Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features
Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosi...
Saved in:
| Published in: | Frontiers in aging neuroscience Vol. 15; p. 1288295 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Frontiers Research Foundation
07.11.2023
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1663-4365, 1663-4365 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of restingstate EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.Results: The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65%, 95.86%, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.Conclusion: This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD. |
|---|---|
| AbstractList | BackgroundAlzheimer’s disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.MethodsIn this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.ResultsThe results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.ConclusionThis study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD. Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.BackgroundAlzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.MethodsIn this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.ResultsThe results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.ConclusionThis study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD. Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of restingstate EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.Results: The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65%, 95.86%, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.Conclusion: This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD. |
| Author | Liu, Hao Hu, Yajie Sun, Jiamin Jiang, Rundong Wang, Bozhi Fang, Wei Zheng, Xiaowei Wei, Xin Chen, Steve Shyh-Ching Wu, Wencan Jin, Cheng |
| Author_xml | – sequence: 1 givenname: Xiaowei surname: Zheng fullname: Zheng, Xiaowei – sequence: 2 givenname: Bozhi surname: Wang fullname: Wang, Bozhi – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 4 givenname: Wencan surname: Wu fullname: Wu, Wencan – sequence: 5 givenname: Jiamin surname: Sun fullname: Sun, Jiamin – sequence: 6 givenname: Wei surname: Fang fullname: Fang, Wei – sequence: 7 givenname: Rundong surname: Jiang fullname: Jiang, Rundong – sequence: 8 givenname: Yajie surname: Hu fullname: Hu, Yajie – sequence: 9 givenname: Cheng surname: Jin fullname: Jin, Cheng – sequence: 10 givenname: Xin surname: Wei fullname: Wei, Xin – sequence: 11 givenname: Steve Shyh-Ching surname: Chen fullname: Chen, Steve Shyh-Ching |
| BookMark | eNp9UcFu1DAQjVCRKEt_gJMlLhyaxY4Tr8OtKttSqRIXOFsTe5x6ldiL7UXdnhB_we_1S0h2K4R6wJexR--9Gb_3ujjxwWNRvGV0yblsP1gPvVtWtOJLVklZtc2L4pQJwcuai-bkn_ur4iylDZ0O55Q28rT49clB70NyiQRLLoaHO3QjxsefvxMxLiEkJD8ckIgpO9-XKUNGsl5ffyTOZ-wjZBf8zE1b1DnuxnOiw7gd8N7l_TkBb0jae30Xg3cPR3ByvYeBWIS8m3TfFC8tDAnPnuqi-Ha1_nr5ubz9cn1zeXFb6prJXIqO2aqhtWScIeUo6q6rmTWVMI02kq-otqZtWsGgNZXtbEuxo2AaqKfvAuOL4uaoawJs1Da6EeJeBXDq0AixVxCz0wOqzgiAFlrUktcCa5CaV5JKoRE5To9F8f6otY3h-27yRo0uaRwG8Bh2SVWybVZUrJp57Ltn0E3YxcmAGSXFik-riwlVHVE6hpQi2r8LMqrmlNUhZTWnrJ5SnkjyGUm7fPA4R3DD_6h_AFocstE |
| CitedBy_id | crossref_primary_10_1007_s40747_025_01974_x crossref_primary_10_1088_1741_2552_ad6a8c crossref_primary_10_3390_jcm14124256 crossref_primary_10_1016_j_clinph_2025_2110931 crossref_primary_10_37819_hb_1_2068 crossref_primary_10_1016_j_clinph_2024_11_013 crossref_primary_10_1007_s11571_024_10153_6 crossref_primary_10_1038_s41598_025_02018_7 crossref_primary_10_1016_j_compbiomed_2025_111041 crossref_primary_10_1088_1741_2552_adf6e6 crossref_primary_10_3390_ijms25126678 crossref_primary_10_1371_journal_pcsy_0000059 crossref_primary_10_3390_diagnostics14192189 crossref_primary_10_1007_s11571_024_10169_y crossref_primary_10_3390_s25092881 crossref_primary_10_1016_j_jneumeth_2025_110377 crossref_primary_10_1016_j_ijpsycho_2025_112558 crossref_primary_10_3390_brainsci14050487 crossref_primary_10_3390_jdad2020012 crossref_primary_10_1016_j_neuroimage_2024_120945 crossref_primary_10_1016_j_brainresbull_2025_111281 crossref_primary_10_1016_j_knosys_2024_112510 crossref_primary_10_1080_00207454_2025_2529301 crossref_primary_10_1109_ACCESS_2025_3585196 |
| Cites_doi | 10.1016/j.biopsycho.2010.08.001 10.1155/2018/5174815 10.1016/j.pnpbp.2013.07.022 10.1016/0022-3956(75)90026-6 10.1111/j.1532-5415.2005.53221.x 10.1016/j.cmpb.2021.106116 10.1103/PhysRevLett.88.174102 10.1016/j.clinph.2011.02.011 10.1155/2017/8362741 10.1212/WNL.0b013e31823efc6c 10.1038/nrn2575 10.1159/000067973 10.1016/j.neurobiolaging.2004.03.008 10.1002/14651858.CD011145.pub2 10.1016/j.jalz.2011.03.004 10.1016/j.ijpsycho.2007.11.002 10.1016/j.physa.2016.05.012 10.1016/j.jns.2013.07.1303 10.1016/j.bspc.2019.101760 10.2147/NDT.S93253 10.1016/S0140-6736(20)32205-4 10.1109/JBHI.2013.2253326 10.1109/18.119732 10.3389/fnagi.2015.00054 10.1209/0295-5075/ac3b97 10.1016/0013-4694(87)90206-9 10.1016/j.neubiorev.2017.07.001 10.1002/dad2.12230 10.1103/PhysRevE.71.021906 10.1002/brb3.146 10.1016/j.bspc.2020.102338 10.1016/j.clinph.2004.01.001 10.1016/j.yebeh.2009.02.035 10.1016/j.neurobiolaging.2008.07.019 10.1186/s12911-018-0613-y 10.1177/155005940503600106 10.1515/msr-2015-0027 10.3126/jpan.v8i2.28016 10.1016/j.artmed.2022.102332 10.3390/data8060095 10.1007/s12603-009-0032-y 10.3390/diagnostics11081437 10.1177/1756285611404470 10.1080/10798587.2009.10643051 10.1016/j.neulet.2010.05.037 10.1016/j.clinph.2014.07.005 10.1212/wnl.34.7.939 10.1007/s00421-021-04712-6 10.1007/s10439-013-0788-4 10.1016/j.compeleceng.2019.03.018 10.1016/S0140-6736(06)69113-7 10.1016/j.visres.2019.07.003 10.1016/j.neurobiolaging.2011.12.011 10.1016/j.jneumeth.2003.10.009 10.1016/j.ijpsycho.2015.02.008 10.2174/156720510792231720 10.1007/s10633-020-09768-x 10.1016/j.jalz.2007.04.381 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Zheng, Wang, Liu, Wu, Sun, Fang, Jiang, Hu, Jin, Wei and Chen. |
| Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Zheng, Wang, Liu, Wu, Sun, Fang, Jiang, Hu, Jin, Wei and Chen. |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.3389/fnagi.2023.1288295 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1663-4365 |
| ExternalDocumentID | oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c 10_3389_fnagi_2023_1288295 |
| GroupedDBID | --- 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO E3Z EIHBH F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 UKHRP 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c418t-6b1f25048131e03e64bb41fd26d5cd8370cfd95961a9d2fbf90eb0ad5a4003a13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104778200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1663-4365 |
| IngestDate | Fri Oct 03 12:44:56 EDT 2025 Thu Sep 04 19:18:27 EDT 2025 Tue Oct 07 07:28:41 EDT 2025 Sat Nov 29 03:37:55 EST 2025 Tue Nov 18 21:18:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-6b1f25048131e03e64bb41fd26d5cd8370cfd95961a9d2fbf90eb0ad5a4003a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/bd6aa9a9ec8346e4a8c328086cee3e8c |
| PQID | 2886738376 |
| PQPubID | 4424411 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c proquest_miscellaneous_2895706751 proquest_journals_2886738376 crossref_primary_10_3389_fnagi_2023_1288295 crossref_citationtrail_10_3389_fnagi_2023_1288295 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-07 |
| PublicationDateYYYYMMDD | 2023-11-07 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in aging neuroscience |
| PublicationYear | 2023 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Gaal (ref23) 2010; 479 Miltiadous (ref41) 2021; 11 Abásolo (ref1) 2009; 15 Bullmore (ref9) 2009; 10 Buchel (ref8) 2021; 121 Burioka (ref10) 2005; 36 Safi (ref48) 2021; 65 Schätz (ref49) 2013; 333 Fiscon (ref21) 2018; 18 Lindau (ref36) 2003; 15 Galimberti (ref24) 2011; 4 Demuru (ref19) 2020; 57 Homan (ref27) 1987; 66 Miltiadous (ref40) 2023; 8 Wang (ref55) 2016; 460 Blennow (ref6) 2006; 368 Aghajani (ref2) 2013; 17 McKhann (ref39) 1984; 34 Caso (ref11) 2012; 33 Scheltens (ref50) 2021; 397 Creavin (ref15) 2016; 2016 Subedi (ref53) 2019; 8 Folstein (ref22) 1975; 12 Noachtar (ref45) 2009; 15 Czigler (ref16) 2008; 68 Babiloni (ref3) 2016; 103 Nishida (ref44) 2011; 122 Bandt (ref4) 2002; 88 Dauwels (ref17) 2010; 7 Schöll (ref51) 2022; 136 (ref58) 2021 Nasreddine (ref43) 2005; 53 Jack (ref30) 2011; 7 Şeker (ref52) 2021; 206 Häfner (ref26) 2012 Garn (ref25) 2015; 126 Coifman (ref13) 1992; 38 Risacher (ref47) 2021; 13 Weiner (ref56) 2009; 13 Knyazeva (ref34) 2010; 31 Moretti (ref42) 2015; 11 Liu (ref37) 2017; 2017 Costa (ref14) 2005; 71 Dickerson (ref20) 2011; 78 Yang (ref59) 2013; 47 Zheng (ref60) 2020; 141 Delorme (ref18) 2004; 134 Ranchet (ref46) 2017; 80 Khojaste-Sarakhsi (ref33) 2022; 130 Koenig (ref35) 2005; 26 Baratloo (ref5) 2015; 3 Brookmeyer (ref7) 2007; 3 Cassani (ref12) 2018; 2018 McBride (ref38) 2013; 41 Imabayashi (ref28) 2013; 3 Isler (ref29) 2015; 15 Wen (ref57) 2015; 7 Jeong (ref31) 2004; 115 Kemp (ref32) 2010; 85 Tzimourta (ref54) 2019; 76 Zheng (ref61) 2019; 164 |
| References_xml | – volume: 85 start-page: 350 year: 2010 ident: ref32 article-title: Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.08.001 – volume: 2018 start-page: 1 year: 2018 ident: ref12 article-title: "systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment," (in eng) publication-title: Dis. Markers doi: 10.1155/2018/5174815 – volume: 47 start-page: 52 year: 2013 ident: ref59 article-title: Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2013.07.022 – volume: 12 start-page: 189 year: 1975 ident: ref22 article-title: “Mini-mental state”, (in eng) publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 53 start-page: 695 year: 2005 ident: ref43 article-title: "the Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment," (in eng) publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.2005.53221.x – volume: 206 start-page: 106116 year: 2021 ident: ref52 article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy Neuromarker publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106116 – volume: 88 start-page: 174102 year: 2002 ident: ref4 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 122 start-page: 1718 year: 2011 ident: ref44 article-title: Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.02.011 – volume: 2017 start-page: 1 year: 2017 ident: ref37 article-title: Complex brain network analysis and its applications to brain disorders: a survey publication-title: Complexity doi: 10.1155/2017/8362741 – volume: 78 start-page: 84 year: 2011 ident: ref20 article-title: "MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults," (in eng) publication-title: Neurology doi: 10.1212/WNL.0b013e31823efc6c – volume: 10 start-page: 186 year: 2009 ident: ref9 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 15 start-page: 106 year: 2003 ident: ref36 article-title: Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer's disease publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000067973 – volume: 26 start-page: 165 year: 2005 ident: ref35 article-title: Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.03.008 – volume: 2016 start-page: Cd011145 year: 2016 ident: ref15 article-title: Mini-mental state examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD011145.pub2 – volume: 7 start-page: 257 year: 2011 ident: ref30 article-title: "introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease," (in eng) publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.004 – volume: 68 start-page: 75 year: 2008 ident: ref16 article-title: Quantitative EEG in early Alzheimer's disease patients - power spectrum and complexity features publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2007.11.002 – year: 2012 ident: ref26 – volume: 460 start-page: 174 year: 2016 ident: ref55 article-title: Functional brain networks in Alzheimer’s disease: EEG analysis based on limited penetrable visibility graph and phase space method publication-title: Physica A: Stat. Mechanics Applicat. doi: 10.1016/j.physa.2016.05.012 – volume: 333 start-page: e355 year: 2013 ident: ref49 article-title: Comparison of complexity, entropy and complex noise parameters in EEG for AD diagnosis publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2013.07.1303 – volume: 57 start-page: 101760 year: 2020 ident: ref19 article-title: A comparison between power spectral density and network metrics: an EEG study publication-title: Biomed. Signal Proces. Control doi: 10.1016/j.bspc.2019.101760 – volume: 11 start-page: 2779 year: 2015 ident: ref42 article-title: "association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer's disease," (in eng) publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S93253 – volume: 397 start-page: 1577 year: 2021 ident: ref50 article-title: Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(20)32205-4 – volume: 17 start-page: 1039 year: 2013 ident: ref2 article-title: Diagnosis of early Alzheimer's disease based on EEG source localization and a standardized realistic head model publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2253326 – volume: 38 start-page: 713 year: 1992 ident: ref13 article-title: Entropy-based algorithms for best basis selection publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.119732 – volume: 7 start-page: 54 year: 2015 ident: ref57 article-title: "a critical review: coupling and synchronization analysis methods of EEG signal with mild cognitive impairment," (in eng) publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00054 – volume: 136 start-page: 18001 year: 2022 ident: ref51 article-title: Partial synchronization patterns in brain networks publication-title: Europhys. Lett. doi: 10.1209/0295-5075/ac3b97 – volume: 66 start-page: 376 year: 1987 ident: ref27 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90206-9 – volume: 80 start-page: 516 year: 2017 ident: ref46 article-title: Cognitive workload across the spectrum of cognitive impairments: a systematic review of physiological measures publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.07.001 – volume: 13 start-page: e12230 year: 2021 ident: ref47 article-title: Head injury is associated with tau deposition on PET in MCI and AD patients publication-title: Alzheimer's & Dementia: Diagnosis, Assess. Disease Monitor. doi: 10.1002/dad2.12230 – volume: 71 start-page: 021906 year: 2005 ident: ref14 article-title: Multiscale entropy analysis of biological signals publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.71.021906 – year: 2021 ident: ref58 – volume: 3 start-page: 48 year: 2015 ident: ref5 article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity publication-title: Emergency (Tehran Iran) – volume: 3 start-page: 487 year: 2013 ident: ref28 article-title: "comparison between brain CT and MRI for voxel-based morphometry of Alzheimer's disease," (in eng) publication-title: Brain Behav. doi: 10.1002/brb3.146 – volume: 65 start-page: 102338 year: 2021 ident: ref48 article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters publication-title: Biomed. Signal Proces. Control doi: 10.1016/j.bspc.2020.102338 – volume: 115 start-page: 1490 year: 2004 ident: ref31 article-title: EEG dynamics in patients with Alzheimer's disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – volume: 15 start-page: 22 year: 2009 ident: ref45 article-title: The role of EEG in epilepsy: a critical review publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2009.02.035 – volume: 31 start-page: 1132 year: 2010 ident: ref34 article-title: Topography of EEG multivariate phase synchronization in early Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.07.019 – volume: 18 start-page: 35 year: 2018 ident: ref21 article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-018-0613-y – volume: 36 start-page: 21 year: 2005 ident: ref10 article-title: "approximate entropy in the electroencephalogram during wake and sleep," (in eng) publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940503600106 – volume: 15 start-page: 196 year: 2015 ident: ref29 article-title: Comparison of the effects of cross-validation methods on determining performances of classifiers used in diagnosing congestive heart failure publication-title: Measurement Sci. Rev. doi: 10.1515/msr-2015-0027 – volume: 8 start-page: 1 year: 2019 ident: ref53 article-title: Dementia as a public health priority publication-title: J. Psychiatrists' Assoc. Nepal doi: 10.3126/jpan.v8i2.28016 – volume: 130 start-page: 102332 year: 2022 ident: ref33 article-title: Deep learning for Alzheimer's disease diagnosis: a survey publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102332 – volume: 8 start-page: 95 year: 2023 ident: ref40 article-title: A dataset of scalp EEG recordings of Alzheimer's disease, frontotemporal dementia and healthy subjects from routine EEG publication-title: Datamation doi: 10.3390/data8060095 – volume: 13 start-page: 332 year: 2009 ident: ref56 article-title: Imaging and biomarkers will be used for detection and monitoring progression of early Alzheimer's disease publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-009-0032-y – volume: 11 start-page: 1437 year: 2021 ident: ref41 article-title: Alzheimer's disease and frontotemporal dementia: a robust classification method of EEG signals and a comparison of validation methods publication-title: Diagnostics (Basel, Switzerland) doi: 10.3390/diagnostics11081437 – volume: 4 start-page: 203 year: 2011 ident: ref24 article-title: "disease-modifying treatments for Alzheimer's disease," (in eng) publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756285611404470 – volume: 15 start-page: 591 year: 2009 ident: ref1 article-title: Approximate entropy of EEG background activity in Alzheimer's disease patients publication-title: Intell. Automation & Soft Comput. doi: 10.1080/10798587.2009.10643051 – volume: 479 start-page: 79 year: 2010 ident: ref23 article-title: Age-dependent features of EEG-reactivity--spectral, complexity, and network characteristics publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.05.037 – volume: 126 start-page: 505 year: 2015 ident: ref25 article-title: Quantitative EEG markers relate to Alzheimer’s disease severity in the prospective dementia registry Austria (PRODEM) publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.07.005 – volume: 34 start-page: 939 year: 1984 ident: ref39 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease publication-title: Neurology doi: 10.1212/wnl.34.7.939 – volume: 121 start-page: 2423 year: 2021 ident: ref8 article-title: Exploring intensity-dependent modulations in EEG resting-state network efficiency induced by exercise publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-021-04712-6 – volume: 41 start-page: 1233 year: 2013 ident: ref38 article-title: Resting EEG discrimination of early stage Alzheimer’s disease from Normal aging using Inter-Channel coherence network graphs publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0788-4 – volume: 76 start-page: 198 year: 2019 ident: ref54 article-title: Analysis of electroencephalographic signals complexity regarding Alzheimer's disease publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.03.018 – volume: 368 start-page: 387 year: 2006 ident: ref6 article-title: Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(06)69113-7 – volume: 164 start-page: 44 year: 2019 ident: ref61 article-title: Objective and quantitative assessment of interocular suppression in strabismic amblyopia based on steady-state motion visual evoked potentials publication-title: Vis. Res. doi: 10.1016/j.visres.2019.07.003 – volume: 33 start-page: 2343 year: 2012 ident: ref11 article-title: Quantitative EEG and LORETA: valuable tools in discerning FTD from AD? publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.12.011 – volume: 134 start-page: 9 year: 2004 ident: ref18 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 103 start-page: 88 year: 2016 ident: ref3 article-title: Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.02.008 – volume: 7 start-page: 487 year: 2010 ident: ref17 article-title: "diagnosis of Alzheimer's disease from EEG signals: where are we standing?," (in eng) publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510792231720 – volume: 141 start-page: 237 year: 2020 ident: ref60 article-title: Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials publication-title: Doc. Ophthalmol. doi: 10.1007/s10633-020-09768-x – volume: 3 start-page: 186 year: 2007 ident: ref7 article-title: "forecasting the global burden of Alzheimer's disease," (in eng) publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2007.04.381 |
| SSID | ssj0000330058 |
| Score | 2.497975 |
| Snippet | Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55... Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.... BackgroundAlzheimer’s disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1288295 |
| SubjectTerms | Alzheimer's disease Alzheimer’s disease (AD) Biomarkers Classification complexity Decision trees Dementia Dementia disorders Diagnosis Discriminant analysis EEG electroencephalogram (EEG) Electroencephalography Entropy Integration Machine learning Medical imaging Neurodegenerative diseases Neuroimaging Signal processing spectrum supervised machine learning Support vector machines Synchronization Time series Tomography |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIMSFb8RCQUbiRt3GcZzYvaACWzhA1QOg3iJ_lpXapGzaCjih_ov-vf4SZhzvgoTUC5ccEjuy9Ozx2DPzHiEvnJe-8FqypnCeVaYQTMsgGW-s0t5xW6UI_pcPzc6O2tvTu_nCbchplQubmAy17x3ekW-USqFAJayHV0ffGKpGYXQ1S2hcJdeQJUGk1L3d5R1LIZCMPVXDwcbKKlHLsW4GzmV6I6IO0DrKh6-DkVYlSkz8tTclCv9_LHTadrZv_--A75Bb2eGkW-MMuUuuhO4eufExh9Tvk7O3Y7LdbKB9pFsHP7-G2WGYX_w6H2iO3tDTmaGo4QHbHEsVSHQ6fbdJF1QTAC32TUWb85PDNZry1MN3cPDXqOk8HX50LpHwjjWfFJNGYEwxJFbR4QH5vD399OY9y8IMzFVcHbPa8ojUZ4oLHgoR6sraikdf1h65BgTgHgF_XXOjfRlt1EWwhfHSgMUQhouHZKXru_CIUFlE6WLlSsfh6cBbU7F2Frw4U_hQ6wnhC0hal1nLUTzjoIXTC8LYJhhbhLHNME7Iy2Wfo5Gz49LWrxHpZUvk204v-vl-m5dva31tjDY6OCWqOlRGOVEqOA6CjyGCchOyupgEbTYCQ_tnBkzI8-VnWL4YkzFd6E-wjZYNntr448t_8YTcxFGnMshmlawAnuEpue5Oj2fD_Fma978BbPEOMA priority: 102 providerName: ProQuest |
| Title | Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features |
| URI | https://www.proquest.com/docview/2886738376 https://www.proquest.com/docview/2895706751 https://doaj.org/article/bd6aa9a9ec8346e4a8c328086cee3e8c |
| Volume | 15 |
| WOSCitedRecordID | wos001104778200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRYhLRXmoS8vKSNxo2jjOw-bW0i0gsasIAVpOlp9ipTaLNm0FnBD_on-vv4QZJ7taCQkuXOaQ2JHjbzyekT3fEPLcusKlThZJlVqX5DrliSx8kbDKCOksM3k8wf_0rppMxHQq67VSX3gnrKMH7ibu0LhSa6mlt4Lnpc-1sDwT4IiDdedeWLS-4PWsBVPRBnOkYRddlgxEYfIwYNWfAywWfgAmWWRYUGJtJ4qE_X_Y47jJnN4nW713SI-6UW2TW755QO6O-_Pvh-TXSXczbtbSeaBHZz---Nm5X9z8vG5pf9RCr2aaYsEN2JOSmC5ER6PXL-mSFwJwwL4xw3Jxeb5P46Vy_w288X2qG0fb742NjLldgibFGx4wpuAjBWj7iHw8HX149SbpqygkNmfiIikNC8hTJhhnPuW-zI3JWXBZ6ZAYgANIAcCSJdPSZcEEmXqTaldoWN5cM_6YbDTzxu8QWqShsCG3mWUgLbhWIpTWgMulU-dLOSBsOaPK9hTjWOniTEGogSioiIJCFFSPwoC8WPX52hFs_LX1MQK1aonk2PEBqIzqVUb9S2UGZG8Js-pXbKvg-1gAFeztgDxbvYa1hgcouvHzS2wjiwpDLPbkf4xjl9zDf4uZjdUe2QDU_VNyx15dzNrFkNyuplWUYkg2j0eT-v0wKjnIcVajrEBu1m_H9eff4UcGWQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQcCGN2KggJFgRd3GcR42EkKFTmnV6aiLUnUXHD9gpDYpk7ZQVoi_4Cf4KL6Ee51kQELqrgs2WSS25cTH9xHfew8hT41NbWRVyvLIWJboSDCVupTxvJTKGl4m4QR_d5SPx3JvT23PkZ99LgyGVfYyMQhqWxv8R74cS4kElbAfXh1-YsgahaerPYVGC4tNd_oZXLbm5cYqrO-zOF4b7rxZZx2rADMJl0csK7nHul2SC-4i4bKkLBPubZxZTJQXMGkPk1cZ18rGvvQqcmWkbaoB7kJzAeNeIBfBjIhlCBXcnv3TiQQWfw_Zd6DIWSKytM3TAT9QLXvkHVpCuvIl6CpjpLT4SxcGyoB_NEJQc2vX_7cPdINc6wxqutLugJtkzlW3yOWtLmTgNvm-2gYTThpae7qy__Wjmxy46a9vPxranU7Rk4mmyFECapyFDCs6HL59QftSGgBd7BuSUqfHB4s0xOG7L-DALFJdWdqcViYUGW5zWikGxcCcvAtVU5s75N25fIG7ZL6qK3eP0DTyqfGJiQ2HqwFrVPrMlGCl6si6TA0I7yFQmK4qO5KD7BfgnSFsigCbAmFTdLAZkOezPodtTZIzW79GZM1aYj3xcKOefig68VSUNtNaaeWMFEnmEi2NiCW4u2BDCSfNgCz0oCs6IdcUfxA3IE9mj0E84ZmTrlx9jG1UmqNXyu-fPcRjcmV9Z2tUjDbGmw_IVXyDkPKZL5B5WFv3kFwyJ0eTZvoo7DlK3p83hn8D1NJrDA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQRUX_hELBYwEJ-puHOfHRkKosLtQtaz2AKi34PinXanNlk1bKCfEW_AqPA5PwoyTLEhIvfXAJYfEieLk84zHnvk-Qh4bm9rIqpTlkbEs0ZFgKnUp43kplTW8TMIO_oftfDyWOztqskR-drUwmFbZ2cRgqO3M4Bp5P5YSBSphPPR9mxYxGYxeHH5iqCCFO62dnEYDkS13-hnCt_r55gD-9ZM4Hg3fvXrDWoUBZhIuj1hWco8cXpIL7iLhsqQsE-5tnFksmhfQAQ8dURnXysa-9CpyZaRtqgH6QnMBz71ALuZIWh7SBieL9Z1IIBF8qMQDp84SkaVNzQ7EhKrvUYNoHaXL18FByBjlLf7yi0E-4B_vEFze6Or__LGukSvtRJtuNCPjOlly1Q2y8rZNJbhJvg-aJMNpTWeebux_3XPTAzf_9e1HTdtdK3oy1RS1S8C9s1B5RYfD189oR7EBkMZ7Q7Hq_PhgjYb8fPcFAps1qitL69PKBPLhptaVYrIMvJN3gU21vkXen8sXuE2Wq1nl7hCaRj41PjGx4XA0MEuVPjMlzF51ZF2meoR3cChMy9aOoiH7BURtCKEiQKhACBUthHrk6eKew4ar5MzWLxFli5bIMx5OzOa7RWu2itJmWiutnJEiyVyipRGxhDAY5lbCSdMjqx0Ai9b41cUf9PXIo8VlMFu4F6UrNzvGNirNMVrld89-xEOyAtAttjfHW_fIZexAqATNV8ky_Fp3n1wyJ0fTev4gDD9KPp43hH8DAMxzyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Alzheimer%E2%80%99s+disease+via+resting-state+EEG%3A+integration+of+spectrum%2C+complexity%2C+and+synchronization+signal+features&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Xiaowei+Zheng&rft.au=Xiaowei+Zheng&rft.au=Xiaowei+Zheng&rft.au=Bozhi+Wang&rft.date=2023-11-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-4365&rft.volume=15&rft_id=info:doi/10.3389%2Ffnagi.2023.1288295&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon |