Cauchy non-convex sparse feature selection method for the high-dimensional small-sample problem in motor imagery EEG decoding

The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in neuroscience Ročník 17; s. 1292724
Hlavní autori: Zhang, Shaorong, Wang, Qihui, Zhang, Benxin, Liang, Zhen, Zhang, Li, Li, Linling, Huang, Gan, Zhang, Zhiguo, Feng, Bao, Yu, Tianyou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Frontiers Research Foundation 03.11.2023
Frontiers Media S.A
Predmet:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue. However, the most commonly employed sparse regularization models in motor imagery decoding, such as the least absolute shrinkage and selection operator (LASSO), is a biased estimation method and leads to the loss of target feature information. In this paper, we propose a non-convex sparse regularization model that employs the Cauchy function. By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing models. Therefore, it can learn more accurate, discriminative, and effective feature information. Additionally, the proposed method can perform feature selection and classification simultaneously, without requiring additional classifiers. We conducted experiments on two publicly available motor imagery EEG datasets. The proposed method achieved an average classification accuracy of 82.98% and 64.45% in subjectdependent and subject-independent decoding assessment methods, respectively. The experimental results show that the proposed method can significantly improve the performance of motor imagery decoding, with better classification performance than existing feature selection and deep learning methods. Furthermore, the proposed model shows better generalization capability, with parameter consistency over different datasets and robust classification across different training sample sizes. Compared with existing sparse regularization methods, the proposed method converges faster, and with shorter model training time.
AbstractList IntroductionThe time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue. However, the most commonly employed sparse regularization models in motor imagery decoding, such as the least absolute shrinkage and selection operator (LASSO), is a biased estimation method and leads to the loss of target feature information.MethodsIn this paper, we propose a non-convex sparse regularization model that employs the Cauchy function. By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing sparse models. Therefore, it can learn more accurate, discriminative, and effective feature information. Additionally, the proposed method can perform feature selection and classification simultaneously, without requiring additional classifiers.ResultsWe conducted experiments on two publicly available motor imagery EEG datasets. The proposed method achieved an average classification accuracy of 82.98% and 64.45% in subject-dependent and subject-independent decoding assessment methods, respectively.ConclusionThe experimental results show that the proposed method can significantly improve the performance of motor imagery decoding, with better classification performance than existing feature selection and deep learning methods. Furthermore, the proposed model shows better generalization capability, with parameter consistency over different datasets and robust classification across different training sample sizes. Compared with existing sparse regularization methods, the proposed method converges faster, and with shorter model training time.
The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue. However, the most commonly employed sparse regularization models in motor imagery decoding, such as the least absolute shrinkage and selection operator (LASSO), is a biased estimation method and leads to the loss of target feature information.IntroductionThe time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue. However, the most commonly employed sparse regularization models in motor imagery decoding, such as the least absolute shrinkage and selection operator (LASSO), is a biased estimation method and leads to the loss of target feature information.In this paper, we propose a non-convex sparse regularization model that employs the Cauchy function. By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing sparse models. Therefore, it can learn more accurate, discriminative, and effective feature information. Additionally, the proposed method can perform feature selection and classification simultaneously, without requiring additional classifiers.MethodsIn this paper, we propose a non-convex sparse regularization model that employs the Cauchy function. By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing sparse models. Therefore, it can learn more accurate, discriminative, and effective feature information. Additionally, the proposed method can perform feature selection and classification simultaneously, without requiring additional classifiers.We conducted experiments on two publicly available motor imagery EEG datasets. The proposed method achieved an average classification accuracy of 82.98% and 64.45% in subject-dependent and subject-independent decoding assessment methods, respectively.ResultsWe conducted experiments on two publicly available motor imagery EEG datasets. The proposed method achieved an average classification accuracy of 82.98% and 64.45% in subject-dependent and subject-independent decoding assessment methods, respectively.The experimental results show that the proposed method can significantly improve the performance of motor imagery decoding, with better classification performance than existing feature selection and deep learning methods. Furthermore, the proposed model shows better generalization capability, with parameter consistency over different datasets and robust classification across different training sample sizes. Compared with existing sparse regularization methods, the proposed method converges faster, and with shorter model training time.ConclusionThe experimental results show that the proposed method can significantly improve the performance of motor imagery decoding, with better classification performance than existing feature selection and deep learning methods. Furthermore, the proposed model shows better generalization capability, with parameter consistency over different datasets and robust classification across different training sample sizes. Compared with existing sparse regularization methods, the proposed method converges faster, and with shorter model training time.
The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue. However, the most commonly employed sparse regularization models in motor imagery decoding, such as the least absolute shrinkage and selection operator (LASSO), is a biased estimation method and leads to the loss of target feature information. In this paper, we propose a non-convex sparse regularization model that employs the Cauchy function. By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing models. Therefore, it can learn more accurate, discriminative, and effective feature information. Additionally, the proposed method can perform feature selection and classification simultaneously, without requiring additional classifiers. We conducted experiments on two publicly available motor imagery EEG datasets. The proposed method achieved an average classification accuracy of 82.98% and 64.45% in subjectdependent and subject-independent decoding assessment methods, respectively. The experimental results show that the proposed method can significantly improve the performance of motor imagery decoding, with better classification performance than existing feature selection and deep learning methods. Furthermore, the proposed model shows better generalization capability, with parameter consistency over different datasets and robust classification across different training sample sizes. Compared with existing sparse regularization methods, the proposed method converges faster, and with shorter model training time.
Author Liang, Zhen
Li, Linling
Zhang, Zhiguo
Zhang, Shaorong
Yu, Tianyou
Zhang, Li
Zhang, Benxin
Wang, Qihui
Feng, Bao
Huang, Gan
Author_xml – sequence: 1
  givenname: Shaorong
  surname: Zhang
  fullname: Zhang, Shaorong
– sequence: 2
  givenname: Qihui
  surname: Wang
  fullname: Wang, Qihui
– sequence: 3
  givenname: Benxin
  surname: Zhang
  fullname: Zhang, Benxin
– sequence: 4
  givenname: Zhen
  surname: Liang
  fullname: Liang, Zhen
– sequence: 5
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 6
  givenname: Linling
  surname: Li
  fullname: Li, Linling
– sequence: 7
  givenname: Gan
  surname: Huang
  fullname: Huang, Gan
– sequence: 8
  givenname: Zhiguo
  surname: Zhang
  fullname: Zhang, Zhiguo
– sequence: 9
  givenname: Bao
  surname: Feng
  fullname: Feng, Bao
– sequence: 10
  givenname: Tianyou
  surname: Yu
  fullname: Yu, Tianyou
BookMark eNp9kU9r3DAQxUVJock2XyAnQS-9eCNL_iMdy7JNA4FcGshNjOXxWotsbSW5dA_97tVmUyg59DRi9HuPmXlX5GL2MxJyU7K1EFLdDrOd45ozLtYlV7zl1TtyWTYNL6paPF_88_5ArmLcM9ZwWfFL8nsDixmPNPsVxs8_8ReNBwgR6YCQloA0okOTrJ_phGn0PR18oGlEOtrdWPR2wjnmX3A0TuBcEWE6OKSH4DuHE7VZ51OW2Al2GI50u72jPRrf23n3kbwfwEW8fq0r8vR1-33zrXh4vLvffHkoTFXKVLRt2zFQgFUnhBGlBBBoZKXKjhtZVlUnGe-6YRAdE6JWUqLhQqKCGmvToFiR-7Nv72GvDyHPEo7ag9UvDR92GkKyxqFmjPUliKZlqq-Y7GEwrGsHJngDqgeRvT6fvfKGPxaMSU82GnQOZvRL1FyqumVCqSajn96ge7-EfKoTJWshWZvJFZFnygQfY8BBG5vgdPEUwDpdMn3KWL9krE8Z69eMs5S_kf7d7T-iP2nGrvc
CitedBy_id crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_1080_15368378_2024_2415089
crossref_primary_10_3390_sym17060887
Cites_doi 10.1002/hbm.23730
10.1109/ACCESS.2018.2880454
10.3389/fnhum.2023.1117670
10.1016/j.ijepes.2012.04.048
10.1109/TBME.2010.2082539
10.1109/TNSRE.2017.2757519
10.1016/j.sigpro.2020.107631
10.1088/1741-2552/aace8c
10.1016/j.jneumeth.2007.03.005
10.1088/1741-2552/acbb2c
10.1016/j.patcog.2010.03.022
10.1109/TBME.2021.3137184
10.1007/s40747-021-00452-4
10.1109/MSP.2008.4408441
10.1109/JSEN.2020.3016402
10.3390/mi13060927
10.1016/j.bspc.2022.104066
10.1109/TBME.2022.3193277
10.1016/j.bspc.2022.103825
10.1088/1741-2552/ab405f
10.1109/JBHI.2018.2832538
10.1007/s10915-018-0801-z
10.1093/bioinformatics/btad135
10.3389/fnins.2019.01275
10.1016/j.bspc.2022.103634
10.1109/TPAMI.2022.3185773
10.1109/TSP.2020.3032231
10.1016/j.bspc.2021.102763
10.1016/j.neuroimage.2023.120209
10.1109/TIE.2018.2793271
10.1109/TNNLS.2018.2789927
10.1016/j.bspc.2020.102144
10.1109/TNSRE.2021.3071140
10.3390/informatics6020021
10.1109/TNNLS.2019.2946869
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Zhang, Wang, Zhang, Liang, Zhang, Li, Huang, Zhang, Feng and Yu.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Zhang, Wang, Zhang, Liang, Zhang, Li, Huang, Zhang, Feng and Yu.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.3389/fnins.2023.1292724
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_000d1a36709d408dafc0b7f0326a9da3
10_3389_fnins_2023_1292724
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c418t-777b0a9ae4b33c318aa3ec8491b2c8144b802bbff3b0335988ec238e9a5e5c6e3
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104087300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:44:46 EDT 2025
Sun Nov 09 09:45:03 EST 2025
Fri Jul 25 11:37:16 EDT 2025
Tue Nov 18 22:41:46 EST 2025
Sat Nov 29 04:31:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-777b0a9ae4b33c318aa3ec8491b2c8144b802bbff3b0335988ec238e9a5e5c6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2885380770?pq-origsite=%requestingapplication%
PQID 2885380770
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_000d1a36709d408dafc0b7f0326a9da3
proquest_miscellaneous_2895703996
proquest_journals_2885380770
crossref_citationtrail_10_3389_fnins_2023_1292724
crossref_primary_10_3389_fnins_2023_1292724
PublicationCentury 2000
PublicationDate 2023-11-03
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-03
  day: 03
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Dai (ref10) 2020; 17
Chadebec (ref5) 2022; 45
Miao (ref26) 2023; 276
Autthasan (ref2) 2021; 69
Kwon (ref17) 2019; 31
Jia (ref14) 2020
Wu (ref35) 2019; 13
You (ref36) 2019; 78
Lawhern (ref18) 2018; 15
Li (ref19) 2023; 79
Sakhavi (ref29) 2018; 29
Park (ref27) 2018; 26
Lotte (ref22) 2011; 58
Blankertz (ref4) 2008; 25
Zheng (ref42) 2022; 76
Hoffmann (ref13) 2008
Liao (ref20) 2023; 17
Mane (ref23) 2020
Zhang (ref41) 2021; 63
Karakuş (ref16) 2020; 68
Zhang (ref39) 2022; 77
Shen (ref31) 2022; 8
Miao (ref25) 2023
Wen (ref34) 2018; 6
Zhang (ref40) 2020; 174
Miao (ref24) 2021; 29
Ang (ref1) 2008
Zancanaro (ref37) 2021
Chen (ref7) 2023; 20
Chen (ref8) 2023; 39
Hoffmann (ref12) 2008; 167
Liu (ref21) 2022; 70
Schirrmeister (ref30) 2017; 38
Radman (ref28) 2021; 68
Datta (ref11) 2012; 42
Jiao (ref15) 2018; 23
Chopra (ref9) 2010; 43
Wang (ref33) 2018; 65
Bishop (ref3) 2006
Too (ref32) 2019; 6
Zhang (ref38) 2020; 21
Chang (ref6) 2022; 13
References_xml – year: 2020
  ident: ref23
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref30
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 6
  start-page: 69883
  year: 2018
  ident: ref34
  article-title: A survey on non-convex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880454
– volume: 17
  start-page: 1117670
  year: 2023
  ident: ref20
  article-title: Motor imagery brain-computer interface rehabilitation system enhances upper limb performance and improves brain activity in stroke patients: A clinical study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2023.1117670
– year: 2008
  ident: ref13
– volume: 42
  start-page: 517
  year: 2012
  ident: ref11
  article-title: A binary-real-coded differential evolution for unit commitment problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.04.048
– volume: 58
  start-page: 355
  year: 2011
  ident: ref22
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 26
  start-page: 498
  year: 2018
  ident: ref27
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2757519
– volume: 174
  start-page: 107631
  year: 2020
  ident: ref40
  article-title: A TV-log non-convex approach for image deblurring with impulsive noise
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107631
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref18
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 167
  start-page: 115
  year: 2008
  ident: ref12
  article-title: An efficient P300-based brain-computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– volume: 20
  start-page: 026001
  year: 2023
  ident: ref7
  article-title: Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acbb2c
– volume: 43
  start-page: 2609
  year: 2010
  ident: ref9
  article-title: Total variation, adaptive total variation and non-convex smoothly clipped absolute deviation penalty for denoising blocky images
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2010.03.022
– volume: 69
  start-page: 2105
  year: 2021
  ident: ref2
  article-title: MIN2net: end-to-end multi-task learning for subject-independent motor imagery EEG classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3137184
– volume: 8
  start-page: 2769
  year: 2022
  ident: ref31
  article-title: Two-stage improved Grey wolf optimization algorithm for feature selection on high-dimensional classification
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00452-4
– year: 2008
  ident: ref1
– year: 2020
  ident: ref14
– volume: 25
  start-page: 41
  year: 2008
  ident: ref4
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 21
  start-page: 1764
  year: 2020
  ident: ref38
  article-title: Fused group lasso: A new EEG classification model with spatial smooth constraint for motor imagery-based brain -computer interface
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2020.3016402
– volume: 13
  start-page: 927
  year: 2022
  ident: ref6
  article-title: Motor imagery EEG classification based on transfer learning and multi-scale convolution network
  publication-title: Micromachines
  doi: 10.3390/mi13060927
– volume: 79
  start-page: 104066
  year: 2023
  ident: ref19
  article-title: A parallel multi-scale temporal-frequency block convolutional neural network based on channel attention module for motor imagery classification
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2022.104066
– volume: 70
  start-page: 436
  year: 2022
  ident: ref21
  article-title: FBMSNet: A filter-Bank multi-scale convolutional neural network for EEG-based motor imagery decoding
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3193277
– volume: 77
  start-page: 103825
  year: 2022
  ident: ref39
  article-title: Overall optimization of CSP based on ensemble learning for motor imagery EEG decoding
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2022.103825
– volume: 17
  start-page: 016025
  year: 2020
  ident: ref10
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– volume: 23
  start-page: 631
  year: 2018
  ident: ref15
  article-title: Sparse group representation model for motor imagery EEG classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2832538
– volume: 78
  start-page: 1063
  year: 2019
  ident: ref36
  article-title: A non-convex model with minimax concave penalty for image restoration
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0801-z
– volume: 39
  start-page: btad 135
  year: 2023
  ident: ref8
  article-title: Graph convolutional network-based feature selection for high-dimensional and low-sample size data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad135
– volume: 13
  start-page: 1275
  year: 2019
  ident: ref35
  article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01275
– volume: 76
  start-page: 103634
  year: 2022
  ident: ref42
  article-title: Ensemble learning method based on temporal, spatial features with multi-scale filter banks for motor imagery EEG classification
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2022.103634
– volume: 45
  start-page: 1
  year: 2022
  ident: ref5
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3185773
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: ref3
– volume: 68
  start-page: 6159
  year: 2020
  ident: ref16
  article-title: Convergence guarantees for non-convex optimisation with cauchy-based penalties
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3032231
– volume: 68
  start-page: 102763
  year: 2021
  ident: ref28
  article-title: Feature fusion for improving performance of motor imagery brain-computer interface system
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2021.102763
– volume: 276
  start-page: 120209
  year: 2023
  ident: ref26
  article-title: LMDA-net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability
  publication-title: Neuro Image
  doi: 10.1016/j.neuroimage.2023.120209
– volume: 65
  start-page: 7332
  year: 2018
  ident: ref33
  article-title: Non-convex sparse regularization and convex optimization for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2793271
– year: 2021
  ident: ref37
– year: 2023
  ident: ref25
– volume: 29
  start-page: 5619
  year: 2018
  ident: ref29
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2789927
– volume: 63
  start-page: 102144
  year: 2021
  ident: ref41
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2020.102144
– volume: 29
  start-page: 699
  year: 2021
  ident: ref24
  article-title: Learning common temporal-frequency-spatial patterns for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3071140
– volume: 6
  start-page: 21
  year: 2019
  ident: ref32
  article-title: A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection
  publication-title: Informatics. mdpi
  doi: 10.3390/informatics6020021
– volume: 31
  start-page: 3839
  year: 2019
  ident: ref17
  article-title: Subject-independent brain-computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946869
SSID ssj0062842
Score 2.369257
Snippet The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these...
IntroductionThe time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1292724
SubjectTerms Classification
Datasets
Deep learning
EEG
EEG decoding
Electroencephalography
Feature selection
Frequency dependence
high-dimensional small-sample
Mental task performance
motor imagery
Motor task performance
nonconvex regularization
Regularization methods
Signal processing
Sparsity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Bb9MwFMatadqBCwLGtMJADwntgrw5thPbxzF1cJo4bNJuke04olKboaZF9MD_zntOWjFNGheuraMmfrbf96X27zH2UapKaW8Sr1ysuA664LatEi-Nl62rpA6Vz8UmzPW1vbtz3_4q9UV7wgY88NBxdNKgKXzGjDVa2Ma3UQTTCpQd3jU-cz5R9WzN1LAGV7joyuGIDFowd952s47Y3FKdYX6TRuoHaSjT-h8txjnDXL1gz0dpCBfDLb1ke6l7xQ4vOrTFiw2cQt6smd-CH7Lfl34dv28AzTvPG8d_AS4Nyz5BmzKqE_pc4AZ7HYYi0YDqFFDtAQGKeUNQ_wHIAf3Cz-e898QJhrHADMzwunv04zBbEOViA9PpF2jQq1Kue81ur6Y3l1_5WEmBR13YFUpoEwRxuHVQKuI09l6laLUrgowWPVWwQobQtioIRUw_myLm8uR8mcpYJXXE9vGB0jED70qNMiFZj31chjLERoqYZDDKo9axE1ZsO7aOI2acql3Ma7QbFIw6B6OmYNRjMCbs0-6aHwNk48nWnyleu5YEyM4f4LCpx2FT_2vYTNjJNtr1OGvxVyyKFyuMERP2Yfc1zjf6E8V36X5NbRxBy9Amvvkf9_GWPaNny6cb1QnbXy3X6R07iD9Xs375Pg_qP2oH_UQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Cauchy non-convex sparse feature selection method for the high-dimensional small-sample problem in motor imagery EEG decoding
URI https://www.proquest.com/docview/2885380770
https://www.proquest.com/docview/2895703996
https://doaj.org/article/000d1a36709d408dafc0b7f0326a9da3
Volume 17
WOSCitedRecordID wos001104087300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLbYxoELXwNRGJWREBdklthO7JzQNnXAYVWEQCqnyHacUalNRtMieuC_876OWwkh7cIlh8ROHD32--GP5yHkNRe5kEZ5lhcuZ9LKlOkm9yxThjdFzqXNTRCbUNOpns2KMk649XFb5c4mBkNddw7nyE-5BseiE6WS9zc_GKpG4epqlNA4IEfIkiDC1r1yZ4lzML1htTPHk0EQmg-HZiApK06bdt4iWzcX78DjccXlX44p8Pf_Y56Dz7l88L-tfUjux2iTng3d4xG549vH5PishUx7uaVvaNj_GSbWj8nvC7Nx37e07VoW9qL_omBtVr2njQ_sn7QPmjkAJB10pykEvBQCSIqcx6xGnYCB44P2S7NYsN4g9TCNmjV0DvU6SPHpfInEGVs6mXygNaS_6D6fkK-Xky8XH1kUZ2BOpnoNUbmyCVJ7SyuEA8tgjPBOyyK13GlI06xOuLVNI2wikCZQewfhgS9M5jOXe_GUHMIP-WeEmiKTgJ7XBgDLbGZdzRPnuVXCQPikRyTdIVO5yFyOAhqLCjIYRLMKaFaIZhXRHJG3-zo3A2_HraXPEfB9SeTcDje61XUVhzAu09epCYR3tUx0bRqXWNUkEACbojZiRE52faGKhgC-su8II_Jq_xiGMK7LmNZ3GyxTIA8aZJ7Pb3_FC3IPWx2OQooTcrhebfxLctf9XM_71ZgcqJkek6PzybT8PA6TC3C94uU4jAp4Un66Kr_9ATCBE5E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJc-DUQhQFGAi4oLLWdxDkgNEbHqm3VDkMap8x2HKjUJqNpgR74l_gbec9JKiGk3XbgmtiO4nx-P-Ln7wN4wUUspE5cEKc2DqSRg0AVsQuiRPMijbk0sfZiE8l4rM7O0pMN-N2dhaGyys4mekOdV5b-ke9whY5FhUkSvrv4FpBqFO2udhIaDSwO3eoHpmz129EH_L4vOd8fnu4dBK2qQGDlQC0wnExMSJzU0ghhEdJaC2eVTAeGW4X5hVEhN6YohAkF8dspZ9GvuVRHLrKxEzjuNdiUCHbVg82T0fHJ5872x2js_f5qTGeRMBlojulgGpjuFOWkJH5wLt6gj-UJl3-5Qq8Y8I9D8F5u__b_Nj934FYbT7PdZgHchQ1X3oOt3VIvqtmKvWK-wtVvHWzBrz29tF9XrKzKwFfb_2RoT-e1Y4Xz_Kas9qpACFXWKGszDOkZhsiMWJ2DnJQQGhYTVs_0dBrUmsiVWavKwybYr1pgl8mMqEFWbDj8yHJM8ClAuA-frmQiHkAPX8g9BKbTSGJs5ZRGgEQmMjbnoXXcJEJjgKj6MOiQkNmWm50kQqYZ5miEnsyjJyP0ZC16-vB63eeiYSa5tPV7Ati6JbGK-wvV_EvWGikqRMgH2lP65TJUuS5saJIixBBfp7kWfdjusJe1pg6fsgZeH56vb6ORop0nXbpqSW1SYnrD3PrR5UM8gxsHp8dH2dFofPgYbtIb-IOfYht6i_nSPYHr9vtiUs-ftiuPwflVg_kPKbBsIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLbGQIgLXwNRGGAk4IK8prYTOweExtbCNFT1ANJuwXYcqNQmo0mBHvhj_Dre10kqIaTdduCa2I7iPH4_4tfPQ8hzLhIhjfIsSV3CpJUjpovEs1gZXqQJlzYxQWxCTaf67Cyd7ZDf_VkYLKvsbWIw1Hnl8B_5kGtwLDpSKhoWXVnE7Hjy5vwbQwUp3Gnt5TRaiJz6zQ9I3-rXJ8fwrV9wPhl_PHrPOoUB5uRINxBaKhshP7W0QjiAtzHCOy3TkeVOQ65hdcStLQphI4Fcd9o78HE-NbGPXeIFjHuFXFVIWh7KBme9F0jA7Ied1gRPJUFa0B7YgYQwHRblvESmcC4OwNtyxeVfTjFoB_zjGoK_m9z6n2fqNrnZRdn0sF0Wd8iOL--SvcPSNNVyQ1_SUPcaNhT2yK8js3ZfN7SsShZq8H9SsLKr2tPCB9ZTWgetIAAwbfW2KQT6FAJnilzPLEd9hJbbhNZLs1iw2iDlMu20eugc-lUNdJkvkTBkQ8fjdzSHtB_Dhnvk06VMxH2yCy_kHxBq0lhCxOW1AbDENrYu55Hz3CphIGzUAzLqUZG5jrEdhUMWGWRuiKQsIClDJGUdkgbk1bbPectXcmHrtwi2bUvkGg8XqtWXrDNdWJ6Qj0wg-stlpHNTuMiqIoLA36S5EQOy3-Mw6wwgPGULwgF5tr0Npgv3o0zpqzW2SZH_DTLuhxcP8ZRcBwRnH06mp4_IDXyBcBpU7JPdZrX2j8k1972Z16snYQlS8vmykfwHGcVzYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cauchy+non-convex+sparse+feature+selection+method+for+the+high-dimensional+small-sample+problem+in+motor+imagery+EEG+decoding&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhang%2C+Shaorong&rft.au=Wang%2C+Qihui&rft.au=Zhang%2C+Benxin&rft.au=Liang%2C+Zhen&rft.date=2023-11-03&rft.issn=1662-4548&rft.volume=17&rft.spage=1292724&rft_id=info:doi/10.3389%2Ffnins.2023.1292724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon