Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images

•Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 129; s. 108747
Hlavní autoři: Barisin, Tin, Jung, Christian, Müsebeck, Franziska, Redenbach, Claudia, Schladitz, Katja
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2022
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-based percolation performs best among classical methods. [Display omitted] Concrete is the standard construction material for buildings, bridges, and roads. As safety plays a central role in the design, monitoring, and maintenance of such constructions, it is important to understand the cracking behavior of concrete. Computed tomography captures the microstructure of building materials and allows to study crack initiation and propagation. Manual segmentation of crack surfaces in large 3d images is not feasible. In this paper, automatic crack segmentation methods for 3d images are reviewed and compared. Classical image processing methods (edge detection filters, template matching, minimal path and region growing algorithms) and learning methods (convolutional neural networks, random forests) are considered and tested on semi-synthetic 3d images. Their performance strongly depends on parameter selection which should be adapted to the grayvalue distribution of the images and the geometric properties of the concrete. In general, the learning methods perform best, in particular for thin cracks and low grayvalue contrast.
AbstractList •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-based percolation performs best among classical methods. [Display omitted] Concrete is the standard construction material for buildings, bridges, and roads. As safety plays a central role in the design, monitoring, and maintenance of such constructions, it is important to understand the cracking behavior of concrete. Computed tomography captures the microstructure of building materials and allows to study crack initiation and propagation. Manual segmentation of crack surfaces in large 3d images is not feasible. In this paper, automatic crack segmentation methods for 3d images are reviewed and compared. Classical image processing methods (edge detection filters, template matching, minimal path and region growing algorithms) and learning methods (convolutional neural networks, random forests) are considered and tested on semi-synthetic 3d images. Their performance strongly depends on parameter selection which should be adapted to the grayvalue distribution of the images and the geometric properties of the concrete. In general, the learning methods perform best, in particular for thin cracks and low grayvalue contrast.
ArticleNumber 108747
Author Schladitz, Katja
Müsebeck, Franziska
Barisin, Tin
Redenbach, Claudia
Jung, Christian
Author_xml – sequence: 1
  givenname: Tin
  surname: Barisin
  fullname: Barisin, Tin
  organization: Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
– sequence: 2
  givenname: Christian
  surname: Jung
  fullname: Jung, Christian
  email: cjung@mathematik.uni-kl.de
  organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany
– sequence: 3
  givenname: Franziska
  surname: Müsebeck
  fullname: Müsebeck, Franziska
  organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany
– sequence: 4
  givenname: Claudia
  surname: Redenbach
  fullname: Redenbach, Claudia
  organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany
– sequence: 5
  givenname: Katja
  surname: Schladitz
  fullname: Schladitz, Katja
  organization: Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
BookMark eNqFkM9OwzAMhyM0JDbgDTjkBTqSpk27HZCmiX_SEBc4R6nrdBlrMiUR0t6eTt2JA5z8k63Psr8ZmTjvkJA7zuaccXm_mx90At_Nc5bnQ6uuiuqCTHldiazkRT4hU8YEz0TOxBWZxbhjjFfDYErgDdPWt5EaH2jErkeXrOsoBA1fkVpHRUttrzuM1BsK3kHAhEu6GnJ_0MFG72ijI7Z0CBF7m8WjS1tMFs7gDbk0eh_x9lyvyefT48f6Jdu8P7-uV5sMCl6nrK5MWYAEUYNodWUWmstFoxmTwKUWomwlsrKsy6ZBaKU00Bgpc4ba1FJyKa7JctwLwccY0CiwSSfrXQra7hVn6qRL7dSoS510qVHXABe_4EMYzg_H_7CHEcPhsW-LQUWw6ABbGxCSar39e8EPm76JyQ
CitedBy_id crossref_primary_10_1016_j_patcog_2025_112107
crossref_primary_10_1016_j_patcog_2025_111723
crossref_primary_10_1016_j_ceramint_2022_12_224
crossref_primary_10_1016_j_dib_2024_110474
crossref_primary_10_1155_2024_3185640
crossref_primary_10_3389_fbuil_2022_947759
crossref_primary_10_1016_j_asoc_2025_113374
crossref_primary_10_1088_1361_6501_ada2b6
crossref_primary_10_3390_buildings13102669
crossref_primary_10_1007_s00521_025_11292_5
crossref_primary_10_1007_s10851_024_01171_4
crossref_primary_10_1007_s11340_024_01104_7
crossref_primary_10_1016_j_patrec_2025_04_025
crossref_primary_10_1016_j_patcog_2024_111251
crossref_primary_10_1186_s13362_023_00138_1
Cites_doi 10.1109/TITS.2016.2552248
10.1016/j.patrec.2011.11.004
10.1016/j.patcog.2021.107904
10.1007/978-3-319-46723-8_49
10.1617/s11527-006-9145-5
10.1109/JSEN.2021.3089718
10.1109/ACCESS.2020.2980086
10.1007/s00138-009-0189-8
10.1016/0031-3203(94)00123-4
10.1016/j.patcog.2011.07.025
10.3139/146.111071
10.1016/j.jrmge.2014.09.001
10.1007/BFb0056195
10.1007/978-3-319-24574-4_28
10.1016/j.patcog.2014.05.015
10.1016/j.autcon.2021.103786
10.1016/j.patcog.2018.10.011
10.3141/2024-09
10.1111/jmi.12944
10.1016/j.patrec.2009.09.020
10.1016/S0304-3991(02)00333-9
10.1061/(ASCE)0887-3801(1998)12:3(145)
10.1109/TITS.2015.2477675
10.1109/ACCESS.2020.3022786
10.1002/best.201400096
10.1061/(ASCE)0887-3801(2003)17:4(255)
10.1155/2011/989354
10.1111/mice.12263
10.1016/j.patcog.2020.107474
10.3390/ma12121929
10.1088/0022-3727/42/21/214002
10.3151/jact.18.493
10.1109/2945.856997
10.5566/ias.2639
10.1016/j.patcog.2016.11.021
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108747
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108747
S003132032200228X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c418t-87f54c6c38c3da7f9a169ba006c16a335d6e05585bbecd66fcbf6620eaf866163
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805703300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:26:31 EST 2025
Tue Nov 18 20:04:03 EST 2025
Fri Feb 23 02:39:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Crack detection
Computed tomography
3d segmentation
Machine learning
Fractional Brownian surface
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-87f54c6c38c3da7f9a169ba006c16a335d6e05585bbecd66fcbf6620eaf866163
OpenAccessLink https://dx.doi.org/10.1016/j.patcog.2022.108747
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_108747
crossref_primary_10_1016_j_patcog_2022_108747
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108747
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Landis, Zhang, Nagy, Nagy, Franklin (bib0005) 2007; 40
Krähenbühl, Kerautret, Debled-Rennesson, Mothe, Longuetaud (bib0003) 2014; 47
Cheng, Miyojim (bib0009) 1998; 12
Müller, Moghiseh, Stephani, Rottmayer, Huang (bib0023) 2018
Landis, Bolander (bib0006) 2009; 42
Abdel-Qader, Abudayyeh, Kelly (bib0015) 2003; 17
Läthén, Jonasson, Borga (bib0038) 2010; 31
Ronneberger, Fischer, Brox (bib0041) 2015
Ito, Aoki, Hashimoto (bib0011) 2002; volume 3
Shi, Cui, Qi, Meng, Chen (bib0030) 2016; 17
Barisin, Schladitz, Redenbach, Godehardt (bib0052) 2022
Ehrig, Goebbels, Meinel, Paetsch, Prohaska, Zobel (bib0033) 2011
Cha, Choi, Buyukozturk (bib0022) 2017; 32
Yamane, Chun (bib0024) 2020; 18
Paetsch, Baum, Ehrig, Meinel, Prohaska (bib0034) 2012
Addison, Dougan, Ndumu, Mackenzie (bib0048) 2000
Yamaguchi, Hashimoto (bib0014) 2010; 21
Acosta, Figueroa, Mullen (bib0008) 1992
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0042) 2016
Z. Botev, Fractional Brownian field or surface generator
Tang, Gu (bib0012) 2013
Tankyevych, Talbot, Dokládal (bib0051) 2008
Hanzaei, Afshar, Barazandeh (bib0001) 2017; 66
Elbehiery, Hefnawy, Elewa (bib0010) 2005
Shim, Kim, Cho, Lee (bib0028) 2020; 8
Wang, Li, Gong (bib0016) 2008; 2024
J. König, M. Jenkins, M. Mannion, P. Barrie, G. Morison, Weakly-Supervised Surface Crack Segmentation by Generating Pseudo-Labels using Localization with a Classifier and Thresholding, (2021).
Weise, Wiedmann, Voland, Kotan, Ehrig, Müller (bib0004) 2015; 110
Li, Tsai (bib0002) 2012; 45
Ghazvinian, Diederichs, Quey (bib0046) 2014; 6
Yang, Ji (bib0026) 2021; 21
Sommer, Straehle, Köthe, Hamprecht (bib0043) 2011
Altendorf (bib0050) 2011
Frangi, Niessen, Vincken, Viergever (bib0037) 2000; 1496
Avila, Begot, Duculty, Nguyen (bib0018) 2014
Chambon, Moliard (bib0021) 2011; 2011
Chun, Izumi, Yamane (bib0029) 2020; 36
Paetsch (bib0007) 2019
Roseman (bib0013) 2003; 94
Sato, Westin, Bhalerao, Nakajima, Shiraga, Tamura, Kikinis (bib0039) 2000; 6
Sazak, Nelson, Obara (bib0053) 2019; 88
Fang, Li, Gu, Zhu, Lim (bib0025) 2020; 107
Wirjadi, Rack, Liebscher, Meinhardt, Schladitz, Shafei, Steidl (bib0040) 2014; 105
Huang, Hu, Gu, Sun (bib0047) 2019; 12
Amhaz, Chambon, Idier, Baltazart (bib0020) 2016; 17
Wu, Tang (bib0036) 2021; 115
Müsebeck, Moghiseh, Redenbach, Schladitz (bib0035) 2020
Li, Wan, He, Liu, Ma (bib0027) 2020; 8
(accessed 13 April 2022).
Zou, Cao, Li, Mao, Wang (bib0019) 2012; 33
Amhaz, Chambon, Idier, Baltazart (bib0017) 2015
Wang, Su (bib0031) 2021; 128
Miyojim, Cheng (bib0044) 1995; 28
Fend, Moghiseh, Redenbach, Schladitz (bib0045) 2021; 281
Wang (10.1016/j.patcog.2022.108747_bib0031) 2021; 128
Sazak (10.1016/j.patcog.2022.108747_bib0053) 2019; 88
Addison (10.1016/j.patcog.2022.108747_bib0048) 2000
Wu (10.1016/j.patcog.2022.108747_bib0036) 2021; 115
Landis (10.1016/j.patcog.2022.108747_bib0005) 2007; 40
Abdel-Qader (10.1016/j.patcog.2022.108747_bib0015) 2003; 17
Ehrig (10.1016/j.patcog.2022.108747_bib0033) 2011
Sato (10.1016/j.patcog.2022.108747_bib0039) 2000; 6
Wirjadi (10.1016/j.patcog.2022.108747_bib0040) 2014; 105
Tankyevych (10.1016/j.patcog.2022.108747_bib0051) 2008
Ito (10.1016/j.patcog.2022.108747_bib0011) 2002; volume 3
Ronneberger (10.1016/j.patcog.2022.108747_bib0041) 2015
Barisin (10.1016/j.patcog.2022.108747_bib0052) 2022
Cheng (10.1016/j.patcog.2022.108747_bib0009) 1998; 12
Müsebeck (10.1016/j.patcog.2022.108747_bib0035) 2020
Chun (10.1016/j.patcog.2022.108747_bib0029) 2020; 36
10.1016/j.patcog.2022.108747_bib0049
Sommer (10.1016/j.patcog.2022.108747_bib0043) 2011
Yamane (10.1016/j.patcog.2022.108747_bib0024) 2020; 18
Ghazvinian (10.1016/j.patcog.2022.108747_bib0046) 2014; 6
Amhaz (10.1016/j.patcog.2022.108747_bib0017) 2015
Fang (10.1016/j.patcog.2022.108747_bib0025) 2020; 107
Tang (10.1016/j.patcog.2022.108747_bib0012) 2013
Zou (10.1016/j.patcog.2022.108747_bib0019) 2012; 33
Läthén (10.1016/j.patcog.2022.108747_bib0038) 2010; 31
Hanzaei (10.1016/j.patcog.2022.108747_bib0001) 2017; 66
Huang (10.1016/j.patcog.2022.108747_bib0047) 2019; 12
10.1016/j.patcog.2022.108747_bib0032
Fend (10.1016/j.patcog.2022.108747_bib0045) 2021; 281
Landis (10.1016/j.patcog.2022.108747_bib0006) 2009; 42
Krähenbühl (10.1016/j.patcog.2022.108747_bib0003) 2014; 47
Avila (10.1016/j.patcog.2022.108747_bib0018) 2014
Acosta (10.1016/j.patcog.2022.108747_bib0008) 1992
Amhaz (10.1016/j.patcog.2022.108747_bib0020) 2016; 17
Müller (10.1016/j.patcog.2022.108747_bib0023) 2018
Shim (10.1016/j.patcog.2022.108747_bib0028) 2020; 8
Chambon (10.1016/j.patcog.2022.108747_bib0021) 2011; 2011
Paetsch (10.1016/j.patcog.2022.108747_bib0034) 2012
Frangi (10.1016/j.patcog.2022.108747_bib0037) 2000; 1496
Li (10.1016/j.patcog.2022.108747_bib0027) 2020; 8
Elbehiery (10.1016/j.patcog.2022.108747_bib0010) 2005
Cha (10.1016/j.patcog.2022.108747_bib0022) 2017; 32
Paetsch (10.1016/j.patcog.2022.108747_bib0007) 2019
Roseman (10.1016/j.patcog.2022.108747_bib0013) 2003; 94
Wang (10.1016/j.patcog.2022.108747_bib0016) 2008; 2024
Altendorf (10.1016/j.patcog.2022.108747_bib0050) 2011
Li (10.1016/j.patcog.2022.108747_bib0002) 2012; 45
Çiçek (10.1016/j.patcog.2022.108747_bib0042) 2016
Weise (10.1016/j.patcog.2022.108747_bib0004) 2015; 110
Miyojim (10.1016/j.patcog.2022.108747_bib0044) 1995; 28
Yang (10.1016/j.patcog.2022.108747_bib0026) 2021; 21
Shi (10.1016/j.patcog.2022.108747_bib0030) 2016; 17
Yamaguchi (10.1016/j.patcog.2022.108747_bib0014) 2010; 21
References_xml – volume: 88
  start-page: 739
  year: 2019
  end-page: 750
  ident: bib0053
  article-title: The multiscale bowler-hat transform for blood vessel enhancement in retinal images
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 762
  year: 2010
  end-page: 767
  ident: bib0038
  article-title: Blood vessel segmentation using multi-scale quadrature filtering
  publication-title: Pattern Recogn. Lett.
– start-page: 783
  year: 2014
  end-page: 787
  ident: bib0018
  article-title: 2D image based road pavement crack detection by calculating minimal paths and dynamic programming
  publication-title: IEEE Image Proc.
– volume: 47
  start-page: 3852
  year: 2014
  end-page: 3869
  ident: bib0003
  article-title: Knot segmentation in 3D CT images of wet wood
  publication-title: Pattern Recognit.
– volume: 17
  start-page: 2718
  year: 2016
  end-page: 2729
  ident: bib0020
  article-title: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection
  publication-title: IEEE T. Intell. Transp.
– reference: J. König, M. Jenkins, M. Mannion, P. Barrie, G. Morison, Weakly-Supervised Surface Crack Segmentation by Generating Pseudo-Labels using Localization with a Classifier and Thresholding, (2021).
– reference: ), (accessed 13 April 2022).
– volume: 115
  start-page: 107904
  year: 2021
  ident: bib0036
  article-title: Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles
  publication-title: Pattern Recognit.
– volume: 281
  start-page: 16
  year: 2021
  end-page: 27
  ident: bib0045
  article-title: Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images
  publication-title: J. Microsc.
– reference: Z. Botev, Fractional Brownian field or surface generator, (
– start-page: 321
  year: 2012
  end-page: 330
  ident: bib0034
  article-title: Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography
  publication-title: Proc. Conf. Ind. Comp. Tomogr.
– start-page: 1307
  year: 2005
  end-page: 1322
  ident: bib0010
  article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques
  publication-title: Proc. Wrld. Acad. Sci. E.
– volume: 6
  start-page: 506
  year: 2014
  end-page: 521
  ident: bib0046
  article-title: 3d random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing
  publication-title: J. Rock Mech. Geotech. Eng.
– start-page: 143
  year: 2020
  end-page: 155
  ident: bib0035
  article-title: Minimal Paths for 3D Crack Detection in Concrete
  publication-title: Forum Bildverarb.
– volume: 94
  start-page: 225
  year: 2003
  end-page: 236
  ident: bib0013
  article-title: Particle finding in electron micrographs using a fast local correlation algorithm
  publication-title: Ultramicroscopy
– start-page: 788
  year: 2015
  end-page: 792
  ident: bib0017
  article-title: A new minimal path selection algorithm for automatic crack detection on pavement images
  publication-title: IEEE Image Proc.
– volume: 2024
  start-page: 73
  year: 2008
  end-page: 81
  ident: bib0016
  article-title: Wavelet-Based Pavement Distress Image Edge Detection with À Trous Algorithm
  publication-title: Transp. Res. Record
– volume: 42
  start-page: 1
  year: 2009
  end-page: 17
  ident: bib0006
  article-title: Explicit representation of physical processes in concrete fracture
  publication-title: J Phys. D
– start-page: 63
  year: 1992
  end-page: 72
  ident: bib0008
  article-title: Low-Cost Video Image Processing System for Evaluating Pavement Surface Distress
  publication-title: Transp. Res. Record
– year: 2011
  ident: bib0050
  article-title: 3d Morphological Analysis and Modeling of Random Fiber Networks: Applied on Glass Fiber Reinforced Composites
  publication-title: PhD Thesis, Technische Universität Kaiserslautern
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 20
  ident: bib0021
  article-title: Automatic Road Pavement Assessment with Image Processing: Review and Comparison
  publication-title: Int. J. Geoph.
– volume: 105
  start-page: 702
  year: 2014
  end-page: 708
  ident: bib0040
  article-title: Microstructural analysis of a C/SiC ceramic based on the segmentation of X-ray phase contrast tomographic data
  publication-title: Int. J. Mater. Res.
– volume: 1496
  start-page: 130
  year: 2000
  end-page: 137
  ident: bib0037
  article-title: Multiscale vessel enhancement filtering
  publication-title: Lect. Notes Comput. Sc.
– volume: 6
  start-page: 160
  year: 2000
  end-page: 180
  ident: bib0039
  article-title: Tissue classification based on 3d local intensity structures for volume rendering
  publication-title: IEEE T. Vis. Comput. Gr.
– volume: 17
  start-page: 3434
  year: 2016
  end-page: 3445
  ident: bib0030
  article-title: Automatic Road Crack Detection Using Random Structured Forests
  publication-title: IEEE T. Intell. Transp.
– start-page: 117
  year: 2000
  end-page: 123
  ident: bib0048
  article-title: A Fractional Brownian Motion Model of Cracking
  publication-title: Paradigms Of Complexity: Fractals And Structures In The Sciences. Proc. Conf. Fractal
– volume: 36
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0029
  article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine
  publication-title: Comput.-Aided Civ. Inf.
– year: 2022
  ident: bib0052
  article-title: 3d adaptive framework for directional filtering
  publication-title: Image Anal. Stereol.
– start-page: 209
  year: 2018
  end-page: 216
  ident: bib0023
  article-title: Application of deep learning for crack segmentation on concrete surface
  publication-title: Forum Bildverarb.
– volume: 21
  start-page: 797
  year: 2010
  end-page: 809
  ident: bib0014
  article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing
  publication-title: Mach. Vision Appl.
– volume: 45
  start-page: 742
  year: 2012
  end-page: 756
  ident: bib0002
  article-title: Wavelet-based defect detection in solar wafer images with inhomogeneous texture
  publication-title: Pattern Recognit.
– year: 2011
  ident: bib0033
  article-title: Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography
  publication-title: Int. Symp. Dig. Ind. Radiol. Comp. Tomogr.
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib0042
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Lect. Notes Comput. Sc.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0041
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Lect. Notes Comput. Sc.
– volume: 28
  start-page: 595
  year: 1995
  end-page: 610
  ident: bib0044
  article-title: Synthesized images for pattern recognition
  publication-title: Pattern Recognit.
– reference: (accessed 13 April 2022).
– start-page: 1011
  year: 2008
  end-page: 1014
  ident: bib0051
  article-title: Curvilinear morpho-Hessian filter
  publication-title: 2008 5th IEEE Int. Symp. on Biomedical Imaging
– start-page: 230
  year: 2011
  end-page: 233
  ident: bib0043
  article-title: ilastik: Interactive Learning and Segmentation Toolkit
  publication-title: I. S. Biomed. Imaging
– volume: 12
  year: 2019
  ident: bib0047
  article-title: Fracture behavior and energy analysis of 3d concrete mesostructure under uniaxial compression
  publication-title: Materials
– volume: 21
  start-page: 19165
  year: 2021
  end-page: 19175
  ident: bib0026
  article-title: Automatic Pixel-level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning
  publication-title: IEEE Sens. J
– volume: 18
  start-page: 493
  year: 2020
  end-page: 504
  ident: bib0024
  article-title: Crack detection from a concrete surface image based on semantic segmentation using deep learning
  publication-title: J Adv. Concr. Technol.
– volume: 40
  start-page: 357
  year: 2007
  end-page: 364
  ident: bib0005
  article-title: Cracking, damage and fracture in four dimensions
  publication-title: Mater. Struct.
– volume: 12
  start-page: 145
  year: 1998
  end-page: 152
  ident: bib0009
  article-title: Novel system for automatic pavement distress detection
  publication-title: J. Comput. Civil. Eng.
– start-page: 3026
  year: 2013
  end-page: 3030
  ident: bib0012
  article-title: Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis
  publication-title: IEEE Sys. Man. Cybern.
– volume: 33
  start-page: 227
  year: 2012
  end-page: 238
  ident: bib0019
  article-title: CrackTree: Automatic crack detection from pavement images
  publication-title: Pattern Recognit. Lett.
– volume: 128
  start-page: 103786
  year: 2021
  ident: bib0031
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Automat Constr.
– volume: 8
  start-page: 170939
  year: 2020
  end-page: 170950
  ident: bib0028
  article-title: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures
  publication-title: IEEE Access
– volume: 8
  start-page: 51446
  year: 2020
  end-page: 51459
  ident: bib0027
  article-title: Semi-supervised semantic segmentation using adversarial learning for pavement crack detection
  publication-title: IEEE Access
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bib0022
  article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Comput.-Aided Civ. Inf.
– volume: volume 3
  start-page: 2202
  year: 2002
  end-page: 2207
  ident: bib0011
  article-title: Accurate extraction and measurement of fine cracks from concrete block surface image
  publication-title: IEEE Ind. Elec.
– volume: 107
  start-page: 107474
  year: 2020
  ident: bib0025
  article-title: A novel hybrid approach for crack detection
  publication-title: Pattern Recognit.
– volume: 17
  start-page: 255
  year: 2003
  end-page: 263
  ident: bib0015
  article-title: Analysis of Edge-Detection Techniques for Crack Identification in Bridges
  publication-title: J. Comput. Civil. Eng.
– volume: 66
  start-page: 174
  year: 2017
  end-page: 189
  ident: bib0001
  article-title: Automatic detection and classification of the ceramic tiles’ surface defects
  publication-title: Pattern Recognit.
– volume: 110
  year: 2015
  ident: bib0004
  article-title: Auswirkungen von Ermüdungsbeanspruchungen auf Struktur und Eigenschaften von Fahrbahndeckenbeton
  publication-title: Beton- Stahlbetonbau
– year: 2019
  ident: bib0007
  article-title: Possibilities and limitations of automated feature extraction shown by the example of crack detection in 3D-CT images of concrete specimen
  publication-title: Proc. Conf. Ind. Comp. Tomogr.
– start-page: 117
  year: 2000
  ident: 10.1016/j.patcog.2022.108747_bib0048
  article-title: A Fractional Brownian Motion Model of Cracking
– volume: 17
  start-page: 3434
  issue: 12
  year: 2016
  ident: 10.1016/j.patcog.2022.108747_bib0030
  article-title: Automatic Road Crack Detection Using Random Structured Forests
  publication-title: IEEE T. Intell. Transp.
  doi: 10.1109/TITS.2016.2552248
– volume: 33
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2022.108747_bib0019
  article-title: CrackTree: Automatic crack detection from pavement images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.11.004
– ident: 10.1016/j.patcog.2022.108747_bib0049
– start-page: 783
  year: 2014
  ident: 10.1016/j.patcog.2022.108747_bib0018
  article-title: 2D image based road pavement crack detection by calculating minimal paths and dynamic programming
– start-page: 3026
  year: 2013
  ident: 10.1016/j.patcog.2022.108747_bib0012
  article-title: Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis
– volume: 115
  start-page: 107904
  year: 2021
  ident: 10.1016/j.patcog.2022.108747_bib0036
  article-title: Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107904
– start-page: 321
  year: 2012
  ident: 10.1016/j.patcog.2022.108747_bib0034
  article-title: Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography
– start-page: 63
  year: 1992
  ident: 10.1016/j.patcog.2022.108747_bib0008
  article-title: Low-Cost Video Image Processing System for Evaluating Pavement Surface Distress
  publication-title: Transp. Res. Record
– volume: 36
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0029
  article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine
  publication-title: Comput.-Aided Civ. Inf.
– start-page: 424
  year: 2016
  ident: 10.1016/j.patcog.2022.108747_bib0042
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  doi: 10.1007/978-3-319-46723-8_49
– volume: 40
  start-page: 357
  year: 2007
  ident: 10.1016/j.patcog.2022.108747_bib0005
  article-title: Cracking, damage and fracture in four dimensions
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-006-9145-5
– volume: 21
  start-page: 19165
  issue: 17
  year: 2021
  ident: 10.1016/j.patcog.2022.108747_bib0026
  article-title: Automatic Pixel-level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning
  publication-title: IEEE Sens. J
  doi: 10.1109/JSEN.2021.3089718
– start-page: 1011
  year: 2008
  ident: 10.1016/j.patcog.2022.108747_bib0051
  article-title: Curvilinear morpho-Hessian filter
– volume: 8
  start-page: 51446
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0027
  article-title: Semi-supervised semantic segmentation using adversarial learning for pavement crack detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980086
– volume: 21
  start-page: 797
  year: 2010
  ident: 10.1016/j.patcog.2022.108747_bib0014
  article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing
  publication-title: Mach. Vision Appl.
  doi: 10.1007/s00138-009-0189-8
– start-page: 788
  year: 2015
  ident: 10.1016/j.patcog.2022.108747_bib0017
  article-title: A new minimal path selection algorithm for automatic crack detection on pavement images
  publication-title: IEEE Image Proc.
– volume: 28
  start-page: 595
  issue: 4
  year: 1995
  ident: 10.1016/j.patcog.2022.108747_bib0044
  article-title: Synthesized images for pattern recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(94)00123-4
– volume: 45
  start-page: 742
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2022.108747_bib0002
  article-title: Wavelet-based defect detection in solar wafer images with inhomogeneous texture
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.07.025
– year: 2011
  ident: 10.1016/j.patcog.2022.108747_bib0050
  article-title: 3d Morphological Analysis and Modeling of Random Fiber Networks: Applied on Glass Fiber Reinforced Composites
  publication-title: PhD Thesis, Technische Universität Kaiserslautern
– volume: 105
  start-page: 702
  year: 2014
  ident: 10.1016/j.patcog.2022.108747_bib0040
  article-title: Microstructural analysis of a C/SiC ceramic based on the segmentation of X-ray phase contrast tomographic data
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.111071
– start-page: 209
  year: 2018
  ident: 10.1016/j.patcog.2022.108747_bib0023
  article-title: Application of deep learning for crack segmentation on concrete surface
– volume: 6
  start-page: 506
  issue: 6
  year: 2014
  ident: 10.1016/j.patcog.2022.108747_bib0046
  article-title: 3d random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2014.09.001
– volume: volume 3
  start-page: 2202
  year: 2002
  ident: 10.1016/j.patcog.2022.108747_bib0011
  article-title: Accurate extraction and measurement of fine cracks from concrete block surface image
– volume: 1496
  start-page: 130
  year: 2000
  ident: 10.1016/j.patcog.2022.108747_bib0037
  article-title: Multiscale vessel enhancement filtering
  publication-title: Lect. Notes Comput. Sc.
  doi: 10.1007/BFb0056195
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2022.108747_bib0041
  article-title: U-net: Convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.patcog.2022.108747_bib0032
– volume: 47
  start-page: 3852
  issue: 12
  year: 2014
  ident: 10.1016/j.patcog.2022.108747_bib0003
  article-title: Knot segmentation in 3D CT images of wet wood
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.05.015
– year: 2019
  ident: 10.1016/j.patcog.2022.108747_bib0007
  article-title: Possibilities and limitations of automated feature extraction shown by the example of crack detection in 3D-CT images of concrete specimen
– volume: 128
  start-page: 103786
  year: 2021
  ident: 10.1016/j.patcog.2022.108747_bib0031
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Automat Constr.
  doi: 10.1016/j.autcon.2021.103786
– start-page: 143
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0035
  article-title: Minimal Paths for 3D Crack Detection in Concrete
– volume: 88
  start-page: 739
  year: 2019
  ident: 10.1016/j.patcog.2022.108747_bib0053
  article-title: The multiscale bowler-hat transform for blood vessel enhancement in retinal images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.10.011
– volume: 2024
  start-page: 73
  year: 2008
  ident: 10.1016/j.patcog.2022.108747_bib0016
  article-title: Wavelet-Based Pavement Distress Image Edge Detection with .. Trous Algorithm
  publication-title: Transp. Res. Record
  doi: 10.3141/2024-09
– volume: 281
  start-page: 16
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.108747_bib0045
  article-title: Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12944
– volume: 31
  start-page: 762
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2022.108747_bib0038
  article-title: Blood vessel segmentation using multi-scale quadrature filtering
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2009.09.020
– volume: 94
  start-page: 225
  issue: 3
  year: 2003
  ident: 10.1016/j.patcog.2022.108747_bib0013
  article-title: Particle finding in electron micrographs using a fast local correlation algorithm
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(02)00333-9
– volume: 12
  start-page: 145
  year: 1998
  ident: 10.1016/j.patcog.2022.108747_bib0009
  article-title: Novel system for automatic pavement distress detection
  publication-title: J. Comput. Civil. Eng.
  doi: 10.1061/(ASCE)0887-3801(1998)12:3(145)
– volume: 17
  start-page: 2718
  year: 2016
  ident: 10.1016/j.patcog.2022.108747_bib0020
  article-title: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection
  publication-title: IEEE T. Intell. Transp.
  doi: 10.1109/TITS.2015.2477675
– volume: 8
  start-page: 170939
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0028
  article-title: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022786
– volume: 110
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2022.108747_bib0004
  article-title: Auswirkungen von Ermüdungsbeanspruchungen auf Struktur und Eigenschaften von Fahrbahndeckenbeton
  publication-title: Beton- Stahlbetonbau
  doi: 10.1002/best.201400096
– start-page: 230
  year: 2011
  ident: 10.1016/j.patcog.2022.108747_bib0043
  article-title: ilastik: Interactive Learning and Segmentation Toolkit
– volume: 17
  start-page: 255
  year: 2003
  ident: 10.1016/j.patcog.2022.108747_bib0015
  article-title: Analysis of Edge-Detection Techniques for Crack Identification in Bridges
  publication-title: J. Comput. Civil. Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.patcog.2022.108747_bib0021
  article-title: Automatic Road Pavement Assessment with Image Processing: Review and Comparison
  publication-title: Int. J. Geoph.
  doi: 10.1155/2011/989354
– volume: 32
  start-page: 361
  year: 2017
  ident: 10.1016/j.patcog.2022.108747_bib0022
  article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Comput.-Aided Civ. Inf.
  doi: 10.1111/mice.12263
– volume: 107
  start-page: 107474
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0025
  article-title: A novel hybrid approach for crack detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107474
– start-page: 1307
  year: 2005
  ident: 10.1016/j.patcog.2022.108747_bib0010
  article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques
– volume: 12
  issue: 12
  year: 2019
  ident: 10.1016/j.patcog.2022.108747_bib0047
  article-title: Fracture behavior and energy analysis of 3d concrete mesostructure under uniaxial compression
  publication-title: Materials
  doi: 10.3390/ma12121929
– volume: 42
  start-page: 1
  issue: 21
  year: 2009
  ident: 10.1016/j.patcog.2022.108747_bib0006
  article-title: Explicit representation of physical processes in concrete fracture
  publication-title: J Phys. D
  doi: 10.1088/0022-3727/42/21/214002
– volume: 18
  start-page: 493
  issue: 9
  year: 2020
  ident: 10.1016/j.patcog.2022.108747_bib0024
  article-title: Crack detection from a concrete surface image based on semantic segmentation using deep learning
  publication-title: J Adv. Concr. Technol.
  doi: 10.3151/jact.18.493
– volume: 6
  start-page: 160
  issue: 2
  year: 2000
  ident: 10.1016/j.patcog.2022.108747_bib0039
  article-title: Tissue classification based on 3d local intensity structures for volume rendering
  publication-title: IEEE T. Vis. Comput. Gr.
  doi: 10.1109/2945.856997
– year: 2022
  ident: 10.1016/j.patcog.2022.108747_bib0052
  article-title: 3d adaptive framework for directional filtering
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.2639
– volume: 66
  start-page: 174
  year: 2017
  ident: 10.1016/j.patcog.2022.108747_bib0001
  article-title: Automatic detection and classification of the ceramic tiles’ surface defects
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.021
– year: 2011
  ident: 10.1016/j.patcog.2022.108747_bib0033
  article-title: Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography
SSID ssj0017142
Score 2.488629
Snippet •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108747
SubjectTerms 3d segmentation
Computed tomography
Crack detection
Deep learning
Fractional Brownian surface
Machine learning
Title Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images
URI https://dx.doi.org/10.1016/j.patcog.2022.108747
Volume 129
WOSCitedRecordID wos000805703300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMvML7EBkN-4G3ylMSJneytq4ZgYtMERepb5Nhxla1Lq6abBn-Av811bCcdQ3xJvESRVSeV78n1sX3vuQi9oUEhCh1SQinnBPhtQkTBEpJGImRBmkVSt5L5H_jpaTqZZGeDwTefC3M943Wd3txki_9qamgDY5vU2b8wd_dQaIB7MDpcwexw_SPDn7Q1oVuZhb2mnLbhQCaxdmmy6c32BlV71aWYWrVZWA4Db1y5DHXZVyU005syRwlNeVmR5ksNTNGIu9qu65z2rJXoNGkxLhapP9k_NA-zKgXjqms9dg7GChus4fPEHNsfjhpj8gtPq79WzUU3d3wswU8WwtavGs3ElarE-sYFrHl9ZJbbTfMZNX34UuuhaUhoFFinV1qnnHJKgNjd9tp2o-TODGA3I873FzCTzaf75sUmjpJbXc8ftLU_WenKALxaKwQ0uYc2I55k4B43h--PJsfdgRQPYys87_6ez8JsQwXvvuvnLGeNuYy30EO35MBDC5XHaFDWT9AjX84DO-_-FEmHHAzIwT1ysEUOrmpMFbbmx3ONPXIO8BD3uMEtbjDc3MaN6_gMfX57NB69I64GB5FxmK5gstRJLJmkqaRKcJ3BJ5wVAny1DJmgNFGsDBJYcxaADMWYloVmLApKoVOgfow-Rxv1vC5fIJxxLeJCKKkSI1IUZolQWkYhAxIqaJxtI-rHLJdOoN7USZnlPhLxPLcjnZuRzu1IbyPS9VpYgZbf_J57c-SOZFrymAOCftlz5597vkQP-g_gFdpYLa_KXXRfXq-qZvnaQe07gWijuw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+segmenting+cracks+in+3d+images+of+concrete%3A+A+comparison+based+on+semi-synthetic+images&rft.jtitle=Pattern+recognition&rft.au=Barisin%2C+Tin&rft.au=Jung%2C+Christian&rft.au=M%C3%BCsebeck%2C+Franziska&rft.au=Redenbach%2C+Claudia&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=129&rft_id=info:doi/10.1016%2Fj.patcog.2022.108747&rft.externalDocID=S003132032200228X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon