Design of multi-scale receptive field convolutional neural network for surface inspection of hot rolled steels

Due to the large intra-class variations and unbalanced training samples, the accuracy of existing algorithms used in defect classification of hot rolled steels is unsatisfactory. In this paper, a new hierarchical learning framework is proposed based on convolutional neural networks to classify hot r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Image and vision computing Ročník 89; s. 12 - 20
Hlavní autoři: He, Di, Xu, Ke, Wang, Dadong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2019
Témata:
ISSN:0262-8856, 1872-8138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the large intra-class variations and unbalanced training samples, the accuracy of existing algorithms used in defect classification of hot rolled steels is unsatisfactory. In this paper, a new hierarchical learning framework is proposed based on convolutional neural networks to classify hot rolled defects. Multi-scale receptive field is introduced in the new framework to extract multi-scale features, which can better represent defects than the feature maps produced by a single convolutional layer. A group of AutoEncoders are trained to reduce the dimension of the extracted multi-scale features which improve the generalization ability under insufficient training samples. Besides, to mitigate the deviation caused by fine-tuning the pre-trained model with images of different context, we add a penalty term in the loss function, which is to reconstruct the input image from the feature maps produced by the pre-trained model, to help network encode more effective and structured information. The experiments with samples captured from two hot rolled production lines showed that the proposed framework achieved a classification rate of 97.2% and 97% respectively, which are much higher than the conventional methods. •We proposed a new framework based on Inception-V4 integrated with multi-scale respective field.•AutoEncoders are trained to reduce the dimension of the multi-scale features extracted by the pre-trained model.•A penalty term in the loss function to reconstruct the input image from the feature maps was added.•The methods were tested with two different samples from online surface inspection system of steels.
AbstractList Due to the large intra-class variations and unbalanced training samples, the accuracy of existing algorithms used in defect classification of hot rolled steels is unsatisfactory. In this paper, a new hierarchical learning framework is proposed based on convolutional neural networks to classify hot rolled defects. Multi-scale receptive field is introduced in the new framework to extract multi-scale features, which can better represent defects than the feature maps produced by a single convolutional layer. A group of AutoEncoders are trained to reduce the dimension of the extracted multi-scale features which improve the generalization ability under insufficient training samples. Besides, to mitigate the deviation caused by fine-tuning the pre-trained model with images of different context, we add a penalty term in the loss function, which is to reconstruct the input image from the feature maps produced by the pre-trained model, to help network encode more effective and structured information. The experiments with samples captured from two hot rolled production lines showed that the proposed framework achieved a classification rate of 97.2% and 97% respectively, which are much higher than the conventional methods. •We proposed a new framework based on Inception-V4 integrated with multi-scale respective field.•AutoEncoders are trained to reduce the dimension of the multi-scale features extracted by the pre-trained model.•A penalty term in the loss function to reconstruct the input image from the feature maps was added.•The methods were tested with two different samples from online surface inspection system of steels.
Author Wang, Dadong
Xu, Ke
He, Di
Author_xml – sequence: 1
  givenname: Di
  surname: He
  fullname: He, Di
  organization: Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  email: xuke@ustb.edu.cn
  organization: Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Dadong
  surname: Wang
  fullname: Wang, Dadong
  organization: Quantitative Imaging Research Team, Data61, Commonwealth Scientific and Industrial Research Organization, Australia
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyQ4iWs7LJBQeUqV2MDacp0xuLh2ZTtF_D0JZcUCFqM7izlXmjNDEx88IHRekbIiFbvYlHar9jaVNanakrCSEHGEppXgdSGqRkzQlNRs2MWCnaBZShtCCCe8nSJ_A8m-ehwM3vYu2yJp5QBH0LDLdg_YWHAd1sHvg-uzDV457KGP35E_QnzHJkSc-miUBmx92oEe78bKt5BxDM5Bh1MGcOkUHRvlEpz95By93N0-Lx-K1dP94_J6VWhaiVy0VNDWrIfRCijUHWeGmIWm3KxNC6auBVdKUNo0a80YCM4bQzrV8KZrCdBmjuihV8eQUgQjd3FwFD9lReToTG7kwZkcnUnC5OBswC5_YdpmNX6To7LuP_jqAA9_wt5ClElb8Bo6O-jMsgv274Iv8KuQPQ
CitedBy_id crossref_primary_10_3390_coatings13010017
crossref_primary_10_1109_TIM_2020_3030167
crossref_primary_10_1007_s13369_025_10223_9
crossref_primary_10_1016_j_rcim_2020_102083
crossref_primary_10_32604_jai_2022_038875
crossref_primary_10_3390_met11111832
crossref_primary_10_1109_TCPMT_2020_3033837
crossref_primary_10_3390_jimaging10060138
crossref_primary_10_1117_1_JEI_31_6_063056
crossref_primary_10_1049_ipr2_12647
crossref_primary_10_1080_0951192X_2021_1901319
crossref_primary_10_1109_TIM_2021_3063755
crossref_primary_10_3390_s21134612
crossref_primary_10_3390_pr9010033
crossref_primary_10_1080_00207543_2022_2138613
crossref_primary_10_1016_j_image_2022_116807
crossref_primary_10_1109_JSEN_2021_3131645
crossref_primary_10_1109_ACCESS_2024_3447035
crossref_primary_10_1016_j_jprocont_2022_06_014
crossref_primary_10_1109_TASE_2022_3140784
crossref_primary_10_3390_app11209473
crossref_primary_10_1016_j_ymeth_2020_05_012
crossref_primary_10_3390_s21144870
crossref_primary_10_3390_informatics11020025
crossref_primary_10_1109_JSEN_2023_3263924
crossref_primary_10_1016_j_matlet_2021_129707
crossref_primary_10_1155_2021_6637252
crossref_primary_10_1002_srin_202200505
Cites_doi 10.1117/1.OE.51.11.113605
10.1016/j.imavis.2015.01.001
10.3390/met7080311
10.1109/CVPR.2017.690
10.1016/j.ndteint.2009.01.007
10.1109/5.726791
10.1016/S1006-706X(13)60102-8
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2019.06.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 20
ExternalDocumentID 10_1016_j_imavis_2019_06_008
S0262885619300915
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c418t-94849fb49fcae4e2d76f0f5c47fbf9ef2287aa84433bc66e8773f0da373d90e43
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487574900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Sat Nov 29 07:21:26 EST 2025
Tue Nov 18 21:53:46 EST 2025
Fri Feb 23 02:23:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Defect identification
Surface inspection
Hot rolled steels
Convolutional neural networks
AutoEncoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-94849fb49fcae4e2d76f0f5c47fbf9ef2287aa84433bc66e8773f0da373d90e43
OpenAccessLink http://hdl.handle.net/1959.4/unsworks_75624
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_imavis_2019_06_008
crossref_citationtrail_10_1016_j_imavis_2019_06_008
elsevier_sciencedirect_doi_10_1016_j_imavis_2019_06_008
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Szegedy (bb0060) 2015
Szegedy (bb0070) 2017
Van Hulle (bb0030) 2012
Tian, Xu (bb0015) 2017; 7
Redmon (bb0090) 2016
AI Yong-hao (bb0115) 2013; 20
Krizhevsky, Sutskever, Hinton (bb0045) 2012
Redmon, Joseph, Ali Farhadi, 2016. YOLO9000: better, faster, stronger. arXiv preprint
Deng (bb0105) 2013
Paulraj, Shukry, Yaacob (bb0020) 2010
Xu, Liu, Ai (bb0010) 2015; 35
Kaiming (bb0065) 2016
Lin M., Chen Q., Yan S., 2013. Network in network. arXiv preprinted
Simonyan K., Zisserman A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
Ai, Xu (bb0110) 2012; 51
Ren (bb0085) 2015
.
Girshick (bb0080) 2015
Karpathy (bb0100) 2014
Xu, Xu, Chen (bb0005) 2002; 3
Yun, Choi, Kim (bb0025) 2009; 42
LeCun, Bottou, Bengio (bb0040) 1998; 86
Girshick (bb0075) 2014
Suvdaa, Ahn, Ko (bb0035) 2012; 6
Xu, Xu, Lu (bb0120) 1999; 6
10.1016/j.imavis.2019.06.008_bb0095
10.1016/j.imavis.2019.06.008_bb0050
Deng (10.1016/j.imavis.2019.06.008_bb0105) 2013
Ai (10.1016/j.imavis.2019.06.008_bb0110) 2012; 51
Van Hulle (10.1016/j.imavis.2019.06.008_bb0030) 2012
Kaiming (10.1016/j.imavis.2019.06.008_bb0065) 2016
Szegedy (10.1016/j.imavis.2019.06.008_bb0070) 2017
Girshick (10.1016/j.imavis.2019.06.008_bb0075) 2014
Yun (10.1016/j.imavis.2019.06.008_bb0025) 2009; 42
Girshick (10.1016/j.imavis.2019.06.008_bb0080) 2015
Szegedy (10.1016/j.imavis.2019.06.008_bb0060) 2015
Xu (10.1016/j.imavis.2019.06.008_bb0010) 2015; 35
Karpathy (10.1016/j.imavis.2019.06.008_bb0100) 2014
Redmon (10.1016/j.imavis.2019.06.008_bb0090) 2016
Suvdaa (10.1016/j.imavis.2019.06.008_bb0035) 2012; 6
Ren (10.1016/j.imavis.2019.06.008_bb0085) 2015
Krizhevsky (10.1016/j.imavis.2019.06.008_bb0045) 2012
LeCun (10.1016/j.imavis.2019.06.008_bb0040) 1998; 86
Tian (10.1016/j.imavis.2019.06.008_bb0015) 2017; 7
Xu (10.1016/j.imavis.2019.06.008_bb0120) 1999; 6
AI Yong-hao (10.1016/j.imavis.2019.06.008_bb0115) 2013; 20
Xu (10.1016/j.imavis.2019.06.008_bb0005) 2002; 3
Paulraj (10.1016/j.imavis.2019.06.008_bb0020) 2010
10.1016/j.imavis.2019.06.008_bb0055
References_xml – year: 2017
  ident: bb0070
  article-title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bb0040
  article-title: Gradient-based learning applied to document recognition [J]
  publication-title: Proc. IEEE
– year: 2016
  ident: bb0065
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 80
  year: 2013
  end-page: 86
  ident: bb0115
  article-title: Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections
  publication-title: J. Iron Steel Res. Int.
– volume: 35
  start-page: 23
  year: 2015
  end-page: 30
  ident: bb0010
  article-title: Application of Shearlet transform to classification of surface defects for metals
  publication-title: Image Vis. Comput.
– volume: 6
  start-page: 161
  year: 2012
  end-page: 166
  ident: bb0035
  article-title: Steel surface defects detection and classification using SIFT and voting strategy
  publication-title: Inter. J. of Soft. Eng. and Its Applic.
– reference: Lin M., Chen Q., Yan S., 2013. Network in network. arXiv preprinted
– reference: Simonyan K., Zisserman A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
– volume: 3
  start-page: 028
  year: 2002
  ident: bb0005
  article-title: On-line surface defect inspection system for cold rolled strips [J]
  publication-title: J. Univ. Sci. Technol. Beijing
– volume: 51
  start-page: 1
  year: 2012
  end-page: 8
  ident: bb0110
  article-title: Feature extraction based on contourlet transform and its application to surface inspection of metals [J]
  publication-title: Opt. Eng.
– year: 2014
  ident: bb0100
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 311
  year: 2017
  ident: bb0015
  article-title: An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine
  publication-title: Metals
– start-page: 585
  year: 2012
  end-page: 622
  ident: bb0030
  article-title: Self-organizing maps
  publication-title: Handbook of Natural Computing
– volume: 6
  start-page: 296
  year: 1999
  end-page: 298
  ident: bb0120
  article-title: Surface inspection system for cold rolled strips based on image processing technique
  publication-title: Int. J. Miner. Metall. Mater.
– year: 2016
  ident: bb0090
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Redmon, Joseph, Ali Farhadi, 2016. YOLO9000: better, faster, stronger. arXiv preprint
– year: 2015
  ident: bb0080
  article-title: Fast r-cnn
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2014
  ident: bb0075
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: .
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0045
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: bb0105
  article-title: Sparse autoencoder-based feature transfer learning for speech emotion recognition
  publication-title: Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on IEEE
– year: 2010
  ident: bb0020
  article-title: Structural steel plate damage detection using DFT spectral energy and artificial neural network[C]
  publication-title: 6th International Colloquium on Signal Processing & its Applications. Malacca
– start-page: 91
  year: 2015
  end-page: 99
  ident: bb0085
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 42
  start-page: 389
  year: 2009
  end-page: 397
  ident: bb0025
  article-title: Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches (uDEAS)[J]
  publication-title: NDT&E International
– year: 2015
  ident: bb0060
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 51
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.imavis.2019.06.008_bb0110
  article-title: Feature extraction based on contourlet transform and its application to surface inspection of metals [J]
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.51.11.113605
– volume: 35
  start-page: 23
  year: 2015
  ident: 10.1016/j.imavis.2019.06.008_bb0010
  article-title: Application of Shearlet transform to classification of surface defects for metals
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2015.01.001
– volume: 6
  start-page: 296
  issue: 4
  year: 1999
  ident: 10.1016/j.imavis.2019.06.008_bb0120
  article-title: Surface inspection system for cold rolled strips based on image processing technique
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 7
  start-page: 311
  issue: 8
  year: 2017
  ident: 10.1016/j.imavis.2019.06.008_bb0015
  article-title: An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine
  publication-title: Metals
  doi: 10.3390/met7080311
– ident: 10.1016/j.imavis.2019.06.008_bb0095
  doi: 10.1109/CVPR.2017.690
– year: 2013
  ident: 10.1016/j.imavis.2019.06.008_bb0105
  article-title: Sparse autoencoder-based feature transfer learning for speech emotion recognition
– volume: 3
  start-page: 028
  year: 2002
  ident: 10.1016/j.imavis.2019.06.008_bb0005
  article-title: On-line surface defect inspection system for cold rolled strips [J]
  publication-title: J. Univ. Sci. Technol. Beijing
– year: 2014
  ident: 10.1016/j.imavis.2019.06.008_bb0075
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 42
  start-page: 389
  issue: 5
  year: 2009
  ident: 10.1016/j.imavis.2019.06.008_bb0025
  article-title: Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches (uDEAS)[J]
  publication-title: NDT&E International
  doi: 10.1016/j.ndteint.2009.01.007
– year: 2016
  ident: 10.1016/j.imavis.2019.06.008_bb0090
  article-title: You only look once: unified, real-time object detection
– ident: 10.1016/j.imavis.2019.06.008_bb0055
– year: 2016
  ident: 10.1016/j.imavis.2019.06.008_bb0065
  article-title: Deep residual learning for image recognition
– year: 2010
  ident: 10.1016/j.imavis.2019.06.008_bb0020
  article-title: Structural steel plate damage detection using DFT spectral energy and artificial neural network[C]
– start-page: 91
  year: 2015
  ident: 10.1016/j.imavis.2019.06.008_bb0085
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
– volume: 6
  start-page: 161
  issue: 2
  year: 2012
  ident: 10.1016/j.imavis.2019.06.008_bb0035
  article-title: Steel surface defects detection and classification using SIFT and voting strategy
  publication-title: Inter. J. of Soft. Eng. and Its Applic.
– year: 2017
  ident: 10.1016/j.imavis.2019.06.008_bb0070
– year: 2014
  ident: 10.1016/j.imavis.2019.06.008_bb0100
  article-title: Large-scale video classification with convolutional neural networks
– start-page: 1097
  year: 2012
  ident: 10.1016/j.imavis.2019.06.008_bb0045
  article-title: Imagenet classification with deep convolutional neural networks
– ident: 10.1016/j.imavis.2019.06.008_bb0050
– start-page: 585
  year: 2012
  ident: 10.1016/j.imavis.2019.06.008_bb0030
  article-title: Self-organizing maps
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.imavis.2019.06.008_bb0040
  article-title: Gradient-based learning applied to document recognition [J]
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 20
  start-page: 80
  issue: 5
  year: 2013
  ident: 10.1016/j.imavis.2019.06.008_bb0115
  article-title: Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(13)60102-8
– year: 2015
  ident: 10.1016/j.imavis.2019.06.008_bb0060
  article-title: Going deeper with convolutions
– year: 2015
  ident: 10.1016/j.imavis.2019.06.008_bb0080
  article-title: Fast r-cnn
SSID ssj0007079
Score 2.446755
Snippet Due to the large intra-class variations and unbalanced training samples, the accuracy of existing algorithms used in defect classification of hot rolled steels...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms AutoEncoder
Convolutional neural networks
Defect identification
Hot rolled steels
Surface inspection
Title Design of multi-scale receptive field convolutional neural network for surface inspection of hot rolled steels
URI https://dx.doi.org/10.1016/j.imavis.2019.06.008
Volume 89
WOSCitedRecordID wos000487574900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20N76GPb0u0LHXp1cSzZko9Ld0u3lKXQLeRmZFmCLFlnSZxl--87o5HtlJS-oIc4jogUkfkyGk2--cTYm0zX0uS1SGye2URq2LOWDgK5mdCmMGkNW5agrv9JnZ_r-bz8PJl862thbpaqbfXtbXn9X00NbWBsLJ39C3MPg0ID3IPR4Qpmh-sfGf4kcDLC_-ZIFkw2YAU8GyXwV1DjGzlrgW0epwFGQlXL8BQ44YF6uNmuvbEoKULFmDGuXHVISFxCmArwICnmIbg9u0ICEGbiqWI98NW3Xb84hoxr8HGL_vV8S7VBY1qfXM-JaVaxV8xIzEbKVUyT7ZXKBG-WFeB6dR51r8nbagVtM5J36d0xnSgU_WmkWNPKHKrm9n0-pR8u3y6uUJcB2XplkGRN9bjGDczDLzgPnAYErhBeojzBQabyUk_ZwfHZ6fzjsIyjdCAl6Gjefd1lIAfuf9bP45qdWOXiIbsfNxn8mMDxiE1ce8gexA0Hj-58c8ju7ahRPmYtIYevPN9BDh-QwwNy-A_I4YQcHpHDATk8IoePyMEhATmckMMJOU_Y1_enF-8-JPE4jsTKme6SUmpZ-hoe1jjpskYVPvW5lcrXvnQ-g823MVpKIWpbFE4rJXzaGKFEU6ZOiqds2q5a94zxcIgAbGZVIxvpYHRRFzZrchR39HUjjpjov8zKRq16PDJlWfWkxMuKTFChCarAzdRHLBl6XZNWy2_er3o7VTHepDiyAmj9sufzf-75gt0dfzIv2bRbb90rdsfedIvN-nXE4HeDN6oZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+multi-scale+receptive+field+convolutional+neural+network+for+surface+inspection+of+hot+rolled+steels&rft.jtitle=Image+and+vision+computing&rft.au=He%2C+Di&rft.au=Xu%2C+Ke&rft.au=Wang%2C+Dadong&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=89&rft.spage=12&rft.epage=20&rft_id=info:doi/10.1016%2Fj.imavis.2019.06.008&rft.externalDocID=S0262885619300915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon