Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images
•Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-ba...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 129; s. 108747 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2022
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-based percolation performs best among classical methods.
[Display omitted]
Concrete is the standard construction material for buildings, bridges, and roads. As safety plays a central role in the design, monitoring, and maintenance of such constructions, it is important to understand the cracking behavior of concrete. Computed tomography captures the microstructure of building materials and allows to study crack initiation and propagation. Manual segmentation of crack surfaces in large 3d images is not feasible. In this paper, automatic crack segmentation methods for 3d images are reviewed and compared. Classical image processing methods (edge detection filters, template matching, minimal path and region growing algorithms) and learning methods (convolutional neural networks, random forests) are considered and tested on semi-synthetic 3d images. Their performance strongly depends on parameter selection which should be adapted to the grayvalue distribution of the images and the geometric properties of the concrete. In general, the learning methods perform best, in particular for thin cracks and low grayvalue contrast. |
|---|---|
| AbstractList | •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter tuning with respect to different objectives.•Machine learning methods (3d U-net and random forest) perform best among all methods.•Hessian-based percolation performs best among classical methods.
[Display omitted]
Concrete is the standard construction material for buildings, bridges, and roads. As safety plays a central role in the design, monitoring, and maintenance of such constructions, it is important to understand the cracking behavior of concrete. Computed tomography captures the microstructure of building materials and allows to study crack initiation and propagation. Manual segmentation of crack surfaces in large 3d images is not feasible. In this paper, automatic crack segmentation methods for 3d images are reviewed and compared. Classical image processing methods (edge detection filters, template matching, minimal path and region growing algorithms) and learning methods (convolutional neural networks, random forests) are considered and tested on semi-synthetic 3d images. Their performance strongly depends on parameter selection which should be adapted to the grayvalue distribution of the images and the geometric properties of the concrete. In general, the learning methods perform best, in particular for thin cracks and low grayvalue contrast. |
| ArticleNumber | 108747 |
| Author | Schladitz, Katja Müsebeck, Franziska Barisin, Tin Redenbach, Claudia Jung, Christian |
| Author_xml | – sequence: 1 givenname: Tin surname: Barisin fullname: Barisin, Tin organization: Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany – sequence: 2 givenname: Christian surname: Jung fullname: Jung, Christian email: cjung@mathematik.uni-kl.de organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany – sequence: 3 givenname: Franziska surname: Müsebeck fullname: Müsebeck, Franziska organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany – sequence: 4 givenname: Claudia surname: Redenbach fullname: Redenbach, Claudia organization: Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 48, Kaiserslautern 67663, Germany – sequence: 5 givenname: Katja surname: Schladitz fullname: Schladitz, Katja organization: Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany |
| BookMark | eNqFkM9OwzAMhyM0JDbgDTjkBTqSpk27HZCmiX_SEBc4R6nrdBlrMiUR0t6eTt2JA5z8k63Psr8ZmTjvkJA7zuaccXm_mx90At_Nc5bnQ6uuiuqCTHldiazkRT4hU8YEz0TOxBWZxbhjjFfDYErgDdPWt5EaH2jErkeXrOsoBA1fkVpHRUttrzuM1BsK3kHAhEu6GnJ_0MFG72ijI7Z0CBF7m8WjS1tMFs7gDbk0eh_x9lyvyefT48f6Jdu8P7-uV5sMCl6nrK5MWYAEUYNodWUWmstFoxmTwKUWomwlsrKsy6ZBaKU00Bgpc4ba1FJyKa7JctwLwccY0CiwSSfrXQra7hVn6qRL7dSoS510qVHXABe_4EMYzg_H_7CHEcPhsW-LQUWw6ABbGxCSar39e8EPm76JyQ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2025_112107 crossref_primary_10_1016_j_patcog_2025_111723 crossref_primary_10_1016_j_ceramint_2022_12_224 crossref_primary_10_1016_j_dib_2024_110474 crossref_primary_10_1155_2024_3185640 crossref_primary_10_3389_fbuil_2022_947759 crossref_primary_10_1016_j_asoc_2025_113374 crossref_primary_10_1088_1361_6501_ada2b6 crossref_primary_10_3390_buildings13102669 crossref_primary_10_1007_s00521_025_11292_5 crossref_primary_10_1007_s10851_024_01171_4 crossref_primary_10_1007_s11340_024_01104_7 crossref_primary_10_1016_j_patrec_2025_04_025 crossref_primary_10_1016_j_patcog_2024_111251 crossref_primary_10_1186_s13362_023_00138_1 |
| Cites_doi | 10.1109/TITS.2016.2552248 10.1016/j.patrec.2011.11.004 10.1016/j.patcog.2021.107904 10.1007/978-3-319-46723-8_49 10.1617/s11527-006-9145-5 10.1109/JSEN.2021.3089718 10.1109/ACCESS.2020.2980086 10.1007/s00138-009-0189-8 10.1016/0031-3203(94)00123-4 10.1016/j.patcog.2011.07.025 10.3139/146.111071 10.1016/j.jrmge.2014.09.001 10.1007/BFb0056195 10.1007/978-3-319-24574-4_28 10.1016/j.patcog.2014.05.015 10.1016/j.autcon.2021.103786 10.1016/j.patcog.2018.10.011 10.3141/2024-09 10.1111/jmi.12944 10.1016/j.patrec.2009.09.020 10.1016/S0304-3991(02)00333-9 10.1061/(ASCE)0887-3801(1998)12:3(145) 10.1109/TITS.2015.2477675 10.1109/ACCESS.2020.3022786 10.1002/best.201400096 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.1155/2011/989354 10.1111/mice.12263 10.1016/j.patcog.2020.107474 10.3390/ma12121929 10.1088/0022-3727/42/21/214002 10.3151/jact.18.493 10.1109/2945.856997 10.5566/ias.2639 10.1016/j.patcog.2016.11.021 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.patcog.2022.108747 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2022_108747 S003132032200228X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c418t-87f54c6c38c3da7f9a169ba006c16a335d6e05585bbecd66fcbf6620eaf866163 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805703300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:26:31 EST 2025 Tue Nov 18 20:04:03 EST 2025 Fri Feb 23 02:39:55 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Crack detection Computed tomography 3d segmentation Machine learning Fractional Brownian surface |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c418t-87f54c6c38c3da7f9a169ba006c16a335d6e05585bbecd66fcbf6620eaf866163 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.patcog.2022.108747 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_108747 crossref_primary_10_1016_j_patcog_2022_108747 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108747 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Landis, Zhang, Nagy, Nagy, Franklin (bib0005) 2007; 40 Krähenbühl, Kerautret, Debled-Rennesson, Mothe, Longuetaud (bib0003) 2014; 47 Cheng, Miyojim (bib0009) 1998; 12 Müller, Moghiseh, Stephani, Rottmayer, Huang (bib0023) 2018 Landis, Bolander (bib0006) 2009; 42 Abdel-Qader, Abudayyeh, Kelly (bib0015) 2003; 17 Läthén, Jonasson, Borga (bib0038) 2010; 31 Ronneberger, Fischer, Brox (bib0041) 2015 Ito, Aoki, Hashimoto (bib0011) 2002; volume 3 Shi, Cui, Qi, Meng, Chen (bib0030) 2016; 17 Barisin, Schladitz, Redenbach, Godehardt (bib0052) 2022 Ehrig, Goebbels, Meinel, Paetsch, Prohaska, Zobel (bib0033) 2011 Cha, Choi, Buyukozturk (bib0022) 2017; 32 Yamane, Chun (bib0024) 2020; 18 Paetsch, Baum, Ehrig, Meinel, Prohaska (bib0034) 2012 Addison, Dougan, Ndumu, Mackenzie (bib0048) 2000 Yamaguchi, Hashimoto (bib0014) 2010; 21 Acosta, Figueroa, Mullen (bib0008) 1992 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0042) 2016 Z. Botev, Fractional Brownian field or surface generator Tang, Gu (bib0012) 2013 Tankyevych, Talbot, Dokládal (bib0051) 2008 Hanzaei, Afshar, Barazandeh (bib0001) 2017; 66 Elbehiery, Hefnawy, Elewa (bib0010) 2005 Shim, Kim, Cho, Lee (bib0028) 2020; 8 Wang, Li, Gong (bib0016) 2008; 2024 J. König, M. Jenkins, M. Mannion, P. Barrie, G. Morison, Weakly-Supervised Surface Crack Segmentation by Generating Pseudo-Labels using Localization with a Classifier and Thresholding, (2021). Weise, Wiedmann, Voland, Kotan, Ehrig, Müller (bib0004) 2015; 110 Li, Tsai (bib0002) 2012; 45 Ghazvinian, Diederichs, Quey (bib0046) 2014; 6 Yang, Ji (bib0026) 2021; 21 Sommer, Straehle, Köthe, Hamprecht (bib0043) 2011 Altendorf (bib0050) 2011 Frangi, Niessen, Vincken, Viergever (bib0037) 2000; 1496 Avila, Begot, Duculty, Nguyen (bib0018) 2014 Chambon, Moliard (bib0021) 2011; 2011 Chun, Izumi, Yamane (bib0029) 2020; 36 Paetsch (bib0007) 2019 Roseman (bib0013) 2003; 94 Sato, Westin, Bhalerao, Nakajima, Shiraga, Tamura, Kikinis (bib0039) 2000; 6 Sazak, Nelson, Obara (bib0053) 2019; 88 Fang, Li, Gu, Zhu, Lim (bib0025) 2020; 107 Wirjadi, Rack, Liebscher, Meinhardt, Schladitz, Shafei, Steidl (bib0040) 2014; 105 Huang, Hu, Gu, Sun (bib0047) 2019; 12 Amhaz, Chambon, Idier, Baltazart (bib0020) 2016; 17 Wu, Tang (bib0036) 2021; 115 Müsebeck, Moghiseh, Redenbach, Schladitz (bib0035) 2020 Li, Wan, He, Liu, Ma (bib0027) 2020; 8 (accessed 13 April 2022). Zou, Cao, Li, Mao, Wang (bib0019) 2012; 33 Amhaz, Chambon, Idier, Baltazart (bib0017) 2015 Wang, Su (bib0031) 2021; 128 Miyojim, Cheng (bib0044) 1995; 28 Fend, Moghiseh, Redenbach, Schladitz (bib0045) 2021; 281 Wang (10.1016/j.patcog.2022.108747_bib0031) 2021; 128 Sazak (10.1016/j.patcog.2022.108747_bib0053) 2019; 88 Addison (10.1016/j.patcog.2022.108747_bib0048) 2000 Wu (10.1016/j.patcog.2022.108747_bib0036) 2021; 115 Landis (10.1016/j.patcog.2022.108747_bib0005) 2007; 40 Abdel-Qader (10.1016/j.patcog.2022.108747_bib0015) 2003; 17 Ehrig (10.1016/j.patcog.2022.108747_bib0033) 2011 Sato (10.1016/j.patcog.2022.108747_bib0039) 2000; 6 Wirjadi (10.1016/j.patcog.2022.108747_bib0040) 2014; 105 Tankyevych (10.1016/j.patcog.2022.108747_bib0051) 2008 Ito (10.1016/j.patcog.2022.108747_bib0011) 2002; volume 3 Ronneberger (10.1016/j.patcog.2022.108747_bib0041) 2015 Barisin (10.1016/j.patcog.2022.108747_bib0052) 2022 Cheng (10.1016/j.patcog.2022.108747_bib0009) 1998; 12 Müsebeck (10.1016/j.patcog.2022.108747_bib0035) 2020 Chun (10.1016/j.patcog.2022.108747_bib0029) 2020; 36 10.1016/j.patcog.2022.108747_bib0049 Sommer (10.1016/j.patcog.2022.108747_bib0043) 2011 Yamane (10.1016/j.patcog.2022.108747_bib0024) 2020; 18 Ghazvinian (10.1016/j.patcog.2022.108747_bib0046) 2014; 6 Amhaz (10.1016/j.patcog.2022.108747_bib0017) 2015 Fang (10.1016/j.patcog.2022.108747_bib0025) 2020; 107 Tang (10.1016/j.patcog.2022.108747_bib0012) 2013 Zou (10.1016/j.patcog.2022.108747_bib0019) 2012; 33 Läthén (10.1016/j.patcog.2022.108747_bib0038) 2010; 31 Hanzaei (10.1016/j.patcog.2022.108747_bib0001) 2017; 66 Huang (10.1016/j.patcog.2022.108747_bib0047) 2019; 12 10.1016/j.patcog.2022.108747_bib0032 Fend (10.1016/j.patcog.2022.108747_bib0045) 2021; 281 Landis (10.1016/j.patcog.2022.108747_bib0006) 2009; 42 Krähenbühl (10.1016/j.patcog.2022.108747_bib0003) 2014; 47 Avila (10.1016/j.patcog.2022.108747_bib0018) 2014 Acosta (10.1016/j.patcog.2022.108747_bib0008) 1992 Amhaz (10.1016/j.patcog.2022.108747_bib0020) 2016; 17 Müller (10.1016/j.patcog.2022.108747_bib0023) 2018 Shim (10.1016/j.patcog.2022.108747_bib0028) 2020; 8 Chambon (10.1016/j.patcog.2022.108747_bib0021) 2011; 2011 Paetsch (10.1016/j.patcog.2022.108747_bib0034) 2012 Frangi (10.1016/j.patcog.2022.108747_bib0037) 2000; 1496 Li (10.1016/j.patcog.2022.108747_bib0027) 2020; 8 Elbehiery (10.1016/j.patcog.2022.108747_bib0010) 2005 Cha (10.1016/j.patcog.2022.108747_bib0022) 2017; 32 Paetsch (10.1016/j.patcog.2022.108747_bib0007) 2019 Roseman (10.1016/j.patcog.2022.108747_bib0013) 2003; 94 Wang (10.1016/j.patcog.2022.108747_bib0016) 2008; 2024 Altendorf (10.1016/j.patcog.2022.108747_bib0050) 2011 Li (10.1016/j.patcog.2022.108747_bib0002) 2012; 45 Çiçek (10.1016/j.patcog.2022.108747_bib0042) 2016 Weise (10.1016/j.patcog.2022.108747_bib0004) 2015; 110 Miyojim (10.1016/j.patcog.2022.108747_bib0044) 1995; 28 Yang (10.1016/j.patcog.2022.108747_bib0026) 2021; 21 Shi (10.1016/j.patcog.2022.108747_bib0030) 2016; 17 Yamaguchi (10.1016/j.patcog.2022.108747_bib0014) 2010; 21 |
| References_xml | – volume: 88 start-page: 739 year: 2019 end-page: 750 ident: bib0053 article-title: The multiscale bowler-hat transform for blood vessel enhancement in retinal images publication-title: Pattern Recognit. – volume: 31 start-page: 762 year: 2010 end-page: 767 ident: bib0038 article-title: Blood vessel segmentation using multi-scale quadrature filtering publication-title: Pattern Recogn. Lett. – start-page: 783 year: 2014 end-page: 787 ident: bib0018 article-title: 2D image based road pavement crack detection by calculating minimal paths and dynamic programming publication-title: IEEE Image Proc. – volume: 47 start-page: 3852 year: 2014 end-page: 3869 ident: bib0003 article-title: Knot segmentation in 3D CT images of wet wood publication-title: Pattern Recognit. – volume: 17 start-page: 2718 year: 2016 end-page: 2729 ident: bib0020 article-title: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection publication-title: IEEE T. Intell. Transp. – reference: J. König, M. Jenkins, M. Mannion, P. Barrie, G. Morison, Weakly-Supervised Surface Crack Segmentation by Generating Pseudo-Labels using Localization with a Classifier and Thresholding, (2021). – reference: ), (accessed 13 April 2022). – volume: 115 start-page: 107904 year: 2021 ident: bib0036 article-title: Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles publication-title: Pattern Recognit. – volume: 281 start-page: 16 year: 2021 end-page: 27 ident: bib0045 article-title: Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images publication-title: J. Microsc. – reference: Z. Botev, Fractional Brownian field or surface generator, ( – start-page: 321 year: 2012 end-page: 330 ident: bib0034 article-title: Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography publication-title: Proc. Conf. Ind. Comp. Tomogr. – start-page: 1307 year: 2005 end-page: 1322 ident: bib0010 article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques publication-title: Proc. Wrld. Acad. Sci. E. – volume: 6 start-page: 506 year: 2014 end-page: 521 ident: bib0046 article-title: 3d random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing publication-title: J. Rock Mech. Geotech. Eng. – start-page: 143 year: 2020 end-page: 155 ident: bib0035 article-title: Minimal Paths for 3D Crack Detection in Concrete publication-title: Forum Bildverarb. – volume: 94 start-page: 225 year: 2003 end-page: 236 ident: bib0013 article-title: Particle finding in electron micrographs using a fast local correlation algorithm publication-title: Ultramicroscopy – start-page: 788 year: 2015 end-page: 792 ident: bib0017 article-title: A new minimal path selection algorithm for automatic crack detection on pavement images publication-title: IEEE Image Proc. – volume: 2024 start-page: 73 year: 2008 end-page: 81 ident: bib0016 article-title: Wavelet-Based Pavement Distress Image Edge Detection with À Trous Algorithm publication-title: Transp. Res. Record – volume: 42 start-page: 1 year: 2009 end-page: 17 ident: bib0006 article-title: Explicit representation of physical processes in concrete fracture publication-title: J Phys. D – start-page: 63 year: 1992 end-page: 72 ident: bib0008 article-title: Low-Cost Video Image Processing System for Evaluating Pavement Surface Distress publication-title: Transp. Res. Record – year: 2011 ident: bib0050 article-title: 3d Morphological Analysis and Modeling of Random Fiber Networks: Applied on Glass Fiber Reinforced Composites publication-title: PhD Thesis, Technische Universität Kaiserslautern – volume: 2011 start-page: 1 year: 2011 end-page: 20 ident: bib0021 article-title: Automatic Road Pavement Assessment with Image Processing: Review and Comparison publication-title: Int. J. Geoph. – volume: 105 start-page: 702 year: 2014 end-page: 708 ident: bib0040 article-title: Microstructural analysis of a C/SiC ceramic based on the segmentation of X-ray phase contrast tomographic data publication-title: Int. J. Mater. Res. – volume: 1496 start-page: 130 year: 2000 end-page: 137 ident: bib0037 article-title: Multiscale vessel enhancement filtering publication-title: Lect. Notes Comput. Sc. – volume: 6 start-page: 160 year: 2000 end-page: 180 ident: bib0039 article-title: Tissue classification based on 3d local intensity structures for volume rendering publication-title: IEEE T. Vis. Comput. Gr. – volume: 17 start-page: 3434 year: 2016 end-page: 3445 ident: bib0030 article-title: Automatic Road Crack Detection Using Random Structured Forests publication-title: IEEE T. Intell. Transp. – start-page: 117 year: 2000 end-page: 123 ident: bib0048 article-title: A Fractional Brownian Motion Model of Cracking publication-title: Paradigms Of Complexity: Fractals And Structures In The Sciences. Proc. Conf. Fractal – volume: 36 start-page: 1 year: 2020 end-page: 12 ident: bib0029 article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine publication-title: Comput.-Aided Civ. Inf. – year: 2022 ident: bib0052 article-title: 3d adaptive framework for directional filtering publication-title: Image Anal. Stereol. – start-page: 209 year: 2018 end-page: 216 ident: bib0023 article-title: Application of deep learning for crack segmentation on concrete surface publication-title: Forum Bildverarb. – volume: 21 start-page: 797 year: 2010 end-page: 809 ident: bib0014 article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing publication-title: Mach. Vision Appl. – volume: 45 start-page: 742 year: 2012 end-page: 756 ident: bib0002 article-title: Wavelet-based defect detection in solar wafer images with inhomogeneous texture publication-title: Pattern Recognit. – year: 2011 ident: bib0033 article-title: Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography publication-title: Int. Symp. Dig. Ind. Radiol. Comp. Tomogr. – start-page: 424 year: 2016 end-page: 432 ident: bib0042 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Lect. Notes Comput. Sc. – start-page: 234 year: 2015 end-page: 241 ident: bib0041 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Lect. Notes Comput. Sc. – volume: 28 start-page: 595 year: 1995 end-page: 610 ident: bib0044 article-title: Synthesized images for pattern recognition publication-title: Pattern Recognit. – reference: (accessed 13 April 2022). – start-page: 1011 year: 2008 end-page: 1014 ident: bib0051 article-title: Curvilinear morpho-Hessian filter publication-title: 2008 5th IEEE Int. Symp. on Biomedical Imaging – start-page: 230 year: 2011 end-page: 233 ident: bib0043 article-title: ilastik: Interactive Learning and Segmentation Toolkit publication-title: I. S. Biomed. Imaging – volume: 12 year: 2019 ident: bib0047 article-title: Fracture behavior and energy analysis of 3d concrete mesostructure under uniaxial compression publication-title: Materials – volume: 21 start-page: 19165 year: 2021 end-page: 19175 ident: bib0026 article-title: Automatic Pixel-level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning publication-title: IEEE Sens. J – volume: 18 start-page: 493 year: 2020 end-page: 504 ident: bib0024 article-title: Crack detection from a concrete surface image based on semantic segmentation using deep learning publication-title: J Adv. Concr. Technol. – volume: 40 start-page: 357 year: 2007 end-page: 364 ident: bib0005 article-title: Cracking, damage and fracture in four dimensions publication-title: Mater. Struct. – volume: 12 start-page: 145 year: 1998 end-page: 152 ident: bib0009 article-title: Novel system for automatic pavement distress detection publication-title: J. Comput. Civil. Eng. – start-page: 3026 year: 2013 end-page: 3030 ident: bib0012 article-title: Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis publication-title: IEEE Sys. Man. Cybern. – volume: 33 start-page: 227 year: 2012 end-page: 238 ident: bib0019 article-title: CrackTree: Automatic crack detection from pavement images publication-title: Pattern Recognit. Lett. – volume: 128 start-page: 103786 year: 2021 ident: bib0031 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Automat Constr. – volume: 8 start-page: 170939 year: 2020 end-page: 170950 ident: bib0028 article-title: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures publication-title: IEEE Access – volume: 8 start-page: 51446 year: 2020 end-page: 51459 ident: bib0027 article-title: Semi-supervised semantic segmentation using adversarial learning for pavement crack detection publication-title: IEEE Access – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: bib0022 article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks publication-title: Comput.-Aided Civ. Inf. – volume: volume 3 start-page: 2202 year: 2002 end-page: 2207 ident: bib0011 article-title: Accurate extraction and measurement of fine cracks from concrete block surface image publication-title: IEEE Ind. Elec. – volume: 107 start-page: 107474 year: 2020 ident: bib0025 article-title: A novel hybrid approach for crack detection publication-title: Pattern Recognit. – volume: 17 start-page: 255 year: 2003 end-page: 263 ident: bib0015 article-title: Analysis of Edge-Detection Techniques for Crack Identification in Bridges publication-title: J. Comput. Civil. Eng. – volume: 66 start-page: 174 year: 2017 end-page: 189 ident: bib0001 article-title: Automatic detection and classification of the ceramic tiles’ surface defects publication-title: Pattern Recognit. – volume: 110 year: 2015 ident: bib0004 article-title: Auswirkungen von Ermüdungsbeanspruchungen auf Struktur und Eigenschaften von Fahrbahndeckenbeton publication-title: Beton- Stahlbetonbau – year: 2019 ident: bib0007 article-title: Possibilities and limitations of automated feature extraction shown by the example of crack detection in 3D-CT images of concrete specimen publication-title: Proc. Conf. Ind. Comp. Tomogr. – start-page: 117 year: 2000 ident: 10.1016/j.patcog.2022.108747_bib0048 article-title: A Fractional Brownian Motion Model of Cracking – volume: 17 start-page: 3434 issue: 12 year: 2016 ident: 10.1016/j.patcog.2022.108747_bib0030 article-title: Automatic Road Crack Detection Using Random Structured Forests publication-title: IEEE T. Intell. Transp. doi: 10.1109/TITS.2016.2552248 – volume: 33 start-page: 227 issue: 3 year: 2012 ident: 10.1016/j.patcog.2022.108747_bib0019 article-title: CrackTree: Automatic crack detection from pavement images publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.11.004 – ident: 10.1016/j.patcog.2022.108747_bib0049 – start-page: 783 year: 2014 ident: 10.1016/j.patcog.2022.108747_bib0018 article-title: 2D image based road pavement crack detection by calculating minimal paths and dynamic programming – start-page: 3026 year: 2013 ident: 10.1016/j.patcog.2022.108747_bib0012 article-title: Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis – volume: 115 start-page: 107904 year: 2021 ident: 10.1016/j.patcog.2022.108747_bib0036 article-title: Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107904 – start-page: 321 year: 2012 ident: 10.1016/j.patcog.2022.108747_bib0034 article-title: Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography – start-page: 63 year: 1992 ident: 10.1016/j.patcog.2022.108747_bib0008 article-title: Low-Cost Video Image Processing System for Evaluating Pavement Surface Distress publication-title: Transp. Res. Record – volume: 36 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0029 article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine publication-title: Comput.-Aided Civ. Inf. – start-page: 424 year: 2016 ident: 10.1016/j.patcog.2022.108747_bib0042 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation doi: 10.1007/978-3-319-46723-8_49 – volume: 40 start-page: 357 year: 2007 ident: 10.1016/j.patcog.2022.108747_bib0005 article-title: Cracking, damage and fracture in four dimensions publication-title: Mater. Struct. doi: 10.1617/s11527-006-9145-5 – volume: 21 start-page: 19165 issue: 17 year: 2021 ident: 10.1016/j.patcog.2022.108747_bib0026 article-title: Automatic Pixel-level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning publication-title: IEEE Sens. J doi: 10.1109/JSEN.2021.3089718 – start-page: 1011 year: 2008 ident: 10.1016/j.patcog.2022.108747_bib0051 article-title: Curvilinear morpho-Hessian filter – volume: 8 start-page: 51446 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0027 article-title: Semi-supervised semantic segmentation using adversarial learning for pavement crack detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980086 – volume: 21 start-page: 797 year: 2010 ident: 10.1016/j.patcog.2022.108747_bib0014 article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing publication-title: Mach. Vision Appl. doi: 10.1007/s00138-009-0189-8 – start-page: 788 year: 2015 ident: 10.1016/j.patcog.2022.108747_bib0017 article-title: A new minimal path selection algorithm for automatic crack detection on pavement images publication-title: IEEE Image Proc. – volume: 28 start-page: 595 issue: 4 year: 1995 ident: 10.1016/j.patcog.2022.108747_bib0044 article-title: Synthesized images for pattern recognition publication-title: Pattern Recognit. doi: 10.1016/0031-3203(94)00123-4 – volume: 45 start-page: 742 issue: 2 year: 2012 ident: 10.1016/j.patcog.2022.108747_bib0002 article-title: Wavelet-based defect detection in solar wafer images with inhomogeneous texture publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.07.025 – year: 2011 ident: 10.1016/j.patcog.2022.108747_bib0050 article-title: 3d Morphological Analysis and Modeling of Random Fiber Networks: Applied on Glass Fiber Reinforced Composites publication-title: PhD Thesis, Technische Universität Kaiserslautern – volume: 105 start-page: 702 year: 2014 ident: 10.1016/j.patcog.2022.108747_bib0040 article-title: Microstructural analysis of a C/SiC ceramic based on the segmentation of X-ray phase contrast tomographic data publication-title: Int. J. Mater. Res. doi: 10.3139/146.111071 – start-page: 209 year: 2018 ident: 10.1016/j.patcog.2022.108747_bib0023 article-title: Application of deep learning for crack segmentation on concrete surface – volume: 6 start-page: 506 issue: 6 year: 2014 ident: 10.1016/j.patcog.2022.108747_bib0046 article-title: 3d random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2014.09.001 – volume: volume 3 start-page: 2202 year: 2002 ident: 10.1016/j.patcog.2022.108747_bib0011 article-title: Accurate extraction and measurement of fine cracks from concrete block surface image – volume: 1496 start-page: 130 year: 2000 ident: 10.1016/j.patcog.2022.108747_bib0037 article-title: Multiscale vessel enhancement filtering publication-title: Lect. Notes Comput. Sc. doi: 10.1007/BFb0056195 – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2022.108747_bib0041 article-title: U-net: Convolutional networks for biomedical image segmentation doi: 10.1007/978-3-319-24574-4_28 – ident: 10.1016/j.patcog.2022.108747_bib0032 – volume: 47 start-page: 3852 issue: 12 year: 2014 ident: 10.1016/j.patcog.2022.108747_bib0003 article-title: Knot segmentation in 3D CT images of wet wood publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.015 – year: 2019 ident: 10.1016/j.patcog.2022.108747_bib0007 article-title: Possibilities and limitations of automated feature extraction shown by the example of crack detection in 3D-CT images of concrete specimen – volume: 128 start-page: 103786 year: 2021 ident: 10.1016/j.patcog.2022.108747_bib0031 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Automat Constr. doi: 10.1016/j.autcon.2021.103786 – start-page: 143 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0035 article-title: Minimal Paths for 3D Crack Detection in Concrete – volume: 88 start-page: 739 year: 2019 ident: 10.1016/j.patcog.2022.108747_bib0053 article-title: The multiscale bowler-hat transform for blood vessel enhancement in retinal images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.10.011 – volume: 2024 start-page: 73 year: 2008 ident: 10.1016/j.patcog.2022.108747_bib0016 article-title: Wavelet-Based Pavement Distress Image Edge Detection with .. Trous Algorithm publication-title: Transp. Res. Record doi: 10.3141/2024-09 – volume: 281 start-page: 16 issue: 1 year: 2021 ident: 10.1016/j.patcog.2022.108747_bib0045 article-title: Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images publication-title: J. Microsc. doi: 10.1111/jmi.12944 – volume: 31 start-page: 762 issue: 8 year: 2010 ident: 10.1016/j.patcog.2022.108747_bib0038 article-title: Blood vessel segmentation using multi-scale quadrature filtering publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2009.09.020 – volume: 94 start-page: 225 issue: 3 year: 2003 ident: 10.1016/j.patcog.2022.108747_bib0013 article-title: Particle finding in electron micrographs using a fast local correlation algorithm publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(02)00333-9 – volume: 12 start-page: 145 year: 1998 ident: 10.1016/j.patcog.2022.108747_bib0009 article-title: Novel system for automatic pavement distress detection publication-title: J. Comput. Civil. Eng. doi: 10.1061/(ASCE)0887-3801(1998)12:3(145) – volume: 17 start-page: 2718 year: 2016 ident: 10.1016/j.patcog.2022.108747_bib0020 article-title: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection publication-title: IEEE T. Intell. Transp. doi: 10.1109/TITS.2015.2477675 – volume: 8 start-page: 170939 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0028 article-title: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022786 – volume: 110 issue: 1 year: 2015 ident: 10.1016/j.patcog.2022.108747_bib0004 article-title: Auswirkungen von Ermüdungsbeanspruchungen auf Struktur und Eigenschaften von Fahrbahndeckenbeton publication-title: Beton- Stahlbetonbau doi: 10.1002/best.201400096 – start-page: 230 year: 2011 ident: 10.1016/j.patcog.2022.108747_bib0043 article-title: ilastik: Interactive Learning and Segmentation Toolkit – volume: 17 start-page: 255 year: 2003 ident: 10.1016/j.patcog.2022.108747_bib0015 article-title: Analysis of Edge-Detection Techniques for Crack Identification in Bridges publication-title: J. Comput. Civil. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.patcog.2022.108747_bib0021 article-title: Automatic Road Pavement Assessment with Image Processing: Review and Comparison publication-title: Int. J. Geoph. doi: 10.1155/2011/989354 – volume: 32 start-page: 361 year: 2017 ident: 10.1016/j.patcog.2022.108747_bib0022 article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks publication-title: Comput.-Aided Civ. Inf. doi: 10.1111/mice.12263 – volume: 107 start-page: 107474 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0025 article-title: A novel hybrid approach for crack detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107474 – start-page: 1307 year: 2005 ident: 10.1016/j.patcog.2022.108747_bib0010 article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques – volume: 12 issue: 12 year: 2019 ident: 10.1016/j.patcog.2022.108747_bib0047 article-title: Fracture behavior and energy analysis of 3d concrete mesostructure under uniaxial compression publication-title: Materials doi: 10.3390/ma12121929 – volume: 42 start-page: 1 issue: 21 year: 2009 ident: 10.1016/j.patcog.2022.108747_bib0006 article-title: Explicit representation of physical processes in concrete fracture publication-title: J Phys. D doi: 10.1088/0022-3727/42/21/214002 – volume: 18 start-page: 493 issue: 9 year: 2020 ident: 10.1016/j.patcog.2022.108747_bib0024 article-title: Crack detection from a concrete surface image based on semantic segmentation using deep learning publication-title: J Adv. Concr. Technol. doi: 10.3151/jact.18.493 – volume: 6 start-page: 160 issue: 2 year: 2000 ident: 10.1016/j.patcog.2022.108747_bib0039 article-title: Tissue classification based on 3d local intensity structures for volume rendering publication-title: IEEE T. Vis. Comput. Gr. doi: 10.1109/2945.856997 – year: 2022 ident: 10.1016/j.patcog.2022.108747_bib0052 article-title: 3d adaptive framework for directional filtering publication-title: Image Anal. Stereol. doi: 10.5566/ias.2639 – volume: 66 start-page: 174 year: 2017 ident: 10.1016/j.patcog.2022.108747_bib0001 article-title: Automatic detection and classification of the ceramic tiles’ surface defects publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.11.021 – year: 2011 ident: 10.1016/j.patcog.2022.108747_bib0033 article-title: Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography |
| SSID | ssj0017142 |
| Score | 2.488629 |
| Snippet | •Comparison of eight methods for crack detection in 3d CT concrete images.•Simulation of 3d crack images gives unbiased ground truth for evaluation.•Parameter... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108747 |
| SubjectTerms | 3d segmentation Computed tomography Crack detection Deep learning Fractional Brownian surface Machine learning |
| Title | Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images |
| URI | https://dx.doi.org/10.1016/j.patcog.2022.108747 |
| Volume | 129 |
| WOSCitedRecordID | wos000805703300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMvML7EBkN-4G3ylMSJneytq4ZgYtMERepb5Nhxla1Lq6abBn-Av811bCcdQ3xJvESRVSeV78n1sX3vuQi9oUEhCh1SQinnBPhtQkTBEpJGImRBmkVSt5L5H_jpaTqZZGeDwTefC3M943Wd3txki_9qamgDY5vU2b8wd_dQaIB7MDpcwexw_SPDn7Q1oVuZhb2mnLbhQCaxdmmy6c32BlV71aWYWrVZWA4Db1y5DHXZVyU005syRwlNeVmR5ksNTNGIu9qu65z2rJXoNGkxLhapP9k_NA-zKgXjqms9dg7GChus4fPEHNsfjhpj8gtPq79WzUU3d3wswU8WwtavGs3ElarE-sYFrHl9ZJbbTfMZNX34UuuhaUhoFFinV1qnnHJKgNjd9tp2o-TODGA3I873FzCTzaf75sUmjpJbXc8ftLU_WenKALxaKwQ0uYc2I55k4B43h--PJsfdgRQPYys87_6ez8JsQwXvvuvnLGeNuYy30EO35MBDC5XHaFDWT9AjX84DO-_-FEmHHAzIwT1ysEUOrmpMFbbmx3ONPXIO8BD3uMEtbjDc3MaN6_gMfX57NB69I64GB5FxmK5gstRJLJmkqaRKcJ3BJ5wVAny1DJmgNFGsDBJYcxaADMWYloVmLApKoVOgfow-Rxv1vC5fIJxxLeJCKKkSI1IUZolQWkYhAxIqaJxtI-rHLJdOoN7USZnlPhLxPLcjnZuRzu1IbyPS9VpYgZbf_J57c-SOZFrymAOCftlz5597vkQP-g_gFdpYLa_KXXRfXq-qZvnaQe07gWijuw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+segmenting+cracks+in+3d+images+of+concrete%3A+A+comparison+based+on+semi-synthetic+images&rft.jtitle=Pattern+recognition&rft.au=Barisin%2C+Tin&rft.au=Jung%2C+Christian&rft.au=M%C3%BCsebeck%2C+Franziska&rft.au=Redenbach%2C+Claudia&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=129&rft_id=info:doi/10.1016%2Fj.patcog.2022.108747&rft.externalDocID=S003132032200228X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |