year: 1987
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0022
  article-title: A concept for manipulator trajectory planning
  publication-title: IEEE J. Rob. Autom.
  doi: 10.1109/JRA.1987.1087090
– year: 2016
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0028
  doi: 10.1007/978-3-319-32552-1
– volume: 87
  start-page: 1297
  issue: 6
  year: 2014
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0023
  article-title: Minimum-time speed optimisation over a fixed path
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2013.875224
– volume: 37
  start-page: 1263
  issue: 6
  year: 2016
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0030
  article-title: A convex relaxation for the time-optimal trajectory planning of robotic manipulators along predetermined geometric paths
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2234
– volume: 7
  start-page: 921
  issue: 7
  year: 2013
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0003
  article-title: A survey of underactuated mechanical systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2012.0505
– volume: 40
  start-page: 1432
  issue: 8
  year: 1995
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0019
  article-title: A semiglobally stable output feedback PI/sup 2/D regulator for robot manipulators
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.402235
– year: 2010
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0021
– volume: 10
  start-page: 317
  issue: 3
  year: 1995
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0001
  article-title: Lagrange and newton-euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects
  publication-title: Adv. Rob.
  doi: 10.1163/156855395X00427
– year: 2017
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0026
– volume: 102
  start-page: 69
  issue: 2
  year: 1980
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0008
  article-title: On-line computational scheme for mechanical manipulators
  publication-title: J. Dyn. Syst. Meas.Control
  doi: 10.1115/1.3149599
– volume: 18
  start-page: 867
  issue: 9
  year: 1999
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0009
  article-title: A divide-and-conquer articulated-body algorithm for parallel o (log (n)) calculation of rigid-body dynamics. Part 1: basic algorithm
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783649922066619
– volume: 42
  start-page: 37
  issue: 1
  year: 2001
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0017
  article-title: On the PID tracking control of robot manipulators
  publication-title: Syst. Control Lett.
  doi: 10.1016/S0167-6911(00)00077-3
– year: 2019
  ident: 10.1016/j.mechmachtheory.2019.103589_bib0024
  article-title: Non-convex time-optimal trajectory planning for robot manipulators
  publication-title: J. Dyn. Syst. Meas.Control
  doi: 10.1115/1.4044216
SSID ssj0007543
Score 2.3504164
Snippet •Christoffel symbols of the first kind are calculated recursively.•Calculations based on inertial parameters and transformations matrices.•Execution time and...
Christoffel symbols of the first kind are very important in robot dynamics. They are used for tuning various proposed robot controllers, for determining the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103589
SubjectTerms Christoffel symbols
Dynamicss
Engineering Sciences
Recursive algorithms
Title Robot dynamics: A recursive algorithm for efficient calculation of Christoffel symbols
URI https://dx.doi.org/10.1016/j.mechmachtheory.2019.103589
https://hal.science/hal-02766276
Volume 142
WOSCitedRecordID wos000495898700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9RAEF-uVxH9ID6xvlik345IHpvLrn6QQypVbCm2yn0L-4rXkkfJnUf9753dTfauJ4UT8UsSFpLJzvyymR1mfoPQPotFShVYIBWcBUQlKhDjkASCE0HGPBYqk7bZRHZ8TKdTdjIYFH0tzLLM6ppeXbHL_2pqGANjm9LZvzC3fygMwDUYHY5gdjhuZfivjWgWI-U6zc9d5Xlrouo2UZ2XP5r2fDGrHNe3JZAw6QBgKtl18nIZGpZzoCh0OZr_qkRTztfd2CNtCob7_hqVTcjUrijSh-hPeaG1dU2PmhmvKq5WgWfbu2l0olXb-HiAIdPVG7X-fTwiYhu5Hb5QZpWVZBdeRgLYek3db8ettTRLAvCP2LXF2HFt_bGwuxjDxZsK5mdm5WZkUvOY4Q1IXR-iDersUyPWSAUvFU6M7qDdOEsZHaLdyaeD6Wf_z87SLr-ye83baH-VCXizzJucmZ1ZH5a3bsrZfXSv21_gicPFAzTQ9UN0d4118hH6bhGCe4S8xRPs8YE9PjDgA3t84DV84KbAa_jAHT4eo28fD84-HAZde41AkoguAiaICiVXRMXglEexBHeQSfhyE56qIoyUiphUgnI9jlXBkjAuqNCpSkgShrqIkydoWDe1foqwFGabLQQlVIDCtWAk0aB6GhIFO2a2h971esplxz1vWqCUeZ9keJFf13JutJw7Le-h1N996ThYtrzvfW-SvPMnnZ-YA6q2fMJrsKQXaqjYDydfcjMWxpnpnTBeRs_-WcxzdGf1Jb1Aw0X7U79Et-RycT5vX3VY_Q1w8bMb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+dynamics%3A+A+recursive+algorithm+for+efficient+calculation+of+Christoffel+symbols&rft.jtitle=Mechanism+and+machine+theory&rft.au=Safeea%2C+Mohammad&rft.au=Neto%2C+Pedro&rft.au=Bearee%2C+Richard&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.eissn=1873-3999&rft.volume=142&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2019.103589&rft.externalDocID=S0094114X19311498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon