Data-driven continuous-time Hammerstein modeling with missing data using improved Archimedes optimization algorithm

•A modified density-decreasing factor in the AOA provides balance exploration and exploitation phases.•A safe update mechanism is proposed to solve the issue of local optima entrapment in the original AOA.•IAOA provides better accuracy of continuous-time Hammerstein model than the original AOA.•Data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in engineering Jg. 24; S. 103357
Hauptverfasser: Islam, Muhammad Shafiqul, Ahmad, Mohd Ashraf
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2024
Elsevier
Schlagworte:
ISSN:2590-1230, 2590-1230
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A modified density-decreasing factor in the AOA provides balance exploration and exploitation phases.•A safe update mechanism is proposed to solve the issue of local optima entrapment in the original AOA.•IAOA provides better accuracy of continuous-time Hammerstein model than the original AOA.•Data-driven modelling based on IAOA is more robust than AOA for missing data cases. This research introduces the improved Archimedes optimization algorithm (IAOA) for data-driven modeling of continuous-time Hammerstein models with missing data. It addresses the limitations of the original Archimedes optimization algorithm (AOA) through two key modifications: rebalancing the exploration and exploitation phases and mitigating local optima trapping issues. The primary focus is on developing a novel data-driven approach for modeling continuous-time Hammerstein models, particularly in the presence of missing output data. Four levels of missing measurement data (5 %, 15 %, 35 %, and 50 %) were considered, with data points randomly replaced with zeros. Models were tested with both complete and missing output data to evaluate the robustness of the IAOA-based method. The proposed based method identified linear and nonlinear subsystem variables in a continuous-time Hammerstein model leveraging input and output data, validated through two practical experiments: a Twin Rotor System and an Electromechanical Positioning System. The performance was assessed by examining various factors, including the convergence curve of the fitness function and its statistical analysis, responses in the frequency and time domains, Wilcoxon's rank-sum test, and computational time. Across all experiments, the IAOA-based method demonstrated superior performance compared to AOA and other methods, including a hybrid approach combining the average multi-verse optimizer and sine cosine algorithm, particle swarm optimizer, the sine cosine algorithm, multi-verse optimizer and grey wolf optimizer. The findings showed that the proposed IAOA-based method delivered highly accurate and consistent solutions, proving it to be the most effective and reliable method compared to the others assessed.
AbstractList This research introduces the improved Archimedes optimization algorithm (IAOA) for data-driven modeling of continuous-time Hammerstein models with missing data. It addresses the limitations of the original Archimedes optimization algorithm (AOA) through two key modifications: rebalancing the exploration and exploitation phases and mitigating local optima trapping issues. The primary focus is on developing a novel data-driven approach for modeling continuous-time Hammerstein models, particularly in the presence of missing output data. Four levels of missing measurement data (5 %, 15 %, 35 %, and 50 %) were considered, with data points randomly replaced with zeros. Models were tested with both complete and missing output data to evaluate the robustness of the IAOA-based method. The proposed based method identified linear and nonlinear subsystem variables in a continuous-time Hammerstein model leveraging input and output data, validated through two practical experiments: a Twin Rotor System and an Electromechanical Positioning System. The performance was assessed by examining various factors, including the convergence curve of the fitness function and its statistical analysis, responses in the frequency and time domains, Wilcoxon's rank-sum test, and computational time. Across all experiments, the IAOA-based method demonstrated superior performance compared to AOA and other methods, including a hybrid approach combining the average multi-verse optimizer and sine cosine algorithm, particle swarm optimizer, the sine cosine algorithm, multi-verse optimizer and grey wolf optimizer. The findings showed that the proposed IAOA-based method delivered highly accurate and consistent solutions, proving it to be the most effective and reliable method compared to the others assessed.
•A modified density-decreasing factor in the AOA provides balance exploration and exploitation phases.•A safe update mechanism is proposed to solve the issue of local optima entrapment in the original AOA.•IAOA provides better accuracy of continuous-time Hammerstein model than the original AOA.•Data-driven modelling based on IAOA is more robust than AOA for missing data cases. This research introduces the improved Archimedes optimization algorithm (IAOA) for data-driven modeling of continuous-time Hammerstein models with missing data. It addresses the limitations of the original Archimedes optimization algorithm (AOA) through two key modifications: rebalancing the exploration and exploitation phases and mitigating local optima trapping issues. The primary focus is on developing a novel data-driven approach for modeling continuous-time Hammerstein models, particularly in the presence of missing output data. Four levels of missing measurement data (5 %, 15 %, 35 %, and 50 %) were considered, with data points randomly replaced with zeros. Models were tested with both complete and missing output data to evaluate the robustness of the IAOA-based method. The proposed based method identified linear and nonlinear subsystem variables in a continuous-time Hammerstein model leveraging input and output data, validated through two practical experiments: a Twin Rotor System and an Electromechanical Positioning System. The performance was assessed by examining various factors, including the convergence curve of the fitness function and its statistical analysis, responses in the frequency and time domains, Wilcoxon's rank-sum test, and computational time. Across all experiments, the IAOA-based method demonstrated superior performance compared to AOA and other methods, including a hybrid approach combining the average multi-verse optimizer and sine cosine algorithm, particle swarm optimizer, the sine cosine algorithm, multi-verse optimizer and grey wolf optimizer. The findings showed that the proposed IAOA-based method delivered highly accurate and consistent solutions, proving it to be the most effective and reliable method compared to the others assessed.
ArticleNumber 103357
Author Islam, Muhammad Shafiqul
Ahmad, Mohd Ashraf
Author_xml – sequence: 1
  givenname: Muhammad Shafiqul
  surname: Islam
  fullname: Islam, Muhammad Shafiqul
  organization: Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, 26600, Malaysia
– sequence: 2
  givenname: Mohd Ashraf
  orcidid: 0000-0002-2948-5123
  surname: Ahmad
  fullname: Ahmad, Mohd Ashraf
  email: mashraf@ump.edu.my, mashraf@umpsa.edu.my
  organization: Centre for Advanced Industrial Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, 26600, Malaysia
BookMark eNqFkctuFDEQRVsoSISQP2DhH-jBj3Y_WCBF4ZFIkdjA2qq2qyc16rZHtmcQfD2eaYQQi2TlqpLOsaru6-rCB49V9VbwjeCifbfbRPLotxvJZVNGSunuRXUp9cBrIRW_-Kd-VV2ntOOcy76wqrus0kfIULtIR_TMBp_JH8Ih1ZkWZHewLBhTRvJsCQ5n8lv2g_IjWyilU-MKzQ7nkpZ9DEd07Cbax0I7TCzsi4d-QabgGczbEAu8vKleTjAnvP7zXlXfP3_6dntXP3z9cn9781DbRvS51l0zNdZ2vdSuH7t2HMF2GpWzWpRGKDuKYRqcAw3lN-B66CcBjbDjgGMP6qq6X70uwM7sIy0Qf5oAZM6DELcGYiY7o9GdlO3EpWgnaDqhQDkxiVY5lJI36IqrWV02hpQiTn99gptTDmZn1hzMKQez5lCw9_9hlvL5HDkCzc_BH1YYy5GOhNEkS-gtOopoc9mCnhb8BgUmq9I
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113743
Cites_doi 10.1016/j.ijleo.2023.171465
10.1016/j.tust.2023.105508
10.1016/j.bspc.2023.105545
10.1007/s00521-015-1870-7
10.1016/j.jprocont.2023.02.005
10.1109/TCST.2021.3101737
10.1002/aic.690370211
10.1016/j.eswa.2010.03.043
10.1109/MCS.2019.2938121
10.2174/2213275911666181115093050
10.1016/j.ijcce.2024.09.004
10.1016/j.sigpro.2011.02.013
10.1016/j.apenergy.2015.02.032
10.1007/s00500-018-3137-6
10.1016/j.aej.2023.10.055
10.1016/j.bspc.2023.105870
10.1007/s12652-020-02623-6
10.1007/s10489-017-0969-1
10.1016/j.knosys.2015.12.022
10.1016/j.apm.2021.01.023
10.1016/S1364-6613(03)00055-X
10.1016/j.enconman.2023.116907
10.1016/j.asej.2021.06.032
10.1007/s11071-014-1748-8
10.1016/j.aeue.2016.10.005
10.1007/s00521-023-08769-6
10.1007/s10462-023-10516-1
10.1080/00207179.2014.896476
10.1016/S1004-9541(13)60479-6
10.1155/2019/5213759
10.1007/s11036-023-02105-x
10.1016/j.matcom.2021.08.013
10.1109/TAC.2022.3188478
10.1016/j.dsp.2010.06.006
10.1016/j.rineng.2024.102833
10.1016/j.proeng.2012.07.293
10.1109/TCSI.2004.834480
10.1007/s10586-021-03459-1
10.1016/j.rineng.2024.102506
10.1007/s13369-021-06307-x
10.18196/jrc.v4i6.18909
10.1016/j.jfranklin.2017.12.011
10.1007/s11227-023-05486-8
10.1016/j.advengsoft.2013.12.007
10.1016/j.engappai.2021.104309
10.1016/j.compchemeng.2011.04.009
10.1002/aic.13735
10.31763/ijrcs.v3i4.1113
10.11591/eei.v11i1.3296
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2024.103357
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_57226f0216fa4713a3d1f163de2204ed
10_1016_j_rineng_2024_103357
S2590123024016104
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-574f4cc7825d8b76bbac75e3dc516bb13cb19f9dda5aedea0598f1a41cb9eb8a3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364462500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1230
IngestDate Fri Oct 03 12:52:41 EDT 2025
Sun Nov 09 14:51:07 EST 2025
Tue Nov 18 22:33:12 EST 2025
Sat Aug 09 17:31:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrical-mechanical positioning system
Metaheuristics algorithms
Data-driven Hammerstein modeling
Data-driven control with missing data
Archimedes optimization algorithm
Twin rotor system
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-574f4cc7825d8b76bbac75e3dc516bb13cb19f9dda5aedea0598f1a41cb9eb8a3
ORCID 0000-0002-2948-5123
OpenAccessLink https://doaj.org/article/57226f0216fa4713a3d1f163de2204ed
ParticipantIDs doaj_primary_oai_doaj_org_article_57226f0216fa4713a3d1f163de2204ed
crossref_primary_10_1016_j_rineng_2024_103357
crossref_citationtrail_10_1016_j_rineng_2024_103357
elsevier_sciencedirect_doi_10_1016_j_rineng_2024_103357
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pintelon, R., & Schoukens, J. (2002).
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (bib0024) 2022; 192
Cuevas, Díaz, Avalos, Zaldívar, Pérez-Cisneros (bib0009) 2018; 48
Aslan (bib0005) 2023; 35
Islam, Ahmad, Wen (bib0026) 2024; 5
Breitbach, E. (1978).
Suid, Ahmad, Nasir, Ghazali, Jui (bib0057) 2024; 23
Ding, Huang, Alkhayyat (bib0013) 2024; 90
Manenti (bib0040) 2011; 35
Yang (bib0060) 2010
Maatallah, Achuthan, Janoyan, Marzocca (bib0001) 2015; 145
Lee, Park, Lee, Kwon (bib0031) 2014; 87
Sethuraman, Alzubi, Manikandan, Gheisari, Kumar (bib0055) 2019; 12
Mete, Ozer, Zorlu (bib0042) 2016; 70
Fong, Islam, Ahmad (bib0019) 2023; 3
Ghazali, Ahmad, Ismail (bib0021) 2019; 1015
Panda, Pani (bib0049) 2014; 4
Mirjalili, Mirjalili, Hatamlou (bib0043) 2016; 27
Parashar, Thorp, Seyler (bib0050) 2004; 51
Dokoupil, Vaclavek (bib0015) 2023; 68
Suresh, Ghazali, Ahmad (bib0058) 2023; 4
Guerra, Aguiar, Berdjag, Demaya (bib0022) 2022; 30
Farahat, Herr (bib0017) 2005
Movassagh, Alzubi, Gheisari, Rahimi, Mohan, Abbasi, Nabipour (bib0046) 2023; 14
Dehaene (bib0010) 2003; 7
Toha, Julai, Tokhi (bib63) 2012; 41
.
Mirjalili, Mirjalili, Lewis (bib0045) 2014; 69
Krishnamoorthy, Weifeng, Luo, Kadry (bib0037) 2023; 56
Kudkelwar, Sinha, Gunturi (bib0038) 2023; 79
Singh, Kaur (bib0056) 2022; 47
Jui, Ahmad, Rashid (bib0029) 2022; 11
Hachino, Shimoda, Takata (bib0023) 2009; 3
(AGARD-R-665). NATO.
Ding, Wang, Zhang, Ye, Ma (bib0014) 2019; 2019
Fathy, Alharbi, Alshammari, Hasanien (bib0018) 2022; 13
Ganguli, Kaur, Sarkar (bib0020) 2019; 23
Mirjalili (bib0044) 2016; 96
Liu, Wang, Dai (bib0032) 2023; 73
Mehmood, Raja, Jalili, Ho Ling (bib0041) 2024; 87
Eskinat, Johnson, Luyben (bib0016) 1991; 37
Liu, Li, Dai, Jiang, Liu, Chen (bib0033) 2024; 144
Houssein, Helmy, Rezk, Nassef (bib0025) 2021; 103
Kharrich, Selim, Kamel, Kim (bib0035) 2023; 283
Jurado, Valverde, Gómez (bib0030) 2006
Zou, Yu, Wang, Liu, Guo, Zhang, Guo (bib0062) 2013; 21
Ding, Liu, Liu (bib0012) 2011; 21
Chaudhary, Raja (bib0007) 2015; 79
Janot, Gautier, Brunot (bib64) 2019
Kennedy, Eberhart (bib0036) 1995; 4
Kalouptsidis, Mileounis, Babadi, Tarokh (bib0034) 2011; 91
Akramizadeh, Farjami, Khaloozadeh (bib0002) 2002
Madić, Marković, Radovanović (bib0039) 2013; 11
Zhang, Jin, Zhao (bib0061) 2023; 124
Jui, Ahmad (bib0028) 2021; 95
Yan, Chen, Zhang (bib0059) 2017
Nurmuhammed, Akdağ, Karadağ (bib0048) 2023; 84
Alzubi, Alzubi, Al-Zoubi, Hassonah, Kose (bib0003) 2022; 25
Deng, Huang (bib0011) 2012; 58
Nanda, Panda, Majhi (bib0047) 2010; 37
Schoukens, Ljung (bib0054) 2019; 39
Ponnalagu, Ahmad, Jui (bib0052) 2024; 23
Krishnan, Islam, Ahmad, Rashid (bib0027) 2023; 295
Sakthivel, Santra, Kaviarasan (bib0053) 2018; 355
Alzubi, Alzubi, Alzubi, Singh (bib0004) 2023; 28
Ding (10.1016/j.rineng.2024.103357_bib0014) 2019; 2019
Mirjalili (10.1016/j.rineng.2024.103357_bib0043) 2016; 27
Janot (10.1016/j.rineng.2024.103357_bib64) 2019
Ponnalagu (10.1016/j.rineng.2024.103357_bib0052) 2024; 23
Jui (10.1016/j.rineng.2024.103357_bib0028) 2021; 95
Kalouptsidis (10.1016/j.rineng.2024.103357_bib0034) 2011; 91
Krishnamoorthy (10.1016/j.rineng.2024.103357_bib0037) 2023; 56
Parashar (10.1016/j.rineng.2024.103357_bib0050) 2004; 51
Ding (10.1016/j.rineng.2024.103357_bib0012) 2011; 21
Sakthivel (10.1016/j.rineng.2024.103357_bib0053) 2018; 355
Dehaene (10.1016/j.rineng.2024.103357_bib0010) 2003; 7
Mete (10.1016/j.rineng.2024.103357_bib0042) 2016; 70
Lee (10.1016/j.rineng.2024.103357_bib0031) 2014; 87
10.1016/j.rineng.2024.103357_bib0006
Liu (10.1016/j.rineng.2024.103357_bib0032) 2023; 73
Kudkelwar (10.1016/j.rineng.2024.103357_bib0038) 2023; 79
Houssein (10.1016/j.rineng.2024.103357_bib0025) 2021; 103
Mirjalili (10.1016/j.rineng.2024.103357_bib0045) 2014; 69
Suid (10.1016/j.rineng.2024.103357_bib0057) 2024; 23
Guerra (10.1016/j.rineng.2024.103357_bib0022) 2022; 30
Mehmood (10.1016/j.rineng.2024.103357_bib0041) 2024; 87
Liu (10.1016/j.rineng.2024.103357_bib0033) 2024; 144
Eskinat (10.1016/j.rineng.2024.103357_bib0016) 1991; 37
Schoukens (10.1016/j.rineng.2024.103357_bib0054) 2019; 39
Yang (10.1016/j.rineng.2024.103357_bib0060) 2010
Nanda (10.1016/j.rineng.2024.103357_bib0047) 2010; 37
Kennedy (10.1016/j.rineng.2024.103357_bib0036) 1995; 4
Jui (10.1016/j.rineng.2024.103357_bib0029) 2022; 11
Maatallah (10.1016/j.rineng.2024.103357_bib0001) 2015; 145
Movassagh (10.1016/j.rineng.2024.103357_bib0046) 2023; 14
Fathy (10.1016/j.rineng.2024.103357_bib0018) 2022; 13
Aslan (10.1016/j.rineng.2024.103357_bib0005) 2023; 35
Toha (10.1016/j.rineng.2024.103357_bib63) 2012; 41
10.1016/j.rineng.2024.103357_bib0051
Singh (10.1016/j.rineng.2024.103357_bib0056) 2022; 47
Krishnan (10.1016/j.rineng.2024.103357_bib0027) 2023; 295
Ghazali (10.1016/j.rineng.2024.103357_bib0021) 2019; 1015
Sethuraman (10.1016/j.rineng.2024.103357_bib0055) 2019; 12
Nurmuhammed (10.1016/j.rineng.2024.103357_bib0048) 2023; 84
Mirjalili (10.1016/j.rineng.2024.103357_bib0044) 2016; 96
Panda (10.1016/j.rineng.2024.103357_bib0049) 2014; 4
Alzubi (10.1016/j.rineng.2024.103357_bib0003) 2022; 25
Ding (10.1016/j.rineng.2024.103357_bib0013) 2024; 90
Yan (10.1016/j.rineng.2024.103357_bib0059) 2017
Fong (10.1016/j.rineng.2024.103357_bib0019) 2023; 3
Kharrich (10.1016/j.rineng.2024.103357_bib0035) 2023; 283
Manenti (10.1016/j.rineng.2024.103357_bib0040) 2011; 35
Alzubi (10.1016/j.rineng.2024.103357_bib0004) 2023; 28
Cuevas (10.1016/j.rineng.2024.103357_bib0009) 2018; 48
Akramizadeh (10.1016/j.rineng.2024.103357_bib0002) 2002
Suresh (10.1016/j.rineng.2024.103357_bib0058) 2023; 4
Zhang (10.1016/j.rineng.2024.103357_bib0061) 2023; 124
Chaudhary (10.1016/j.rineng.2024.103357_bib0007) 2015; 79
Zou (10.1016/j.rineng.2024.103357_bib0062) 2013; 21
Ganguli (10.1016/j.rineng.2024.103357_bib0020) 2019; 23
Dokoupil (10.1016/j.rineng.2024.103357_bib0015) 2023; 68
Hachino (10.1016/j.rineng.2024.103357_bib0023) 2009; 3
Farahat (10.1016/j.rineng.2024.103357_bib0017) 2005
Madić (10.1016/j.rineng.2024.103357_bib0039) 2013; 11
Hashim (10.1016/j.rineng.2024.103357_bib0024) 2022; 192
Deng (10.1016/j.rineng.2024.103357_bib0011) 2012; 58
Jurado (10.1016/j.rineng.2024.103357_bib0030) 2006
Islam (10.1016/j.rineng.2024.103357_bib0026) 2024; 5
References_xml – volume: 11
  start-page: 29
  year: 2013
  end-page: 44
  ident: bib0039
  article-title: Comparison of Meta-Heuristic algorithms for solving machining optimization problems
  publication-title: Facta Univ. Series: Mech. Eng.
– volume: 355
  start-page: 1040
  year: 2018
  end-page: 1072
  ident: bib0053
  article-title: Resilient sampled-data control design for singular networked systems with random missing data
  publication-title: J. Franklin Inst.
– start-page: 442
  year: 2006
  end-page: 445
  ident: bib0030
  article-title: Identification of Hammerstein model for solid oxide fuel cells
  publication-title: )
– reference: Pintelon, R., & Schoukens, J. (2002).
– volume: 23
  year: 2024
  ident: bib0052
  article-title: Parameter identification of thermoelectric modules using enhanced slime mould algorithm (ESMA)
  publication-title: Results in Engineering
– volume: 192
  start-page: 84
  year: 2022
  end-page: 110
  ident: bib0024
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simul
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0045
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Software
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0044
  article-title: SCA: A Sine Cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 68
  start-page: 3078
  year: 2023
  end-page: 3085
  ident: bib0015
  article-title: Recursive identification of time-varying Hammerstein systems with Matrix Forgetting
  publication-title: IEEE Trans. Autom. Control
– volume: 103
  year: 2021
  ident: bib0025
  article-title: An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification
  publication-title: Eng. Appl. Artif. Intell.
– volume: 21
  start-page: 215
  year: 2011
  end-page: 238
  ident: bib0012
  article-title: Identification methods for Hammerstein nonlinear systems
  publication-title: Digital Signal Process.
– volume: 12
  start-page: 110
  year: 2019
  end-page: 119
  ident: bib0055
  article-title: Eccentric methodology with optimization to unearth hidden facts of search engine result pages
  publication-title: Recent Patents on Comput. Sci.
– volume: 39
  start-page: 28
  year: 2019
  end-page: 99
  ident: bib0054
  article-title: Nonlinear system identification: a user-oriented road map
  publication-title: IEEE Control Systems
– year: 2019
  ident: bib64
  publication-title: Data Set and Reference Models of EMPS, Nonlinear System Identification Benchmarks, Eindhoven, Netherlands
– start-page: 351
  year: 2002
  end-page: 356
  ident: bib0002
  article-title: Nonlinear Hammerstein model identification using genetic algorithm
  publication-title: Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS)
– volume: 56
  start-page: 483
  year: 2023
  end-page: 511
  ident: bib0037
  article-title: AO-HRCNN: Archimedes optimization and hybrid region-based convolutional neural network for detection and classification of diabetic retinopathy
  publication-title: Artif. Intell. Rev.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib0043
  article-title: Multi-Verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural. Comput. Appl.
– volume: 28
  start-page: 795
  year: 2023
  end-page: 807
  ident: bib0004
  article-title: Quantum Mayfly optimization with Encoder-Decoder driven LSTM networks for malware detection and classification model
  publication-title: Mobile Networks and Appl.
– volume: 47
  start-page: 3683
  year: 2022
  end-page: 3706
  ident: bib0056
  article-title: A novel Archimedes optimization algorithm with Levy flight for designing microstrip patch antenna
  publication-title: Arabian J. Sci. Eng.
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: bib0001
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl. Energy
– volume: 30
  start-page: 1304
  year: 2022
  end-page: 1310
  ident: bib0022
  article-title: Robust estimation for nonlinear Continuous-Discrete systems with missing outputs: application to automatic train control
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 295
  year: 2023
  ident: bib0027
  article-title: Parameter identification of solar cells using improved Archimedes optimization algorithm
  publication-title: Optik
– volume: 14
  start-page: 6017
  year: 2023
  end-page: 6025
  ident: bib0046
  article-title: Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model
  publication-title: J. Ambient Intellig. Humanized Comput.
– volume: 3
  start-page: 658
  year: 2023
  end-page: 672
  ident: bib0019
  article-title: Optimized PID controller of DC-DC Buck converter based on Archimedes optimization algorithm
  publication-title: Int. J. Robotics and Control Systems
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0036
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks
– volume: 4
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib0049
  article-title: A new model based on colliding bodies optimization for identification of Hammerstein plant
  publication-title: 2014 Annual IEEE India Conference (INDICON)
– volume: 95
  start-page: 339
  year: 2021
  end-page: 360
  ident: bib0028
  article-title: A hybrid metaheuristic algorithm for identification of continuous-time Hammerstein systems
  publication-title: Appl. Math. Modell.
– year: 2010
  ident: bib0060
  article-title: Nature-inspired Metaheuristic algorithms: Second Edition
– volume: 23
  start-page: 4801
  year: 2019
  end-page: 4814
  ident: bib0020
  article-title: A hybrid intelligent technique for model order reduction in the delta domain: a unified approach
  publication-title: Soft Computing
– volume: 3
  start-page: 499
  year: 2009
  end-page: 504
  ident: bib0023
  article-title: Hybrid algorithm for Hammerstein system identification using Genetic algorithm and Particle Swarm optimization
  publication-title: Eng. Technol.
– reference: (AGARD-R-665). NATO.
– volume: 51
  start-page: 1848
  year: 2004
  end-page: 1858
  ident: bib0050
  article-title: Continuum modeling of electromechanical dynamics in large-scale power systems
  publication-title: IEEE Trans. Circuits Syst. Regul. Pap.
– volume: 11
  start-page: 454
  year: 2022
  end-page: 465
  ident: bib0029
  article-title: Metaheuristics algorithms to identify nonlinear Hammerstein model: a decade survey
  publication-title: Bulletin of Elect. Eng. Inf.
– volume: 124
  start-page: 25
  year: 2023
  end-page: 35
  ident: bib0061
  article-title: An improved Hammerstein system identification method using Stein variational inference and sampling technology
  publication-title: J. Process Control
– volume: 25
  start-page: 2369
  year: 2022
  end-page: 2387
  ident: bib0003
  article-title: An efficient malware detection approach with feature weighting based on Harris Hawks optimization
  publication-title: Cluster Computing
– volume: 13
  year: 2022
  ident: bib0018
  article-title: Archimedes optimization algorithm based maximum power point tracker for wind energy generation system
  publication-title: Ain Shams Eng. J.
– volume: 283
  year: 2023
  ident: bib0035
  article-title: An effective design of hybrid renewable energy system using an improved Archimedes optimization algorithm: a case study of Farafra, Egypt
  publication-title: Energy Convers. Manage.
– volume: 23
  year: 2024
  ident: bib0057
  article-title: Continuous-time Hammerstein model identification utilizing hybridization of augmented Sine Cosine algorithm and Game-Theoretic approach
  publication-title: Results Eng.
– volume: 70
  start-page: 1667
  year: 2016
  end-page: 1675
  ident: bib0042
  article-title: System identification using Hammerstein model optimized with differential evolution algorithm
  publication-title: AEU - Int. J. Elect. Comm.
– volume: 7
  start-page: 145
  year: 2003
  end-page: 147
  ident: bib0010
  article-title: The neural basis of the Weber-Fechner law: a logarithmic mental number line
  publication-title: Trends Cogn. Sci.
– volume: 41
  start-page: 1135
  year: 2012
  end-page: 1144
  ident: bib63
  article-title: Ant colony based model prediction of a twin rotor system
  publication-title: Procedia Eng.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0014
  article-title: A hybrid particle swarm optimization-Cuckoo search algorithm and Its engineering applications
  publication-title: Math. Probl. Eng.
– volume: 35
  start-page: 2491
  year: 2011
  end-page: 2509
  ident: bib0040
  article-title: Considerations on nonlinear model predictive control techniques
  publication-title: Comput. Chem. Eng.
– volume: 48
  start-page: 182
  year: 2018
  end-page: 203
  ident: bib0009
  article-title: Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm
  publication-title: Applied Intelligence
– volume: 37
  start-page: 6818
  year: 2010
  end-page: 6831
  ident: bib0047
  article-title: Improved identification of Hammerstein plants using new CPSO and IPSO algorithms
  publication-title: Expert Syst. Appl.
– volume: 79
  start-page: 1385
  year: 2015
  end-page: 1397
  ident: bib0007
  article-title: Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
  publication-title: Nonlinear Dyn.
– volume: 91
  start-page: 1910
  year: 2011
  end-page: 1919
  ident: bib0034
  article-title: Adaptive algorithms for missing system identification
  publication-title: Signal Process.
– volume: 5
  start-page: 475
  year: 2024
  end-page: 493
  ident: bib0026
  article-title: Identification of continuous-time Hammerstein model using improved Archimedes optimization algorithm
  publication-title: Int. J. Cognitive Comput. Eng.
– volume: 1015
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0021
  article-title: Data-Driven Neuroendocrine-PID tuning based on Safe Experimentation Dynamics for control of TITO coupled tank system with Stochastic input delay
  publication-title: Communications in Comput. Inf. Sci.
– start-page: 6225
  year: 2005
  end-page: 6228
  ident: bib0017
  article-title: A method for identification of electrically stimulated muscle
– volume: 79
  start-page: 21166
  year: 2023
  end-page: 21184
  ident: bib0038
  article-title: An Archimedes metaheuristic algorithm based optimum relay coordination in microgrid and combined overhead/cable distribution network
  publication-title: J. Supercomput.
– reference: .
– volume: 84
  start-page: 81
  year: 2023
  end-page: 92
  ident: bib0048
  article-title: A novel modified Archimedes optimization algorithm for optimal placement of electric vehicle charging stations in distribution networks
  publication-title: Alexandria Eng. J.
– reference: Breitbach, E. (1978).
– volume: 73
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib0032
  article-title: Probability based identification of Hammerstein systems with asymmetric noise characteristics
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 4
  year: 2023
  ident: bib0058
  article-title: Safe Experimentation dynamics algorithm for identification of cupping suction based on the nonlinear hammerstein model
  publication-title: J. Robotics and Control (JRC)
– volume: 90
  year: 2024
  ident: bib0013
  article-title: A computer aided system for skin cancer detection based on Developed version of the Archimedes optimization algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 21
  start-page: 395
  year: 2013
  end-page: 400
  ident: bib0062
  article-title: Nonlinear model algorithmic control of a pH neutralization process
  publication-title: Chin. J. Chem. Eng.
– volume: 37
  start-page: 255
  year: 1991
  end-page: 268
  ident: bib0016
  article-title: Use of Hammerstein models in identification of nonlinear systems
  publication-title: AlChE J.
– volume: 35
  start-page: 19627
  year: 2023
  end-page: 19649
  ident: bib0005
  article-title: Archimedes optimization algorithm based approaches for solving energy demand estimation problem: a case study of Turkey
  publication-title: Neural. Comput. Appl.
– volume: 144
  year: 2024
  ident: bib0033
  article-title: An AI-powered approach to improving tunnel blast performance considering geological conditions
  publication-title: Tunnelling Underground Space Technol.
– volume: 87
  start-page: 1
  year: 2024
  end-page: 17
  ident: bib0041
  article-title: Identification of fractional Hammerstein model for electrical stimulated muscle: An application of fuzzy-weighted differential evolution
  publication-title: Biomed. Signal Process. Control
– volume: 58
  start-page: 3454
  year: 2012
  end-page: 3467
  ident: bib0011
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AlChE J.
– start-page: 84
  year: 2017
  end-page: 89
  ident: bib0059
  article-title: Valve stiction detection using the bootstrap Hammerstein system identification
  publication-title: 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP 2017)
– volume: 87
  start-page: 1957
  year: 2014
  end-page: 1969
  ident: bib0031
  article-title: Robust sampled-data control with random missing data scenario
  publication-title: Int. J. Control
– volume: 295
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0027
  article-title: Parameter identification of solar cells using improved Archimedes optimization algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.171465
– volume: 144
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0033
  article-title: An AI-powered approach to improving tunnel blast performance considering geological conditions
  publication-title: Tunnelling Underground Space Technol.
  doi: 10.1016/j.tust.2023.105508
– volume: 87
  start-page: 1
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0041
  article-title: Identification of fractional Hammerstein model for electrical stimulated muscle: An application of fuzzy-weighted differential evolution
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105545
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.rineng.2024.103357_bib0043
  article-title: Multi-Verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– ident: 10.1016/j.rineng.2024.103357_bib0051
– volume: 124
  start-page: 25
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0061
  article-title: An improved Hammerstein system identification method using Stein variational inference and sampling technology
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.02.005
– volume: 30
  start-page: 1304
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0022
  article-title: Robust estimation for nonlinear Continuous-Discrete systems with missing outputs: application to automatic train control
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2021.3101737
– volume: 37
  start-page: 255
  issue: 2
  year: 1991
  ident: 10.1016/j.rineng.2024.103357_bib0016
  article-title: Use of Hammerstein models in identification of nonlinear systems
  publication-title: AlChE J.
  doi: 10.1002/aic.690370211
– volume: 37
  start-page: 6818
  issue: 10
  year: 2010
  ident: 10.1016/j.rineng.2024.103357_bib0047
  article-title: Improved identification of Hammerstein plants using new CPSO and IPSO algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.03.043
– start-page: 84
  year: 2017
  ident: 10.1016/j.rineng.2024.103357_bib0059
  article-title: Valve stiction detection using the bootstrap Hammerstein system identification
– volume: 39
  start-page: 28
  issue: 6
  year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib0054
  article-title: Nonlinear system identification: a user-oriented road map
  publication-title: IEEE Control Systems
  doi: 10.1109/MCS.2019.2938121
– volume: 73
  start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0032
  article-title: Probability based identification of Hammerstein systems with asymmetric noise characteristics
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 11
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.rineng.2024.103357_bib0039
  article-title: Comparison of Meta-Heuristic algorithms for solving machining optimization problems
  publication-title: Facta Univ. Series: Mech. Eng.
– volume: 12
  start-page: 110
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib0055
  article-title: Eccentric methodology with optimization to unearth hidden facts of search engine result pages
  publication-title: Recent Patents on Comput. Sci.
  doi: 10.2174/2213275911666181115093050
– volume: 5
  start-page: 475
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0026
  article-title: Identification of continuous-time Hammerstein model using improved Archimedes optimization algorithm
  publication-title: Int. J. Cognitive Comput. Eng.
  doi: 10.1016/j.ijcce.2024.09.004
– volume: 91
  start-page: 1910
  issue: 8
  year: 2011
  ident: 10.1016/j.rineng.2024.103357_bib0034
  article-title: Adaptive algorithms for missing system identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.02.013
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.rineng.2024.103357_bib0001
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.02.032
– volume: 23
  start-page: 4801
  issue: 13
  year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib0020
  article-title: A hybrid intelligent technique for model order reduction in the delta domain: a unified approach
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3137-6
– volume: 84
  start-page: 81
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0048
  article-title: A novel modified Archimedes optimization algorithm for optimal placement of electric vehicle charging stations in distribution networks
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2023.10.055
– year: 2010
  ident: 10.1016/j.rineng.2024.103357_bib0060
– volume: 90
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0013
  article-title: A computer aided system for skin cancer detection based on Developed version of the Archimedes optimization algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105870
– volume: 14
  start-page: 6017
  issue: 5
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0046
  article-title: Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model
  publication-title: J. Ambient Intellig. Humanized Comput.
  doi: 10.1007/s12652-020-02623-6
– volume: 1015
  start-page: 1
  year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib0021
  article-title: Data-Driven Neuroendocrine-PID tuning based on Safe Experimentation Dynamics for control of TITO coupled tank system with Stochastic input delay
  publication-title: Communications in Comput. Inf. Sci.
– volume: 48
  start-page: 182
  issue: 1
  year: 2018
  ident: 10.1016/j.rineng.2024.103357_bib0009
  article-title: Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-017-0969-1
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.rineng.2024.103357_bib0044
  article-title: SCA: A Sine Cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 95
  start-page: 339
  year: 2021
  ident: 10.1016/j.rineng.2024.103357_bib0028
  article-title: A hybrid metaheuristic algorithm for identification of continuous-time Hammerstein systems
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2021.01.023
– volume: 7
  start-page: 145
  issue: 4
  year: 2003
  ident: 10.1016/j.rineng.2024.103357_bib0010
  article-title: The neural basis of the Weber-Fechner law: a logarithmic mental number line
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(03)00055-X
– volume: 3
  start-page: 499
  issue: 5
  year: 2009
  ident: 10.1016/j.rineng.2024.103357_bib0023
  article-title: Hybrid algorithm for Hammerstein system identification using Genetic algorithm and Particle Swarm optimization
  publication-title: Eng. Technol.
– volume: 283
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0035
  article-title: An effective design of hybrid renewable energy system using an improved Archimedes optimization algorithm: a case study of Farafra, Egypt
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2023.116907
– volume: 13
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0018
  article-title: Archimedes optimization algorithm based maximum power point tracker for wind energy generation system
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.06.032
– volume: 79
  start-page: 1385
  issue: 2
  year: 2015
  ident: 10.1016/j.rineng.2024.103357_bib0007
  article-title: Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1748-8
– volume: 70
  start-page: 1667
  issue: 12
  year: 2016
  ident: 10.1016/j.rineng.2024.103357_bib0042
  article-title: System identification using Hammerstein model optimized with differential evolution algorithm
  publication-title: AEU - Int. J. Elect. Comm.
  doi: 10.1016/j.aeue.2016.10.005
– start-page: 6225
  year: 2005
  ident: 10.1016/j.rineng.2024.103357_bib0017
  article-title: A method for identification of electrically stimulated muscle
– volume: 35
  start-page: 19627
  issue: 26
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0005
  article-title: Archimedes optimization algorithm based approaches for solving energy demand estimation problem: a case study of Turkey
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-023-08769-6
– volume: 56
  start-page: 483
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0037
  article-title: AO-HRCNN: Archimedes optimization and hybrid region-based convolutional neural network for detection and classification of diabetic retinopathy
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10516-1
– year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib64
– volume: 87
  start-page: 1957
  issue: 9
  year: 2014
  ident: 10.1016/j.rineng.2024.103357_bib0031
  article-title: Robust sampled-data control with random missing data scenario
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2014.896476
– volume: 21
  start-page: 395
  issue: 4
  year: 2013
  ident: 10.1016/j.rineng.2024.103357_bib0062
  article-title: Nonlinear model algorithmic control of a pH neutralization process
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(13)60479-6
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.rineng.2024.103357_bib0014
  article-title: A hybrid particle swarm optimization-Cuckoo search algorithm and Its engineering applications
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/5213759
– volume: 28
  start-page: 795
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0004
  article-title: Quantum Mayfly optimization with Encoder-Decoder driven LSTM networks for malware detection and classification model
  publication-title: Mobile Networks and Appl.
  doi: 10.1007/s11036-023-02105-x
– volume: 192
  start-page: 84
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0024
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simul
  doi: 10.1016/j.matcom.2021.08.013
– volume: 68
  start-page: 3078
  issue: 5
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0015
  article-title: Recursive identification of time-varying Hammerstein systems with Matrix Forgetting
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2022.3188478
– volume: 21
  start-page: 215
  year: 2011
  ident: 10.1016/j.rineng.2024.103357_bib0012
  article-title: Identification methods for Hammerstein nonlinear systems
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2010.06.006
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0052
  article-title: Parameter identification of thermoelectric modules using enhanced slime mould algorithm (ESMA)
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2024.102833
– volume: 41
  start-page: 1135
  year: 2012
  ident: 10.1016/j.rineng.2024.103357_bib63
  article-title: Ant colony based model prediction of a twin rotor system
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.07.293
– ident: 10.1016/j.rineng.2024.103357_bib0006
– volume: 51
  start-page: 1848
  issue: 9
  year: 2004
  ident: 10.1016/j.rineng.2024.103357_bib0050
  article-title: Continuum modeling of electromechanical dynamics in large-scale power systems
  publication-title: IEEE Trans. Circuits Syst. Regul. Pap.
  doi: 10.1109/TCSI.2004.834480
– volume: 25
  start-page: 2369
  issue: 4
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0003
  article-title: An efficient malware detection approach with feature weighting based on Harris Hawks optimization
  publication-title: Cluster Computing
  doi: 10.1007/s10586-021-03459-1
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2024.103357_bib0057
  article-title: Continuous-time Hammerstein model identification utilizing hybridization of augmented Sine Cosine algorithm and Game-Theoretic approach
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102506
– volume: 47
  start-page: 3683
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0056
  article-title: A novel Archimedes optimization algorithm with Levy flight for designing microstrip patch antenna
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-021-06307-x
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.rineng.2024.103357_bib0036
  article-title: Particle swarm optimization
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.rineng.2024.103357_bib0049
  article-title: A new model based on colliding bodies optimization for identification of Hammerstein plant
– start-page: 442
  year: 2006
  ident: 10.1016/j.rineng.2024.103357_bib0030
  article-title: Identification of Hammerstein model for solid oxide fuel cells
– volume: 4
  issue: 6
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0058
  article-title: Safe Experimentation dynamics algorithm for identification of cupping suction based on the nonlinear hammerstein model
  publication-title: J. Robotics and Control (JRC)
  doi: 10.18196/jrc.v4i6.18909
– start-page: 351
  year: 2002
  ident: 10.1016/j.rineng.2024.103357_bib0002
  article-title: Nonlinear Hammerstein model identification using genetic algorithm
– volume: 355
  start-page: 1040
  issue: 3
  year: 2018
  ident: 10.1016/j.rineng.2024.103357_bib0053
  article-title: Resilient sampled-data control design for singular networked systems with random missing data
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.12.011
– volume: 79
  start-page: 21166
  issue: 18
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0038
  article-title: An Archimedes metaheuristic algorithm based optimum relay coordination in microgrid and combined overhead/cable distribution network
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05486-8
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.rineng.2024.103357_bib0045
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 103
  year: 2021
  ident: 10.1016/j.rineng.2024.103357_bib0025
  article-title: An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104309
– volume: 35
  start-page: 2491
  issue: 11
  year: 2011
  ident: 10.1016/j.rineng.2024.103357_bib0040
  article-title: Considerations on nonlinear model predictive control techniques
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.04.009
– volume: 58
  start-page: 3454
  issue: 11
  year: 2012
  ident: 10.1016/j.rineng.2024.103357_bib0011
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AlChE J.
  doi: 10.1002/aic.13735
– volume: 3
  start-page: 658
  issue: 4
  year: 2023
  ident: 10.1016/j.rineng.2024.103357_bib0019
  article-title: Optimized PID controller of DC-DC Buck converter based on Archimedes optimization algorithm
  publication-title: Int. J. Robotics and Control Systems
  doi: 10.31763/ijrcs.v3i4.1113
– volume: 11
  start-page: 454
  issue: 1
  year: 2022
  ident: 10.1016/j.rineng.2024.103357_bib0029
  article-title: Metaheuristics algorithms to identify nonlinear Hammerstein model: a decade survey
  publication-title: Bulletin of Elect. Eng. Inf.
  doi: 10.11591/eei.v11i1.3296
SSID ssj0002810137
Score 2.3024065
Snippet •A modified density-decreasing factor in the AOA provides balance exploration and exploitation phases.•A safe update mechanism is proposed to solve the issue...
This research introduces the improved Archimedes optimization algorithm (IAOA) for data-driven modeling of continuous-time Hammerstein models with missing...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103357
SubjectTerms Archimedes optimization algorithm
Data-driven control with missing data
Data-driven Hammerstein modeling
Electrical-mechanical positioning system
Metaheuristics algorithms
Twin rotor system
Title Data-driven continuous-time Hammerstein modeling with missing data using improved Archimedes optimization algorithm
URI https://dx.doi.org/10.1016/j.rineng.2024.103357
https://doaj.org/article/57226f0216fa4713a3d1f163de2204ed
Volume 24
WOSCitedRecordID wos001364462500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QYoAB8RTHSxlYI7VN0iYjrxMDIAZAbFWaBzp010P3YOS3Y6ct6sQtLFVbNUllW37J_kzIhVMagcNyVnjuGPj_kilvFRO5AmPpvZdxTOfrffH4qN7e9FNv1BfWhDXwwA3hIGAHByGAJcqDAUXKDXdpACfC-SxLhHeofZNC94Kpj5gyShFLr-uViwVd2E1Xv0NImAlsNedokXq2KEL290xSz8wMd8h26x_Sy-a_dsmar_fIVg81cJ_Mb8zCMDdDPUWx1HxULyF-ZzgmnraZaJxhSeOUG1hCMdlKgaGYF6BYE0qX8XYUMwre0Yg_C3bRz-kUdMikbc6kZvw-ncHiyQF5Gd4-X9-xdnYCsyJVCyYLEYS1YP-lU1WRV5WxhQR-WJnCQ8ptleqgnTPSwO4GvCwVUiNSW2lfKcMPyXo9rf0RobkMiedJVQDhRZCZyUTQPHdBAysrnQ0I76hY2hZYHOdbjMuuguyjbGhfIu3LhvYDwn5XfTbAGiu-v0IG_X6LsNjxBQhL2QpLuUpYBqTo2Fu2HkbjOcBWoz-PP_6P40_IJm7ZVMOckvXFbOnPyIb9Wozms_MowXB9-L79AZmr-cw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+continuous-time+Hammerstein+modeling+with+missing+data+using+improved+Archimedes+optimization+algorithm&rft.jtitle=Results+in+engineering&rft.au=Muhammad+Shafiqul+Islam&rft.au=Mohd+Ashraf+Ahmad&rft.date=2024-12-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=24&rft.spage=103357&rft_id=info:doi/10.1016%2Fj.rineng.2024.103357&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57226f0216fa4713a3d1f163de2204ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon