Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features

Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosi...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in aging neuroscience Vol. 15; p. 1288295
Main Authors: Zheng, Xiaowei, Wang, Bozhi, Liu, Hao, Wu, Wencan, Sun, Jiamin, Fang, Wei, Jiang, Rundong, Hu, Yajie, Jin, Cheng, Wei, Xin, Chen, Steve Shyh-Ching
Format: Journal Article
Language:English
Published: Lausanne Frontiers Research Foundation 07.11.2023
Frontiers Media S.A
Subjects:
ISSN:1663-4365, 1663-4365
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of restingstate EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.Results: The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65%, 95.86%, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.Conclusion: This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.
AbstractList BackgroundAlzheimer’s disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.MethodsIn this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.ResultsThe results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.ConclusionThis study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.
Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.BackgroundAlzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.MethodsIn this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.ResultsThe results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.ConclusionThis study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.
Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people.Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of restingstate EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation.Results: The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65%, 95.86%, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects.Conclusion: This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.
Author Liu, Hao
Hu, Yajie
Sun, Jiamin
Jiang, Rundong
Wang, Bozhi
Fang, Wei
Zheng, Xiaowei
Wei, Xin
Chen, Steve Shyh-Ching
Wu, Wencan
Jin, Cheng
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Zheng
  fullname: Zheng, Xiaowei
– sequence: 2
  givenname: Bozhi
  surname: Wang
  fullname: Wang, Bozhi
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 4
  givenname: Wencan
  surname: Wu
  fullname: Wu, Wencan
– sequence: 5
  givenname: Jiamin
  surname: Sun
  fullname: Sun, Jiamin
– sequence: 6
  givenname: Wei
  surname: Fang
  fullname: Fang, Wei
– sequence: 7
  givenname: Rundong
  surname: Jiang
  fullname: Jiang, Rundong
– sequence: 8
  givenname: Yajie
  surname: Hu
  fullname: Hu, Yajie
– sequence: 9
  givenname: Cheng
  surname: Jin
  fullname: Jin, Cheng
– sequence: 10
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
– sequence: 11
  givenname: Steve Shyh-Ching
  surname: Chen
  fullname: Chen, Steve Shyh-Ching
BookMark eNp9UcFu1DAQjVCRKEt_gJMlLhyaxY4Tr8OtKttSqRIXOFsTe5x6ldiL7UXdnhB_we_1S0h2K4R6wJexR--9Gb_3ujjxwWNRvGV0yblsP1gPvVtWtOJLVklZtc2L4pQJwcuai-bkn_ur4iylDZ0O55Q28rT49clB70NyiQRLLoaHO3QjxsefvxMxLiEkJD8ckIgpO9-XKUNGsl5ffyTOZ-wjZBf8zE1b1DnuxnOiw7gd8N7l_TkBb0jae30Xg3cPR3ByvYeBWIS8m3TfFC8tDAnPnuqi-Ha1_nr5ubz9cn1zeXFb6prJXIqO2aqhtWScIeUo6q6rmTWVMI02kq-otqZtWsGgNZXtbEuxo2AaqKfvAuOL4uaoawJs1Da6EeJeBXDq0AixVxCz0wOqzgiAFlrUktcCa5CaV5JKoRE5To9F8f6otY3h-27yRo0uaRwG8Bh2SVWybVZUrJp57Ltn0E3YxcmAGSXFik-riwlVHVE6hpQi2r8LMqrmlNUhZTWnrJ5SnkjyGUm7fPA4R3DD_6h_AFocstE
CitedBy_id crossref_primary_10_1007_s40747_025_01974_x
crossref_primary_10_1088_1741_2552_ad6a8c
crossref_primary_10_3390_jcm14124256
crossref_primary_10_1016_j_clinph_2025_2110931
crossref_primary_10_37819_hb_1_2068
crossref_primary_10_1016_j_clinph_2024_11_013
crossref_primary_10_1007_s11571_024_10153_6
crossref_primary_10_1038_s41598_025_02018_7
crossref_primary_10_1016_j_compbiomed_2025_111041
crossref_primary_10_1088_1741_2552_adf6e6
crossref_primary_10_3390_ijms25126678
crossref_primary_10_1371_journal_pcsy_0000059
crossref_primary_10_3390_diagnostics14192189
crossref_primary_10_1007_s11571_024_10169_y
crossref_primary_10_3390_s25092881
crossref_primary_10_1016_j_jneumeth_2025_110377
crossref_primary_10_1016_j_ijpsycho_2025_112558
crossref_primary_10_3390_brainsci14050487
crossref_primary_10_3390_jdad2020012
crossref_primary_10_1016_j_neuroimage_2024_120945
crossref_primary_10_1016_j_brainresbull_2025_111281
crossref_primary_10_1016_j_knosys_2024_112510
crossref_primary_10_1080_00207454_2025_2529301
crossref_primary_10_1109_ACCESS_2025_3585196
Cites_doi 10.1016/j.biopsycho.2010.08.001
10.1155/2018/5174815
10.1016/j.pnpbp.2013.07.022
10.1016/0022-3956(75)90026-6
10.1111/j.1532-5415.2005.53221.x
10.1016/j.cmpb.2021.106116
10.1103/PhysRevLett.88.174102
10.1016/j.clinph.2011.02.011
10.1155/2017/8362741
10.1212/WNL.0b013e31823efc6c
10.1038/nrn2575
10.1159/000067973
10.1016/j.neurobiolaging.2004.03.008
10.1002/14651858.CD011145.pub2
10.1016/j.jalz.2011.03.004
10.1016/j.ijpsycho.2007.11.002
10.1016/j.physa.2016.05.012
10.1016/j.jns.2013.07.1303
10.1016/j.bspc.2019.101760
10.2147/NDT.S93253
10.1016/S0140-6736(20)32205-4
10.1109/JBHI.2013.2253326
10.1109/18.119732
10.3389/fnagi.2015.00054
10.1209/0295-5075/ac3b97
10.1016/0013-4694(87)90206-9
10.1016/j.neubiorev.2017.07.001
10.1002/dad2.12230
10.1103/PhysRevE.71.021906
10.1002/brb3.146
10.1016/j.bspc.2020.102338
10.1016/j.clinph.2004.01.001
10.1016/j.yebeh.2009.02.035
10.1016/j.neurobiolaging.2008.07.019
10.1186/s12911-018-0613-y
10.1177/155005940503600106
10.1515/msr-2015-0027
10.3126/jpan.v8i2.28016
10.1016/j.artmed.2022.102332
10.3390/data8060095
10.1007/s12603-009-0032-y
10.3390/diagnostics11081437
10.1177/1756285611404470
10.1080/10798587.2009.10643051
10.1016/j.neulet.2010.05.037
10.1016/j.clinph.2014.07.005
10.1212/wnl.34.7.939
10.1007/s00421-021-04712-6
10.1007/s10439-013-0788-4
10.1016/j.compeleceng.2019.03.018
10.1016/S0140-6736(06)69113-7
10.1016/j.visres.2019.07.003
10.1016/j.neurobiolaging.2011.12.011
10.1016/j.jneumeth.2003.10.009
10.1016/j.ijpsycho.2015.02.008
10.2174/156720510792231720
10.1007/s10633-020-09768-x
10.1016/j.jalz.2007.04.381
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Zheng, Wang, Liu, Wu, Sun, Fang, Jiang, Hu, Jin, Wei and Chen.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Zheng, Wang, Liu, Wu, Sun, Fang, Jiang, Hu, Jin, Wei and Chen.
DBID AAYXX
CITATION
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3389/fnagi.2023.1288295
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c
10_3389_fnagi_2023_1288295
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
UKHRP
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c418t-6b1f25048131e03e64bb41fd26d5cd8370cfd95961a9d2fbf90eb0ad5a4003a13
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104778200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1663-4365
IngestDate Fri Oct 03 12:44:56 EDT 2025
Thu Sep 04 19:18:27 EDT 2025
Tue Oct 07 07:28:41 EDT 2025
Sat Nov 29 03:37:55 EST 2025
Tue Nov 18 21:18:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-6b1f25048131e03e64bb41fd26d5cd8370cfd95961a9d2fbf90eb0ad5a4003a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bd6aa9a9ec8346e4a8c328086cee3e8c
PQID 2886738376
PQPubID 4424411
ParticipantIDs doaj_primary_oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c
proquest_miscellaneous_2895706751
proquest_journals_2886738376
crossref_primary_10_3389_fnagi_2023_1288295
crossref_citationtrail_10_3389_fnagi_2023_1288295
PublicationCentury 2000
PublicationDate 2023-11-07
PublicationDateYYYYMMDD 2023-11-07
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-07
  day: 07
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in aging neuroscience
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Gaal (ref23) 2010; 479
Miltiadous (ref41) 2021; 11
Abásolo (ref1) 2009; 15
Bullmore (ref9) 2009; 10
Buchel (ref8) 2021; 121
Burioka (ref10) 2005; 36
Safi (ref48) 2021; 65
Schätz (ref49) 2013; 333
Fiscon (ref21) 2018; 18
Lindau (ref36) 2003; 15
Galimberti (ref24) 2011; 4
Demuru (ref19) 2020; 57
Homan (ref27) 1987; 66
Miltiadous (ref40) 2023; 8
Wang (ref55) 2016; 460
Blennow (ref6) 2006; 368
Aghajani (ref2) 2013; 17
McKhann (ref39) 1984; 34
Caso (ref11) 2012; 33
Scheltens (ref50) 2021; 397
Creavin (ref15) 2016; 2016
Subedi (ref53) 2019; 8
Folstein (ref22) 1975; 12
Noachtar (ref45) 2009; 15
Czigler (ref16) 2008; 68
Babiloni (ref3) 2016; 103
Nishida (ref44) 2011; 122
Bandt (ref4) 2002; 88
Dauwels (ref17) 2010; 7
Schöll (ref51) 2022; 136
(ref58) 2021
Nasreddine (ref43) 2005; 53
Jack (ref30) 2011; 7
Şeker (ref52) 2021; 206
Häfner (ref26) 2012
Garn (ref25) 2015; 126
Coifman (ref13) 1992; 38
Risacher (ref47) 2021; 13
Weiner (ref56) 2009; 13
Knyazeva (ref34) 2010; 31
Moretti (ref42) 2015; 11
Liu (ref37) 2017; 2017
Costa (ref14) 2005; 71
Dickerson (ref20) 2011; 78
Yang (ref59) 2013; 47
Zheng (ref60) 2020; 141
Delorme (ref18) 2004; 134
Ranchet (ref46) 2017; 80
Khojaste-Sarakhsi (ref33) 2022; 130
Koenig (ref35) 2005; 26
Baratloo (ref5) 2015; 3
Brookmeyer (ref7) 2007; 3
Cassani (ref12) 2018; 2018
McBride (ref38) 2013; 41
Imabayashi (ref28) 2013; 3
Isler (ref29) 2015; 15
Wen (ref57) 2015; 7
Jeong (ref31) 2004; 115
Kemp (ref32) 2010; 85
Tzimourta (ref54) 2019; 76
Zheng (ref61) 2019; 164
References_xml – volume: 85
  start-page: 350
  year: 2010
  ident: ref32
  article-title: Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.08.001
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref12
  article-title: "systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment," (in eng)
  publication-title: Dis. Markers
  doi: 10.1155/2018/5174815
– volume: 47
  start-page: 52
  year: 2013
  ident: ref59
  article-title: Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2013.07.022
– volume: 12
  start-page: 189
  year: 1975
  ident: ref22
  article-title: “Mini-mental state”, (in eng)
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 53
  start-page: 695
  year: 2005
  ident: ref43
  article-title: "the Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment," (in eng)
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2005.53221.x
– volume: 206
  start-page: 106116
  year: 2021
  ident: ref52
  article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy Neuromarker
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106116
– volume: 88
  start-page: 174102
  year: 2002
  ident: ref4
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 122
  start-page: 1718
  year: 2011
  ident: ref44
  article-title: Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.02.011
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref37
  article-title: Complex brain network analysis and its applications to brain disorders: a survey
  publication-title: Complexity
  doi: 10.1155/2017/8362741
– volume: 78
  start-page: 84
  year: 2011
  ident: ref20
  article-title: "MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults," (in eng)
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823efc6c
– volume: 10
  start-page: 186
  year: 2009
  ident: ref9
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 15
  start-page: 106
  year: 2003
  ident: ref36
  article-title: Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer's disease
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000067973
– volume: 26
  start-page: 165
  year: 2005
  ident: ref35
  article-title: Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.03.008
– volume: 2016
  start-page: Cd011145
  year: 2016
  ident: ref15
  article-title: Mini-mental state examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD011145.pub2
– volume: 7
  start-page: 257
  year: 2011
  ident: ref30
  article-title: "introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease," (in eng)
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.004
– volume: 68
  start-page: 75
  year: 2008
  ident: ref16
  article-title: Quantitative EEG in early Alzheimer's disease patients - power spectrum and complexity features
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.11.002
– year: 2012
  ident: ref26
– volume: 460
  start-page: 174
  year: 2016
  ident: ref55
  article-title: Functional brain networks in Alzheimer’s disease: EEG analysis based on limited penetrable visibility graph and phase space method
  publication-title: Physica A: Stat. Mechanics Applicat.
  doi: 10.1016/j.physa.2016.05.012
– volume: 333
  start-page: e355
  year: 2013
  ident: ref49
  article-title: Comparison of complexity, entropy and complex noise parameters in EEG for AD diagnosis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2013.07.1303
– volume: 57
  start-page: 101760
  year: 2020
  ident: ref19
  article-title: A comparison between power spectral density and network metrics: an EEG study
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2019.101760
– volume: 11
  start-page: 2779
  year: 2015
  ident: ref42
  article-title: "association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer's disease," (in eng)
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S93253
– volume: 397
  start-page: 1577
  year: 2021
  ident: ref50
  article-title: Alzheimer's disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32205-4
– volume: 17
  start-page: 1039
  year: 2013
  ident: ref2
  article-title: Diagnosis of early Alzheimer's disease based on EEG source localization and a standardized realistic head model
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2253326
– volume: 38
  start-page: 713
  year: 1992
  ident: ref13
  article-title: Entropy-based algorithms for best basis selection
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.119732
– volume: 7
  start-page: 54
  year: 2015
  ident: ref57
  article-title: "a critical review: coupling and synchronization analysis methods of EEG signal with mild cognitive impairment," (in eng)
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2015.00054
– volume: 136
  start-page: 18001
  year: 2022
  ident: ref51
  article-title: Partial synchronization patterns in brain networks
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/ac3b97
– volume: 66
  start-page: 376
  year: 1987
  ident: ref27
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90206-9
– volume: 80
  start-page: 516
  year: 2017
  ident: ref46
  article-title: Cognitive workload across the spectrum of cognitive impairments: a systematic review of physiological measures
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.07.001
– volume: 13
  start-page: e12230
  year: 2021
  ident: ref47
  article-title: Head injury is associated with tau deposition on PET in MCI and AD patients
  publication-title: Alzheimer's & Dementia: Diagnosis, Assess. Disease Monitor.
  doi: 10.1002/dad2.12230
– volume: 71
  start-page: 021906
  year: 2005
  ident: ref14
  article-title: Multiscale entropy analysis of biological signals
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.021906
– year: 2021
  ident: ref58
– volume: 3
  start-page: 48
  year: 2015
  ident: ref5
  article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity
  publication-title: Emergency (Tehran Iran)
– volume: 3
  start-page: 487
  year: 2013
  ident: ref28
  article-title: "comparison between brain CT and MRI for voxel-based morphometry of Alzheimer's disease," (in eng)
  publication-title: Brain Behav.
  doi: 10.1002/brb3.146
– volume: 65
  start-page: 102338
  year: 2021
  ident: ref48
  article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2020.102338
– volume: 115
  start-page: 1490
  year: 2004
  ident: ref31
  article-title: EEG dynamics in patients with Alzheimer's disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.01.001
– volume: 15
  start-page: 22
  year: 2009
  ident: ref45
  article-title: The role of EEG in epilepsy: a critical review
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2009.02.035
– volume: 31
  start-page: 1132
  year: 2010
  ident: ref34
  article-title: Topography of EEG multivariate phase synchronization in early Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.07.019
– volume: 18
  start-page: 35
  year: 2018
  ident: ref21
  article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0613-y
– volume: 36
  start-page: 21
  year: 2005
  ident: ref10
  article-title: "approximate entropy in the electroencephalogram during wake and sleep," (in eng)
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005940503600106
– volume: 15
  start-page: 196
  year: 2015
  ident: ref29
  article-title: Comparison of the effects of cross-validation methods on determining performances of classifiers used in diagnosing congestive heart failure
  publication-title: Measurement Sci. Rev.
  doi: 10.1515/msr-2015-0027
– volume: 8
  start-page: 1
  year: 2019
  ident: ref53
  article-title: Dementia as a public health priority
  publication-title: J. Psychiatrists' Assoc. Nepal
  doi: 10.3126/jpan.v8i2.28016
– volume: 130
  start-page: 102332
  year: 2022
  ident: ref33
  article-title: Deep learning for Alzheimer's disease diagnosis: a survey
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102332
– volume: 8
  start-page: 95
  year: 2023
  ident: ref40
  article-title: A dataset of scalp EEG recordings of Alzheimer's disease, frontotemporal dementia and healthy subjects from routine EEG
  publication-title: Datamation
  doi: 10.3390/data8060095
– volume: 13
  start-page: 332
  year: 2009
  ident: ref56
  article-title: Imaging and biomarkers will be used for detection and monitoring progression of early Alzheimer's disease
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-009-0032-y
– volume: 11
  start-page: 1437
  year: 2021
  ident: ref41
  article-title: Alzheimer's disease and frontotemporal dementia: a robust classification method of EEG signals and a comparison of validation methods
  publication-title: Diagnostics (Basel, Switzerland)
  doi: 10.3390/diagnostics11081437
– volume: 4
  start-page: 203
  year: 2011
  ident: ref24
  article-title: "disease-modifying treatments for Alzheimer's disease," (in eng)
  publication-title: Ther. Adv. Neurol. Disord.
  doi: 10.1177/1756285611404470
– volume: 15
  start-page: 591
  year: 2009
  ident: ref1
  article-title: Approximate entropy of EEG background activity in Alzheimer's disease patients
  publication-title: Intell. Automation & Soft Comput.
  doi: 10.1080/10798587.2009.10643051
– volume: 479
  start-page: 79
  year: 2010
  ident: ref23
  article-title: Age-dependent features of EEG-reactivity--spectral, complexity, and network characteristics
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.05.037
– volume: 126
  start-page: 505
  year: 2015
  ident: ref25
  article-title: Quantitative EEG markers relate to Alzheimer’s disease severity in the prospective dementia registry Austria (PRODEM)
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.07.005
– volume: 34
  start-page: 939
  year: 1984
  ident: ref39
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/wnl.34.7.939
– volume: 121
  start-page: 2423
  year: 2021
  ident: ref8
  article-title: Exploring intensity-dependent modulations in EEG resting-state network efficiency induced by exercise
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-021-04712-6
– volume: 41
  start-page: 1233
  year: 2013
  ident: ref38
  article-title: Resting EEG discrimination of early stage Alzheimer’s disease from Normal aging using Inter-Channel coherence network graphs
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0788-4
– volume: 76
  start-page: 198
  year: 2019
  ident: ref54
  article-title: Analysis of electroencephalographic signals complexity regarding Alzheimer's disease
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.03.018
– volume: 368
  start-page: 387
  year: 2006
  ident: ref6
  article-title: Alzheimer's disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69113-7
– volume: 164
  start-page: 44
  year: 2019
  ident: ref61
  article-title: Objective and quantitative assessment of interocular suppression in strabismic amblyopia based on steady-state motion visual evoked potentials
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2019.07.003
– volume: 33
  start-page: 2343
  year: 2012
  ident: ref11
  article-title: Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.12.011
– volume: 134
  start-page: 9
  year: 2004
  ident: ref18
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 103
  start-page: 88
  year: 2016
  ident: ref3
  article-title: Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2015.02.008
– volume: 7
  start-page: 487
  year: 2010
  ident: ref17
  article-title: "diagnosis of Alzheimer's disease from EEG signals: where are we standing?," (in eng)
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720510792231720
– volume: 141
  start-page: 237
  year: 2020
  ident: ref60
  article-title: Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials
  publication-title: Doc. Ophthalmol.
  doi: 10.1007/s10633-020-09768-x
– volume: 3
  start-page: 186
  year: 2007
  ident: ref7
  article-title: "forecasting the global burden of Alzheimer's disease," (in eng)
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2007.04.381
SSID ssj0000330058
Score 2.497975
Snippet Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55...
Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people....
BackgroundAlzheimer’s disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1288295
SubjectTerms Alzheimer's disease
Alzheimer’s disease (AD)
Biomarkers
Classification
complexity
Decision trees
Dementia
Dementia disorders
Diagnosis
Discriminant analysis
EEG
electroencephalogram (EEG)
Electroencephalography
Entropy
Integration
Machine learning
Medical imaging
Neurodegenerative diseases
Neuroimaging
Signal processing
spectrum
supervised machine learning
Support vector machines
Synchronization
Time series
Tomography
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIMSFb8RCQUbiRt3GcZzYvaACWzhA1QOg3iJ_lpXapGzaCjih_ov-vf4SZhzvgoTUC5ccEjuy9Ozx2DPzHiEvnJe-8FqypnCeVaYQTMsgGW-s0t5xW6UI_pcPzc6O2tvTu_nCbchplQubmAy17x3ekW-USqFAJayHV0ffGKpGYXQ1S2hcJdeQJUGk1L3d5R1LIZCMPVXDwcbKKlHLsW4GzmV6I6IO0DrKh6-DkVYlSkz8tTclCv9_LHTadrZv_--A75Bb2eGkW-MMuUuuhO4eufExh9Tvk7O3Y7LdbKB9pFsHP7-G2WGYX_w6H2iO3tDTmaGo4QHbHEsVSHQ6fbdJF1QTAC32TUWb85PDNZry1MN3cPDXqOk8HX50LpHwjjWfFJNGYEwxJFbR4QH5vD399OY9y8IMzFVcHbPa8ojUZ4oLHgoR6sraikdf1h65BgTgHgF_XXOjfRlt1EWwhfHSgMUQhouHZKXru_CIUFlE6WLlSsfh6cBbU7F2Frw4U_hQ6wnhC0hal1nLUTzjoIXTC8LYJhhbhLHNME7Iy2Wfo5Gz49LWrxHpZUvk204v-vl-m5dva31tjDY6OCWqOlRGOVEqOA6CjyGCchOyupgEbTYCQ_tnBkzI8-VnWL4YkzFd6E-wjZYNntr448t_8YTcxFGnMshmlawAnuEpue5Oj2fD_Fma978BbPEOMA
  priority: 102
  providerName: ProQuest
Title Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features
URI https://www.proquest.com/docview/2886738376
https://www.proquest.com/docview/2895706751
https://doaj.org/article/bd6aa9a9ec8346e4a8c328086cee3e8c
Volume 15
WOSCitedRecordID wos001104778200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRYhLRXmoS8vKSNxo2jjOw-bW0i0gsasIAVpOlp9ipTaLNm0FnBD_on-vv4QZJ7taCQkuXOaQ2JHjbzyekT3fEPLcusKlThZJlVqX5DrliSx8kbDKCOksM3k8wf_0rppMxHQq67VSX3gnrKMH7ibu0LhSa6mlt4Lnpc-1sDwT4IiDdedeWLS-4PWsBVPRBnOkYRddlgxEYfIwYNWfAywWfgAmWWRYUGJtJ4qE_X_Y47jJnN4nW713SI-6UW2TW755QO6O-_Pvh-TXSXczbtbSeaBHZz---Nm5X9z8vG5pf9RCr2aaYsEN2JOSmC5ER6PXL-mSFwJwwL4xw3Jxeb5P46Vy_w288X2qG0fb742NjLldgibFGx4wpuAjBWj7iHw8HX149SbpqygkNmfiIikNC8hTJhhnPuW-zI3JWXBZ6ZAYgANIAcCSJdPSZcEEmXqTaldoWN5cM_6YbDTzxu8QWqShsCG3mWUgLbhWIpTWgMulU-dLOSBsOaPK9hTjWOniTEGogSioiIJCFFSPwoC8WPX52hFs_LX1MQK1aonk2PEBqIzqVUb9S2UGZG8Js-pXbKvg-1gAFeztgDxbvYa1hgcouvHzS2wjiwpDLPbkf4xjl9zDf4uZjdUe2QDU_VNyx15dzNrFkNyuplWUYkg2j0eT-v0wKjnIcVajrEBu1m_H9eff4UcGWQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQcCGN2KggJFgRd3GcR42EkKFTmnV6aiLUnUXHD9gpDYpk7ZQVoi_4Cf4KL6Ee51kQELqrgs2WSS25cTH9xHfew8hT41NbWRVyvLIWJboSDCVupTxvJTKGl4m4QR_d5SPx3JvT23PkZ99LgyGVfYyMQhqWxv8R74cS4kElbAfXh1-YsgahaerPYVGC4tNd_oZXLbm5cYqrO-zOF4b7rxZZx2rADMJl0csK7nHul2SC-4i4bKkLBPubZxZTJQXMGkPk1cZ18rGvvQqcmWkbaoB7kJzAeNeIBfBjIhlCBXcnv3TiQQWfw_Zd6DIWSKytM3TAT9QLXvkHVpCuvIl6CpjpLT4SxcGyoB_NEJQc2vX_7cPdINc6wxqutLugJtkzlW3yOWtLmTgNvm-2gYTThpae7qy__Wjmxy46a9vPxranU7Rk4mmyFECapyFDCs6HL59QftSGgBd7BuSUqfHB4s0xOG7L-DALFJdWdqcViYUGW5zWikGxcCcvAtVU5s75N25fIG7ZL6qK3eP0DTyqfGJiQ2HqwFrVPrMlGCl6si6TA0I7yFQmK4qO5KD7BfgnSFsigCbAmFTdLAZkOezPodtTZIzW79GZM1aYj3xcKOefig68VSUNtNaaeWMFEnmEi2NiCW4u2BDCSfNgCz0oCs6IdcUfxA3IE9mj0E84ZmTrlx9jG1UmqNXyu-fPcRjcmV9Z2tUjDbGmw_IVXyDkPKZL5B5WFv3kFwyJ0eTZvoo7DlK3p83hn8D1NJrDA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQRUX_hELBYwEJ-puHOfHRkKosLtQtaz2AKi34PinXanNlk1bKCfEW_AqPA5PwoyTLEhIvfXAJYfEieLk84zHnvk-Qh4bm9rIqpTlkbEs0ZFgKnUp43kplTW8TMIO_oftfDyWOztqskR-drUwmFbZ2cRgqO3M4Bp5P5YSBSphPPR9mxYxGYxeHH5iqCCFO62dnEYDkS13-hnCt_r55gD-9ZM4Hg3fvXrDWoUBZhIuj1hWco8cXpIL7iLhsqQsE-5tnFksmhfQAQ8dURnXysa-9CpyZaRtqgH6QnMBz71ALuZIWh7SBieL9Z1IIBF8qMQDp84SkaVNzQ7EhKrvUYNoHaXL18FByBjlLf7yi0E-4B_vEFze6Or__LGukSvtRJtuNCPjOlly1Q2y8rZNJbhJvg-aJMNpTWeebux_3XPTAzf_9e1HTdtdK3oy1RS1S8C9s1B5RYfD189oR7EBkMZ7Q7Hq_PhgjYb8fPcFAps1qitL69PKBPLhptaVYrIMvJN3gU21vkXen8sXuE2Wq1nl7hCaRj41PjGx4XA0MEuVPjMlzF51ZF2meoR3cChMy9aOoiH7BURtCKEiQKhACBUthHrk6eKew4ar5MzWLxFli5bIMx5OzOa7RWu2itJmWiutnJEiyVyipRGxhDAY5lbCSdMjqx0Ai9b41cUf9PXIo8VlMFu4F6UrNzvGNirNMVrld89-xEOyAtAttjfHW_fIZexAqATNV8ky_Fp3n1wyJ0fTev4gDD9KPp43hH8DAMxzyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Alzheimer%E2%80%99s+disease+via+resting-state+EEG%3A+integration+of+spectrum%2C+complexity%2C+and+synchronization+signal+features&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Xiaowei+Zheng&rft.au=Xiaowei+Zheng&rft.au=Xiaowei+Zheng&rft.au=Bozhi+Wang&rft.date=2023-11-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-4365&rft.volume=15&rft_id=info:doi/10.3389%2Ffnagi.2023.1288295&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd6aa9a9ec8346e4a8c328086cee3e8c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon