AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges

The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing Jg. 105; H. 4; S. 783 - 809
Hauptverfasser: Rohmetra, Honnesh, Raghunath, Navaneeth, Narang, Pratik, Chamola, Vinay, Guizani, Mohsen, Lakkaniga, Naga Rajiv
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vienna Springer Vienna 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0010-485X, 1436-5057
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible or infected individuals is a challenging task. Although professional medical attention and hospitalization are necessary for high-risk COVID-19 patients, home isolation is an effective strategy for low and medium risk patients as well as for those who are at risk of infection and have been quarantined. However, this necessitates effective techniques for remotely monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and Deep Learning (DL) have strengthened the power of imaging techniques and can be used to remotely perform several tasks that previously required the physical presence of a medical professional. In this work, we study the prospects of vital signs monitoring for COVID-19 infected as well as quarantined individuals by using DL and image/signal-processing techniques, many of which can be deployed using simple cameras and sensors available on a smartphone or a personal computer, without the need of specialized equipment. We demonstrate the potential of ML-enabled workflows for several vital signs such as heart and respiratory rates, cough, blood pressure, and oxygen saturation. We also discuss the challenges involved in implementing ML-enabled techniques.
AbstractList The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible or infected individuals is a challenging task. Although professional medical attention and hospitalization are necessary for high-risk COVID-19 patients, home isolation is an effective strategy for low and medium risk patients as well as for those who are at risk of infection and have been quarantined. However, this necessitates effective techniques for remotely monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and Deep Learning (DL) have strengthened the power of imaging techniques and can be used to remotely perform several tasks that previously required the physical presence of a medical professional. In this work, we study the prospects of vital signs monitoring for COVID-19 infected as well as quarantined individuals by using DL and image/signal-processing techniques, many of which can be deployed using simple cameras and sensors available on a smartphone or a personal computer, without the need of specialized equipment. We demonstrate the potential of ML-enabled workflows for several vital signs such as heart and respiratory rates, cough, blood pressure, and oxygen saturation. We also discuss the challenges involved in implementing ML-enabled techniques.
Author Narang, Pratik
Rohmetra, Honnesh
Guizani, Mohsen
Chamola, Vinay
Raghunath, Navaneeth
Lakkaniga, Naga Rajiv
Author_xml – sequence: 1
  givenname: Honnesh
  surname: Rohmetra
  fullname: Rohmetra, Honnesh
  organization: Department of CSIS, Birla Institute of Technology and Science, Pilani
– sequence: 2
  givenname: Navaneeth
  surname: Raghunath
  fullname: Raghunath, Navaneeth
  organization: Department of CSIS, Birla Institute of Technology and Science, Pilani
– sequence: 3
  givenname: Pratik
  surname: Narang
  fullname: Narang, Pratik
  organization: Department of CSIS, Birla Institute of Technology and Science, Pilani
– sequence: 4
  givenname: Vinay
  surname: Chamola
  fullname: Chamola, Vinay
  organization: Department of EEE & APPCAIR, Birla Institute of Technology and Science, Pilani
– sequence: 5
  givenname: Mohsen
  surname: Guizani
  fullname: Guizani, Mohsen
  organization: Qatar University
– sequence: 6
  givenname: Naga Rajiv
  orcidid: 0000-0001-8370-2224
  surname: Lakkaniga
  fullname: Lakkaniga, Naga Rajiv
  email: nlakkaniga@uams.edu
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, SmartBio Labs
BookMark eNp9kc9rFDEUx4NUcFv9BzwFvJr6kvmRxINQVq0LhV5aETyETObN7pSZZEyyhf73zboV0UNPObz3-fLN-5ySEx88EvKWwzkHkB8SQAuSgeAMQFeSyRdkxeuqZQ008oSsADiwWjU_XpHTlO4AQFRKr8jPiw1Db7sJexpxDhnpHPyYQxz9loaB3o_ZTjSNW5_oECJdX3_ffGZcf6Qz5l3o03u6xJAWdDlR63vqdnaa0G8xvSYvBzslfPP0npHbr19u1t_Y1fXlZn1xxVzNVWZN60DVfaWxd61QKDvRaY6tbLVzVteiangnW9QapYKu0xZq5VQzoOONQlGdkU_H3GXfzSUEfY52MkscZxsfTLCj-Xfix53ZhnujytW4gBLw7ikghl97TNnchX30pbMRUikhBai2bKnjliv_TREH48pt8hgOoeNkOJiDC3N0YYoL89uFkQUV_6F_yj0LVUcoLQcZGP-2eoZ6BDapnpo
CitedBy_id crossref_primary_10_1007_s12539_021_00465_0
crossref_primary_10_1007_s12553_023_00790_y
crossref_primary_10_1007_s11277_023_10535_9
crossref_primary_10_1109_LSP_2022_3215112
crossref_primary_10_3390_s21238056
crossref_primary_10_7759_cureus_44528
crossref_primary_10_1109_TAI_2022_3224097
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_3390_s22114097
crossref_primary_10_1109_JIOT_2022_3232793
crossref_primary_10_1007_s11277_021_08892_4
crossref_primary_10_1109_TVT_2022_3144358
crossref_primary_10_3390_math10214153
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_3390_healthcare11081152
crossref_primary_10_1016_j_eswa_2025_126815
crossref_primary_10_3390_s22020536
crossref_primary_10_1007_s11042_023_16794_9
crossref_primary_10_1186_s12913_023_10047_z
crossref_primary_10_1109_ACCESS_2022_3219845
crossref_primary_10_1109_JIOT_2024_3351838
crossref_primary_10_1109_JSEN_2024_3388950
crossref_primary_10_1007_s11042_024_20332_6
crossref_primary_10_1007_s12559_023_10219_3
crossref_primary_10_1007_s00607_021_00992_0
crossref_primary_10_1007_s10257_022_00617_9
crossref_primary_10_1007_s42452_024_05848_8
crossref_primary_10_1002_widm_1485
crossref_primary_10_1088_1361_6501_acc11e
crossref_primary_10_1145_3558518
Cites_doi 10.1109/JBHI.2017.2721545
10.1016/j.rbmo.2020.06.001
10.1016/j.jpha.2020.03.001
10.1016/j.jaut.2020.102433
10.1109/JBHI.2018.2887209
10.1109/JIOT.2020.3027095
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2019.2924045
10.1146/annurev-bioeng-071516-044442
10.1049/iet-ipr.2019.1164
10.1016/j.mpmed.2017.07.005
10.1016/S2665-9913(20)30121-1
10.1109/TBME.2016.2609282
10.1109/ICIP.2019.8803649
10.1109/WACV45572.2020.9093324
10.1145/3394486.3412865
10.1109/TNNLS.2020.2995800
10.1161/CIRCULATIONAHA.120.047164
10.1109/CVPR.2016.90
10.1016/S2589-7500(19)30004-4
10.1109/JSAC.2020.3020655
10.1038/s41584-020-0451-z
10.1046/j.1440-1843.2003.00518.x
10.1111/jocs.14596
10.1109/ACCESS.2017.2678521
10.1183/09031936.05.00034805
10.1155/2018/5214067
10.1117/12.2293623
10.1109/JIOT.2020.3044966
10.1016/j.imu.2020.100378
10.1109/MNET.011.1900257
10.1109/TBME.2018.2849502
10.3390/jcm9020538
10.1016/j.tmaid.2020.101607
10.1002/ppul.21416
10.1007/978-3-319-10602-1_48
10.1016/j.apjtb.2017.01.019
10.1142/9789812797926_0003
10.1109/LSP.2019.2952253
10.1038/s41379-020-0603-3
10.1109/IEMBS.2011.6091062
10.1109/MNET.011.2000353
10.1158/1078-0432.CCR-18-2495
10.1109/ACII.2017.8273639
10.1155/2018/4567213
10.3390/s18061802
10.1007/978-3-030-28553-1_6
10.1155/2018/7804243
10.1186/1745-9974-2-8
10.1088/1361-6579/aad948
10.3390/s17112474
10.1109/ISBI.2016.7493307
10.1088/0967-3334/35/5/807
10.1109/FG.2017.41
10.1109/TII.2018.2866917
10.1145/3341105.3373905
10.1109/ICASSP40776.2020.9053446
10.1007/978-3-030-12544-8_8
10.1007/s10916-016-0596-0
10.1371/journal.pone.0202581
10.1109/EHB50910.2020.9280115
10.1016/j.ijnurstu.2015.12.007
10.1016/j.cmpb.2019.105191
10.1109/TBME.2014.2381214
10.1109/TII.2019.2915592
10.1109/JIOT.2019.2950469
10.1038/s41586-020-2008-3
10.1016/S0140-6736(17)31764-6
10.1186/s13054-015-1057-8
10.1038/s41591-020-0897-1
10.1007/978-3-030-58583-9_24
10.1016/j.future.2020.06.048
10.1016/S1470-2045(19)30739-9
10.23919/EUSIPCO.2017.8081165
10.1155/2018/9845321
10.1109/ACCESS.2020.2992341
10.1109/TPAMI.2012.205
10.1109/JBHI.2018.2870319
10.1109/ICoIAS49312.2020.9081829
10.1038/nature14539
10.1109/CVPR.2013.440
10.1109/TBME.2010.2086456
10.1145/3123024.3124428
10.1109/IMTC.2007.379467
10.1109/CVPR.2009.5206848
10.1109/MNET.011.2000458
10.1162/neco.1989.1.4.541
10.1109/TITS.2020.2988040
10.1109/JSEN.2021.3049247
10.1007/s11263-009-0275-4
10.1038/s41746-019-0087-z
10.1109/TII.2019.2960536
10.1007/s10015-017-0382-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
5PM
DOI 10.1007/s00607-021-00937-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 809
ExternalDocumentID PMC8006120
10_1007_s00607_021_00937_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFKWF
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
5PM
ID FETCH-LOGICAL-c418t-56c084d39edc628e7b2b91e6769cca942351b76e99e780bb9a048c85fec158e23
IEDL.DBID K7-
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634659600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Tue Nov 04 01:58:23 EST 2025
Wed Nov 26 14:54:54 EST 2025
Sat Nov 29 03:51:38 EST 2025
Tue Nov 18 22:00:35 EST 2025
Fri Feb 21 02:43:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
Deep learning
68T45
Coronavirus
Artificial intelligence
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-56c084d39edc628e7b2b91e6769cca942351b76e99e780bb9a048c85fec158e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8370-2224
OpenAccessLink http://dx.doi.org/10.1007/s00607-021-00937-7
PQID 2788272086
PQPubID 48322
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006120
proquest_journals_2788272086
crossref_citationtrail_10_1007_s00607_021_00937_7
crossref_primary_10_1007_s00607_021_00937_7
springer_journals_10_1007_s00607_021_00937_7
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Nazario B (2020) High blood pressure and coronavirus (higher-risk people): symptoms, complications, treatments. https://www.webmd.com/lung/coronavirus-high-blood-pressure
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
Herrmann C, Metzler J, Willersinn D, Beyerer J (2018) Distant pulse oximetry based on skin region extraction and multi-spectral measurement. In: Medical imaging 2018: image-guided procedures, robotic interventions, and modeling, international society for optics and photonics, vol 10576, p 105762O
Rao MA, Kausthubha N, Yadav S, Gope D, Krishnaswamy UM, Ghosh PK (2017) Automatic prediction of spirometry readings from cough and wheeze for monitoring of asthma severity. In: 2017 25th European signal processing conference (EUSIPCO), IEEE, pp 41–45
Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018
Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GT (2011) Ballistocardiography—a method worth revisiting. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 4279–4282
AlghoulKAlharthiSAl OsmanHEl SaddikAHeart rate variability extraction from videos signals: Ica versus evm comparisonIEEE Access201754711471910.1109/ACCESS.2017.2678521
Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M (2020) Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J
Lee E, Chen E, Lee CY (2020) Meta-rppg: remote heart rate estimation using a transductive meta-learner. arXiv:2007.06786
Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a“ siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744
Chakravarthy AS, Rohmetra H, Goel D, Baskar H, Garg P, Rout BK (2020) Complete scene parsing for autonomous navigation in unstructured environments. In: 2020 3rd international conference on intelligent autonomous systems (ICoIAS), IEEE, pp 41–45
Aujla GS, Jindal A (2020) A decoupled blockchain approach for edge-envisioned iot-based healthcare monitoring. IEEE J Sel Areas Commun
BultenWPinckaersHvan BovenHVinkRde BelTvan GinnekenBvan der LaakJHulsbergen-van de KaaCLitjensGAutomated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic studyLancet Oncol202021223324110.1016/S1470-2045(19)30739-9
Gonzalez ViejoCFuentesSTorricoDDDunsheaFRNon-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolateSensors2018186180210.3390/s18061802
ParenteFRSantonicoMZompantiABenassaiMFerriGD’AmicoAPennazzaGAn electronic system for the contactless reading of ecg signalsSensors20171711247410.3390/s17112474
ChamolaVHassijaVGuptaVGuizaniMA comprehensive review of the covid-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impactIEEE Access20208902259026510.1109/ACCESS.2020.2992341
KhanHABaigFKMehboobRNosocomial infections: epidemiology, prevention, control and surveillanceAsian Pac J Trop Biomed20177547848210.1016/j.apjtb.2017.01.019
SharanRVAbeyratneURSwarnkarVRClaxtonSHukinsCPorterPPredicting spirometry readings using cough sound features and regressionPhysiol Meas201839909500110.1088/1361-6579/aad948
EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
FukunishiMKuritaKYamamotoSTsumuraNNon-contact video-based estimation of heart rate variability spectrogram from hemoglobin compositionArtif Life Robot201722445746310.1007/s10015-017-0382-1
Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B (2020a) Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J
Reddy KA, Kumar VJ (2007) Motion artifact reduction in photoplethysmographic signals using singular value decomposition. In: 2007 IEEE instrumentation & measurement technology conference IMTC 2007, IEEE, pp 1–4
DingXNassehiDLarsonECMeasuring oxygen saturation with smartphone cameras using convolutional neural networksIEEE J Biomed Health Inform20182362603261010.1109/JBHI.2018.2887209
MuhammadKRodriguesJJKozlovSPiccialliFde AlbuquerqueVHCEnergy-efficient monitoring of fire scenes for intelligent networksIEEE Netw202034310811510.1109/MNET.011.1900257
Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, Xia T, Cicuta P, Mascolo C (2020) Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data. arXiv:2006.05919
BansalGChamolaVNarangPKumarSRamanSDeep3dscan: deep residual network and morphological descriptor based framework for lung cancer classification and 3d segmentationIET Image Process20201471240124710.1049/iet-ipr.2019.1164
AujlaGSChaudharyRKaurKGargSKumarNRanjanRSafe: Sdn-assisted framework for edge-cloud interplay in secure healthcare ecosystemIEEE Trans Ind Inform201815146948010.1109/TII.2018.2866917
QuerGMuseEDNikzadNTopolEJSteinhublSRAugmenting diagnostic vision with aiThe Lancet20173901009122110.1016/S0140-6736(17)31764-6
ShenDWuGSukHIDeep learning in medical image analysisAnnu Rev Biomed Eng20171922124810.1146/annurev-bioeng-071516-044442
LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput19891454155110.1162/neco.1989.1.4.541
HassijaVChamolaVSaxenaVJainDGoyalPSikdarBA survey on iot security: application areas, security threats, and solution architecturesIEEE Access20197827218274310.1109/ACCESS.2019.2924045
Hassija V, Gupta V, Garg S, Chamola V (2020) Traffic jam probability estimation based on blockchain and deep neural networks. IEEE Trans Intell Transp Syst
Mandal M, Kumar LK, Saran MS, Vipparthi SK (2020) Motionrec: a unified deep framework for moving object recognition. In: The IEEE winter conference on applications of computer vision (WACV)
PohMZMcDuffDJPicardRWAdvancements in noncontact, multiparameter physiological measurements using a webcamIEEE Trans Biomed Eng201058171110.1109/TBME.2010.2086456
WangWden BrinkerACStuijkSde HaanGAlgorithmic principles of remote ppgIEEE Trans Biomed Eng20166471479149110.1109/TBME.2016.2609282
Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, John CN, Nabeel M (2020) Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv:2004.01275
Liu B, Dai X, Gong H, Guo Z, Liu N, Wang X (2018) Liu M (2018) Deep learning versus professional healthcare equipment: a fine-grained breathing rate monitoring model. Mob Inf Syst
MuhammadKKhanSPaladeVMehmoodIDe AlbuquerqueVHCEdge intelligence-assisted smoke detection in foggy surveillance environmentsIEEE Trans Ind Inform20191621067107510.1109/TII.2019.2915592
Tripathi U, Saran JR, Chamola V, Jolfaei A, Chintanpalli A (2021) Advancing remote healthcare using humanoid and affective systems. IEEE Sens J
LeCunYBengioYConvolutional networks for images, speech, and time seriesHandb Brain Theory Neural Netw19953361101995
TarassenkoLVillarroelMGuazziAJorgeJCliftonDPughCNon-contact video-based vital sign monitoring using ambient light and auto-regressive modelsPhysiol Meas201435580710.1088/0967-3334/35/5/807
UnakafovAMMöllerSKaganIGailATreueSWolfFUsing imaging photoplethysmography for heart rate estimation in non-human primatesPLoS One2018138e020258110.1371/journal.pone.0202581
Singh C, Kumar V et al (2020) Covid 19 pandemic: impact on masses and prevention knowhow. Int J Med Health Res
For Quality I, in Health Care) E (Jun 24 2010) What is blood pressure and how is it measured? https://www.ncbi.nlm.nih.gov/books/NBK279251
MuhammadKKhanSKumarNDel SerJMirjaliliSVision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challengesFut Gener Comput Syst202011326628010.1016/j.future.2020.06.048
McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C (2020) Immune mechanisms of pulmonary intravascular coagulopathy in covid-19 pneumonia. Lancet Rheumatol
Schlesinger O, Vigderhouse N, Eytan D, Moshe Y (2020) Blood pressure estimation from ppg signals using convolutional neural networks and siamese network. In: ICASSP 2020 IEEE international conference on acoustics. speech and signal processing (ICASSP), IEEE, pp 1135–1139
WazidMDasAKKumarNContiMVasilakosAVA novel authentication and key agreement scheme for implantable medical devices deploymentIEEE J Biomed Health Inform20172241299130910.1109/JBHI.2017.2721545
XuYHosnyAZeleznikRParmarCCorollerTFrancoIMakRHAertsHJDeep learning predicts lung cancer treatment response from serial medical imagingClin Cancer Res201925113266327510.1158/1078-0432.CCR-18-2495
La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM (2020) Testing for sars-cov-2 (covid-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod BioMed Online
Al-KhalidiFQSaatchiRBurkeDElphickHTanSRespiration rate monitoring methods: a reviewPediatr Pulmonol201146652352910.1002/ppul.21416
Futurism (2020) New app attempts to detect signs of COVID-19 using voice analysis. https://futurism.com/neoscope/new-app-detects-covid19-voice
Shi Y, Liu H, Wang Y, Cai M, Xu W (2018) Theory and application of audio-based assessment of cough. J Sens
WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3
Muhammad K, Khan S, Del Ser J, de Albuquerque VHC (2020a) Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans Neural Netw Learn Syst
Schett G, Manger B, Simon D, Caporali R (2020) Covid-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol pp 1–6
LintonNMKobayashiTYangYHay
MR Miller (937_CR62) 2005; 26
Y LeCun (937_CR48) 1995; 3361
937_CR77
S Yeung (937_CR106) 2019; 2
MS Hossain (937_CR40) 2020; 34
DR Jenkins (937_CR42) 2017; 45
937_CR79
937_CR78
937_CR73
937_CR74
M Cardona-Morrell (937_CR17) 2016; 56
Y LeCun (937_CR47) 1989; 1
937_CR71
FQ Al-Khalidi (937_CR3) 2011; 46
937_CR69
937_CR66
G Bansal (937_CR11) 2020; 14
NM Linton (937_CR54) 2020; 9
M Wazid (937_CR100) 2016; 40
H He (937_CR37) 2015; 19
M Everingham (937_CR28) 2010; 88
937_CR61
M Wazid (937_CR101) 2017; 22
937_CR60
937_CR15
937_CR14
MZ Poh (937_CR72) 2010; 58
937_CR103
937_CR102
937_CR99
937_CR10
X Ding (937_CR27) 2018; 23
Y Xu (937_CR105) 2019; 25
RV Sharan (937_CR84) 2018; 39
937_CR19
937_CR18
937_CR94
937_CR97
937_CR91
937_CR90
937_CR93
F Wu (937_CR104) 2020; 579
M Fukunishi (937_CR30) 2017; 22
M Usama (937_CR96) 2020; 190
937_CR88
937_CR87
V Chamola (937_CR22) 2020; 8
937_CR89
M Chan-Yeung (937_CR23) 2003; 8
C Gonzalez Viejo (937_CR33) 2018; 18
937_CR83
AM Unakafov (937_CR95) 2018; 13
V Bellemo (937_CR13) 2019; 1
W Bulten (937_CR16) 2020; 21
937_CR80
937_CR82
K Kosasih (937_CR45) 2014; 62
937_CR81
937_CR36
RV Sharan (937_CR85) 2018; 66
937_CR39
937_CR38
937_CR32
937_CR34
L Tarassenko (937_CR92) 2014; 35
K Muhammad (937_CR65) 2019; 16
937_CR31
937_CR26
937_CR25
937_CR21
937_CR24
937_CR29
937_CR9
Y LeCun (937_CR49) 2015; 521
937_CR5
937_CR20
937_CR7
B Martinez (937_CR59) 2012; 35
937_CR2
937_CR1
GS Aujla (937_CR8) 2018; 15
937_CR58
937_CR55
G Quer (937_CR75) 2017; 390
937_CR56
K Muhammad (937_CR68) 2020; 34
K Muhammad (937_CR67) 2020; 113
MA Rahman (937_CR76) 2020; 34
V Hassija (937_CR35) 2019; 7
M Mandal (937_CR57) 2019; 26
D Shen (937_CR86) 2017; 19
937_CR51
K Muhammad (937_CR64) 2019; 7
937_CR50
937_CR53
937_CR52
937_CR44
937_CR46
K Alghoul (937_CR4) 2017; 5
HA Khan (937_CR43) 2017; 7
W Wang (937_CR98) 2016; 64
FR Parente (937_CR70) 2017; 17
K Muhammad (937_CR63) 2019; 16
SJ Barry (937_CR12) 2006; 2
R Amin (937_CR6) 2018; 23
937_CR41
References_xml – reference: MuhammadKRodriguesJJKozlovSPiccialliFde AlbuquerqueVHCEnergy-efficient monitoring of fire scenes for intelligent networksIEEE Netw202034310811510.1109/MNET.011.1900257
– reference: Bales C, John C, Farooq H, Masood U, Nabeel M, Imran A (2020) Can machine learning be used to recognize and diagnose coughs? arXiv:2004.01495
– reference: WazidMZeadallySDasAKOdeluVAnalysis of security protocols for mobile healthcareJ Med Syst2016401111010.1007/s10916-016-0596-0
– reference: WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3
– reference: Ahan M, Rohmetra H, Mungad A (2018) Social network analysis using data segmentation and neural networks. Int Res J Eng Technol (IRJET) Volume 5
– reference: KhanHABaigFKMehboobRNosocomial infections: epidemiology, prevention, control and surveillanceAsian Pac J Trop Biomed20177547848210.1016/j.apjtb.2017.01.019
– reference: TarassenkoLVillarroelMGuazziAJorgeJCliftonDPughCNon-contact video-based vital sign monitoring using ambient light and auto-regressive modelsPhysiol Meas201435580710.1088/0967-3334/35/5/807
– reference: Whiting P, Elwenspoek M (2020) Accuracy of self-monitoring heart rate, respiratory rate and oxygen saturation in patients with symptoms suggestive of covid infection
– reference: Rao MA, Kausthubha N, Yadav S, Gope D, Krishnaswamy UM, Ghosh PK (2017) Automatic prediction of spirometry readings from cough and wheeze for monitoring of asthma severity. In: 2017 25th European signal processing conference (EUSIPCO), IEEE, pp 41–45
– reference: Shi Y, Liu H, Wang Y, Cai M, Xu W (2018) Theory and application of audio-based assessment of cough. J Sens
– reference: XuYHosnyAZeleznikRParmarCCorollerTFrancoIMakRHAertsHJDeep learning predicts lung cancer treatment response from serial medical imagingClin Cancer Res201925113266327510.1158/1078-0432.CCR-18-2495
– reference: Chan-YeungMXuRHSars: epidemiologyRespirology20038S910.1046/j.1440-1843.2003.00518.x
– reference: Schlesinger O, Vigderhouse N, Eytan D, Moshe Y (2020) Blood pressure estimation from ppg signals using convolutional neural networks and siamese network. In: ICASSP 2020 IEEE international conference on acoustics. speech and signal processing (ICASSP), IEEE, pp 1135–1139
– reference: Nazario B (2020) High blood pressure and coronavirus (higher-risk people): symptoms, complications, treatments. https://www.webmd.com/lung/coronavirus-high-blood-pressure
– reference: HossainMSMuhammadGGuizaniNExplainable ai and mass surveillance system-based healthcare framework to combat covid-i9 like pandemicsIEEE Netw202034412613210.1109/MNET.011.2000458
– reference: BarrySJDaneADMoriceAHWalmsleyADThe automatic recognition and counting of coughCough2006211910.1186/1745-9974-2-8
– reference: Špetlík R, Franc V, Matas J (2018) Visual heart rate estimation with convolutional neural network. In: Proceedings of the british machine vision conference, Newcastle, UK, pp 3–6
– reference: PohMZMcDuffDJPicardRWAdvancements in noncontact, multiparameter physiological measurements using a webcamIEEE Trans Biomed Eng201058171110.1109/TBME.2010.2086456
– reference: Alloghani M, Baker T, Al-Jumeily D, Hussain A, Mustafina J, Aljaaf AJ (2020) Prospects of machine and deep learning in analysis of vital signs for the improvement of healthcare services. In: Nature-inspired computation in data mining and machine learning, Springer, pp 113–136
– reference: FukunishiMKuritaKYamamotoSTsumuraNNon-contact video-based estimation of heart rate variability spectrogram from hemoglobin compositionArtif Life Robot201722445746310.1007/s10015-017-0382-1
– reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
– reference: JenkinsDRNosocomial infections and infection controlMedicine2017451062963310.1016/j.mpmed.2017.07.005
– reference: Patil OR, Gao Y, Li B, Jin Z (2017) Cambp: A camera-based, non-contact blood pressure monitor. In: Proceedings of the 2017 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2017 ACM international symposium on wearable computers, pp 524–529
– reference: AlghoulKAlharthiSAl OsmanHEl SaddikAHeart rate variability extraction from videos signals: Ica versus evm comparisonIEEE Access201754711471910.1109/ACCESS.2017.2678521
– reference: Mandal M, Kumar LK, Saran MS, Vipparthi SK (2020) Motionrec: a unified deep framework for moving object recognition. In: The IEEE winter conference on applications of computer vision (WACV)
– reference: Balakrishnan G, Durand F, Guttag J (2013) Detecting pulse from head motions in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3430–3437
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, John CN, Nabeel M (2020) Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv:2004.01275
– reference: MuhammadKKhanSPaladeVMehmoodIDe AlbuquerqueVHCEdge intelligence-assisted smoke detection in foggy surveillance environmentsIEEE Trans Ind Inform20191621067107510.1109/TII.2019.2915592
– reference: For Quality I, in Health Care) E (Jun 24 2010) What is blood pressure and how is it measured? https://www.ncbi.nlm.nih.gov/books/NBK279251/
– reference: Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M (2020) Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J
– reference: Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255
– reference: Hassija V, Gupta V, Garg S, Chamola V (2020) Traffic jam probability estimation based on blockchain and deep neural networks. IEEE Trans Intell Transp Syst
– reference: ShenDWuGSukHIDeep learning in medical image analysisAnnu Rev Biomed Eng20171922124810.1146/annurev-bioeng-071516-044442
– reference: ParenteFRSantonicoMZompantiABenassaiMFerriGD’AmicoAPennazzaGAn electronic system for the contactless reading of ecg signalsSensors20171711247410.3390/s17112474
– reference: Schett G, Manger B, Simon D, Caporali R (2020) Covid-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol pp 1–6
– reference: Li X, Geng M, Peng Y, Meng L, Lu S (2020b) Molecular immune pathogenesis and diagnosis of covid-19. J Pharm Anal
– reference: Liu B, Dai X, Gong H, Guo Z, Liu N, Wang X (2018) Liu M (2018) Deep learning versus professional healthcare equipment: a fine-grained breathing rate monitoring model. Mob Inf Syst
– reference: Reddy KA, Kumar VJ (2007) Motion artifact reduction in photoplethysmographic signals using singular value decomposition. In: 2007 IEEE instrumentation & measurement technology conference IMTC 2007, IEEE, pp 1–4
– reference: Secerbegovic A, Bergsland J, Halvorsen PS, Suljanovic N, Mujcic A, Balasingham I (2016) Blood pressure estimation using video plethysmography. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 461–464
– reference: QuerGMuseEDNikzadNTopolEJSteinhublSRAugmenting diagnostic vision with aiThe Lancet20173901009122110.1016/S0140-6736(17)31764-6
– reference: AujlaGSChaudharyRKaurKGargSKumarNRanjanRSafe: Sdn-assisted framework for edge-cloud interplay in secure healthcare ecosystemIEEE Trans Ind Inform201815146948010.1109/TII.2018.2866917
– reference: McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C (2020) Immune mechanisms of pulmonary intravascular coagulopathy in covid-19 pneumonia. Lancet Rheumatol
– reference: Casalino G, Castellano G, Castiello C, Pasquadibisceglie V, Zaza G (2018) A fuzzy rule-based decision support system for cardiovascular risk assessment. In: International workshop on fuzzy logic and applications, Springer, pp 97–108
– reference: Gonzalez ViejoCFuentesSTorricoDDDunsheaFRNon-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolateSensors2018186180210.3390/s18061802
– reference: Muhammad K, Khan S, Del Ser J, de Albuquerque VHC (2020a) Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans Neural Netw Learn Syst
– reference: MillerMRHankinsonJBrusascoVBurgosFCasaburiRCoatesACrapoREnrightPvVan der GrintenCGustafssonPStandardisation of spirometryEur Resp J200526231933810.1183/09031936.05.00034805
– reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput19891454155110.1162/neco.1989.1.4.541
– reference: Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B (2020a) Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J
– reference: Wang ZK, Kao Y, Hsu CT (2019) Vision-based heart rate estimation via a two-stream cnn. In: 2019 IEEE international conference on image processing (ICIP), IEEE, pp 3327–3331
– reference: Cho Y, Bianchi-Berthouze N, Julier SJ (2017) Deepbreath: deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In: 2017 seventh international conference on affective computing and intelligent interaction (ACII), IEEE, pp 456–463
– reference: DingXNassehiDLarsonECMeasuring oxygen saturation with smartphone cameras using convolutional neural networksIEEE J Biomed Health Inform20182362603261010.1109/JBHI.2018.2887209
– reference: Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, Liao P, Qiu JF, Lin Y, Cai XF, et al (2020) Antibody responses to sars-cov-2 in patients with covid-19. Nat Med pp 845–848
– reference: Lee E, Chen E, Lee CY (2020) Meta-rppg: remote heart rate estimation using a transductive meta-learner. arXiv:2007.06786
– reference: Massaroni C, Lopes DS, Lo Presti D, Schena E, Silvestri S (2018) Contactless monitoring of breathing patterns and respiratory rate at the pit of the neck: a single camera approach. J Sens
– reference: MuhammadKKhanSKumarNDel SerJMirjaliliSVision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challengesFut Gener Comput Syst202011326628010.1016/j.future.2020.06.048
– reference: La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM (2020) Testing for sars-cov-2 (covid-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod BioMed Online
– reference: WHO (2020) WHO COVID-19 Explorer. https://worldhealthorg.shinyapps.io/covid/
– reference: Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a“ siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744
– reference: UnakafovAMMöllerSKaganIGailATreueSWolfFUsing imaging photoplethysmography for heart rate estimation in non-human primatesPLoS One2018138e020258110.1371/journal.pone.0202581
– reference: YeungSRinaldoFJoplingJLiuBMehraRDowningNLGuoMBianconiGMAlahiALeeJA computer vision system for deep learning-based detection of patient mobilization activities in the icuNPJ Digital Med2019211510.1038/s41746-019-0087-z
– reference: HassijaVChamolaVSaxenaVJainDGoyalPSikdarBA survey on iot security: application areas, security threats, and solution architecturesIEEE Access20197827218274310.1109/ACCESS.2019.2924045
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: Herrmann C, Metzler J, Willersinn D, Beyerer J (2018) Distant pulse oximetry based on skin region extraction and multi-spectral measurement. In: Medical imaging 2018: image-guided procedures, robotic interventions, and modeling, international society for optics and photonics, vol 10576, p 105762O
– reference: AminRIslamSHGopePChooKKRTapasNAnonymity preserving and lightweight multimedical server authentication protocol for telecare medical information systemIEEE J Biomed Health Inform20182341749175910.1109/JBHI.2018.2870319
– reference: Khan IH, Zahra SA, Zaim S, Harky A (2020) At the heart of covid-19. J Cardiac Surg
– reference: Tripathi U, Saran JR, Chamola V, Jolfaei A, Chintanpalli A (2021) Advancing remote healthcare using humanoid and affective systems. IEEE Sens J
– reference: HeHLongYLiuDWangXZhouXClinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion indexCrit Care201519133010.1186/s13054-015-1057-8
– reference: MartinezBValstarMFBinefaXPanticMLocal evidence aggregation for regression-based facial point detectionIEEE Trans Pattern Anal Mach Intell20123551149116310.1109/TPAMI.2012.205
– reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, Springer, pp 740–755
– reference: BultenWPinckaersHvan BovenHVinkRde BelTvan GinnekenBvan der LaakJHulsbergen-van de KaaCLitjensGAutomated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic studyLancet Oncol202021223324110.1016/S1470-2045(19)30739-9
– reference: BansalGChamolaVNarangPKumarSRamanSDeep3dscan: deep residual network and morphological descriptor based framework for lung cancer classification and 3d segmentationIET Image Process20201471240124710.1049/iet-ipr.2019.1164
– reference: Al-KhalidiFQSaatchiRBurkeDElphickHTanSRespiration rate monitoring methods: a reviewPediatr Pulmonol201146652352910.1002/ppul.21416
– reference: ChamolaVHassijaVGuptaVGuizaniMA comprehensive review of the covid-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impactIEEE Access20208902259026510.1109/ACCESS.2020.2992341
– reference: Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GT (2011) Ballistocardiography—a method worth revisiting. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 4279–4282
– reference: UsamaMAhmadBXiaoWHossainMSMuhammadGSelf-attention based recurrent convolutional neural network for disease prediction using healthcare dataComput Methods Progr Biomed202019010519110.1016/j.cmpb.2019.105191
– reference: WazidMDasAKKumarNContiMVasilakosAVA novel authentication and key agreement scheme for implantable medical devices deploymentIEEE J Biomed Health Inform20172241299130910.1109/JBHI.2017.2721545
– reference: Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. (2020a) Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology p 200905
– reference: Statista (2020) COVID-19: has the U.S. closed the testing gap? https://www.statista.com/chart/21108/covid-19-tests-performed-per-million-of-the-population/
– reference: MuhammadKHussainTTanveerMSanninoGde AlbuquerqueVHCCost-effective video summarization using deep cnn with hierarchical weighted fusion for iot surveillance networksIEEE Internet Things J2019754455446310.1109/JIOT.2019.2950469
– reference: Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, Rabbani L, Brodie D, Jain SS, Kirtane A et al (2020) The variety of cardiovascular presentations of covid-19. Circulation
– reference: Harding L, Campbell D (2020) Up to 20% of hospital patients with covid-19 caught it at hospital. http://www.theguardian.com/world/2020/may/17/hospital-patients-england-coronavirus-covid-19
– reference: MandalMDharVMishraAVipparthiSK3dfr: a swift 3d feature reductionist framework for scene independent change detectionIEEE Signal Process Lett201926121882188610.1109/LSP.2019.2952253
– reference: KosasihKAbeyratneURSwarnkarVTriasihRWavelet augmented cough analysis for rapid childhood pneumonia diagnosisIEEE Trans Biomed Eng20146241185119410.1109/TBME.2014.2381214
– reference: SharanRVAbeyratneURSwarnkarVRPorterPAutomatic croup diagnosis using cough sound recognitionIEEE Trans Biomed Eng201866248549510.1109/TBME.2018.2849502
– reference: Chakravarthy AS, Rohmetra H, Goel D, Baskar H, Garg P, Rout BK (2020) Complete scene parsing for autonomous navigation in unstructured environments. In: 2020 3rd international conference on intelligent autonomous systems (ICoIAS), IEEE, pp 41–45
– reference: Singh C, Kumar V et al (2020) Covid 19 pandemic: impact on masses and prevention knowhow. Int J Med Health Res
– reference: SharanRVAbeyratneURSwarnkarVRClaxtonSHukinsCPorterPPredicting spirometry readings using cough sound features and regressionPhysiol Meas201839909500110.1088/1361-6579/aad948
– reference: Aujla GS, Jindal A (2020) A decoupled blockchain approach for edge-envisioned iot-based healthcare monitoring. IEEE J Sel Areas Commun
– reference: RahmanMAHossainMSAlrajehNAGuizaniNB5g and explainable deep learning assisted healthcare vertical at the edge: Covid-i9 perspectiveIEEE Netw20203449810510.1109/MNET.011.2000353
– reference: Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, Xia T, Cicuta P, Mascolo C (2020) Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data. arXiv:2006.05919
– reference: Chaichulee S, Villarroel M, Jorge J, Arteta C, Green G, McCormick K, Zisserman A, Tarassenko L (2017) Multi-task convolutional neural network for patient detection and skin segmentation in continuous non-contact vital sign monitoring. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017), IEEE, pp 266–272
– reference: Cardona-MorrellMPrgometMLakeRNicholsonMHarrisonRLongJWestbrookJBraithwaiteJHillmanKVital signs monitoring and nurse-patient interaction: a qualitative observational study of hospital practiceInt J Nurs Stud20165691610.1016/j.ijnurstu.2015.12.007
– reference: Tarassenko L, Greenhalgh T (2020) Question: should smartphone apps be used clinically as oximeters? answer: No
– reference: Tsou YY, Lee YA, Hsu CT, Chang SH (2020) Siamese-rppg network: remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th annual ACM symposium on applied computing, pp 2066–2073
– reference: Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018
– reference: BellemoVLimZWLimGNguyenQDXieYYipMYHamzahHHoJLeeXQHsuWArtificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in africa: a clinical validation studyLancet Digital Health201911e35e4410.1016/S2589-7500(19)30004-4
– reference: Futurism (2020) New app attempts to detect signs of COVID-19 using voice analysis. https://futurism.com/neoscope/new-app-detects-covid19-voice
– reference: WangWden BrinkerACStuijkSde HaanGAlgorithmic principles of remote ppgIEEE Trans Biomed Eng20166471479149110.1109/TBME.2016.2609282
– reference: LeCunYBengioYConvolutional networks for images, speech, and time seriesHandb Brain Theory Neural Netw19953361101995
– reference: Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. J Autoimmunity p 102433
– reference: Ahmad T, Khan M, Haroon THM, Nasir S, Hui J, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Covid-19: zoonotic aspects. Travel Medicine and Infectious Disease
– reference: LintonNMKobayashiTYangYHayashiKAkhmetzhanovARJungSmYuanBKinoshitaRNishiuraHIncubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case dataJ Clin Med20209253810.3390/jcm9020538
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
– reference: MuhammadKHussainTDel SerJPaladeVDe AlbuquerqueVHCDeepres: a deep learning-based video summarization strategy for resource-constrained industrial surveillance scenariosIEEE Trans Ind Inform20191695938594710.1109/TII.2019.2960536
– reference: Polak SB, Van Gool IC, Cohen D, Jan H, van Paassen J (2020) A systematic review of pathological findings in covid-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol pp 1–11
– volume: 22
  start-page: 1299
  issue: 4
  year: 2017
  ident: 937_CR101
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2721545
– ident: 937_CR46
  doi: 10.1016/j.rbmo.2020.06.001
– ident: 937_CR52
  doi: 10.1016/j.jpha.2020.03.001
– ident: 937_CR80
  doi: 10.1016/j.jaut.2020.102433
– ident: 937_CR103
– volume: 23
  start-page: 2603
  issue: 6
  year: 2018
  ident: 937_CR27
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2887209
– ident: 937_CR24
  doi: 10.1109/JIOT.2020.3027095
– ident: 937_CR79
  doi: 10.1007/978-3-319-24574-4_28
– volume: 7
  start-page: 82721
  year: 2019
  ident: 937_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924045
– volume: 19
  start-page: 221
  year: 2017
  ident: 937_CR86
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 14
  start-page: 1240
  issue: 7
  year: 2020
  ident: 937_CR11
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2019.1164
– volume: 45
  start-page: 629
  issue: 10
  year: 2017
  ident: 937_CR42
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2017.07.005
– ident: 937_CR61
  doi: 10.1016/S2665-9913(20)30121-1
– volume: 64
  start-page: 1479
  issue: 7
  year: 2016
  ident: 937_CR98
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2609282
– ident: 937_CR99
  doi: 10.1109/ICIP.2019.8803649
– ident: 937_CR1
– ident: 937_CR58
  doi: 10.1109/WACV45572.2020.9093324
– ident: 937_CR15
  doi: 10.1145/3394486.3412865
– ident: 937_CR66
  doi: 10.1109/TNNLS.2020.2995800
– ident: 937_CR29
  doi: 10.1161/CIRCULATIONAHA.120.047164
– ident: 937_CR91
– ident: 937_CR38
  doi: 10.1109/CVPR.2016.90
– volume: 1
  start-page: e35
  issue: 1
  year: 2019
  ident: 937_CR13
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(19)30004-4
– ident: 937_CR7
  doi: 10.1109/JSAC.2020.3020655
– ident: 937_CR81
  doi: 10.1038/s41584-020-0451-z
– volume: 8
  start-page: S9
  year: 2003
  ident: 937_CR23
  publication-title: Respirology
  doi: 10.1046/j.1440-1843.2003.00518.x
– ident: 937_CR44
  doi: 10.1111/jocs.14596
– volume: 5
  start-page: 4711
  year: 2017
  ident: 937_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2678521
– volume: 26
  start-page: 319
  issue: 2
  year: 2005
  ident: 937_CR62
  publication-title: Eur Resp J
  doi: 10.1183/09031936.05.00034805
– ident: 937_CR55
  doi: 10.1155/2018/5214067
– ident: 937_CR39
  doi: 10.1117/12.2293623
– ident: 937_CR69
– ident: 937_CR21
  doi: 10.1109/JIOT.2020.3044966
– ident: 937_CR41
  doi: 10.1016/j.imu.2020.100378
– volume: 34
  start-page: 108
  issue: 3
  year: 2020
  ident: 937_CR68
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.1900257
– volume: 66
  start-page: 485
  issue: 2
  year: 2018
  ident: 937_CR85
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2849502
– volume: 9
  start-page: 538
  issue: 2
  year: 2020
  ident: 937_CR54
  publication-title: J Clin Med
  doi: 10.3390/jcm9020538
– ident: 937_CR2
  doi: 10.1016/j.tmaid.2020.101607
– volume: 46
  start-page: 523
  issue: 6
  year: 2011
  ident: 937_CR3
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21416
– ident: 937_CR53
  doi: 10.1007/978-3-319-10602-1_48
– volume: 7
  start-page: 478
  issue: 5
  year: 2017
  ident: 937_CR43
  publication-title: Asian Pac J Trop Biomed
  doi: 10.1016/j.apjtb.2017.01.019
– ident: 937_CR14
  doi: 10.1142/9789812797926_0003
– volume: 26
  start-page: 1882
  issue: 12
  year: 2019
  ident: 937_CR57
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2952253
– ident: 937_CR89
– ident: 937_CR73
  doi: 10.1038/s41379-020-0603-3
– ident: 937_CR32
  doi: 10.1109/IEMBS.2011.6091062
– volume: 34
  start-page: 98
  issue: 4
  year: 2020
  ident: 937_CR76
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000353
– volume: 25
  start-page: 3266
  issue: 11
  year: 2019
  ident: 937_CR105
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-2495
– ident: 937_CR25
  doi: 10.1109/ACII.2017.8273639
– ident: 937_CR60
  doi: 10.1155/2018/4567213
– volume: 18
  start-page: 1802
  issue: 6
  year: 2018
  ident: 937_CR33
  publication-title: Sensors
  doi: 10.3390/s18061802
– ident: 937_CR5
  doi: 10.1007/978-3-030-28553-1_6
– ident: 937_CR97
  doi: 10.1155/2018/7804243
– volume: 2
  start-page: 1
  issue: 1
  year: 2006
  ident: 937_CR12
  publication-title: Cough
  doi: 10.1186/1745-9974-2-8
– volume: 39
  start-page: 095001
  issue: 9
  year: 2018
  ident: 937_CR84
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aad948
– volume: 17
  start-page: 2474
  issue: 11
  year: 2017
  ident: 937_CR70
  publication-title: Sensors
  doi: 10.3390/s17112474
– ident: 937_CR83
  doi: 10.1109/ISBI.2016.7493307
– volume: 35
  start-page: 807
  issue: 5
  year: 2014
  ident: 937_CR92
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/35/5/807
– ident: 937_CR19
  doi: 10.1109/FG.2017.41
– ident: 937_CR34
– volume: 15
  start-page: 469
  issue: 1
  year: 2018
  ident: 937_CR8
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2866917
– ident: 937_CR94
  doi: 10.1145/3341105.3373905
– ident: 937_CR82
  doi: 10.1109/ICASSP40776.2020.9053446
– ident: 937_CR18
  doi: 10.1007/978-3-030-12544-8_8
– volume: 40
  start-page: 1
  issue: 11
  year: 2016
  ident: 937_CR100
  publication-title: J Med Syst
  doi: 10.1007/s10916-016-0596-0
– volume: 13
  start-page: e0202581
  issue: 8
  year: 2018
  ident: 937_CR95
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0202581
– ident: 937_CR10
  doi: 10.1109/EHB50910.2020.9280115
– ident: 937_CR102
– volume: 56
  start-page: 9
  year: 2016
  ident: 937_CR17
  publication-title: Int J Nurs Stud
  doi: 10.1016/j.ijnurstu.2015.12.007
– volume: 190
  start-page: 105191
  year: 2020
  ident: 937_CR96
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2019.105191
– volume: 62
  start-page: 1185
  issue: 4
  year: 2014
  ident: 937_CR45
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2381214
– ident: 937_CR31
– volume: 16
  start-page: 1067
  issue: 2
  year: 2019
  ident: 937_CR65
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2915592
– volume: 7
  start-page: 4455
  issue: 5
  year: 2019
  ident: 937_CR64
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2950469
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: 937_CR104
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 390
  start-page: 221
  issue: 10091
  year: 2017
  ident: 937_CR75
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(17)31764-6
– volume: 19
  start-page: 330
  issue: 1
  year: 2015
  ident: 937_CR37
  publication-title: Crit Care
  doi: 10.1186/s13054-015-1057-8
– ident: 937_CR56
  doi: 10.1038/s41591-020-0897-1
– ident: 937_CR50
  doi: 10.1007/978-3-030-58583-9_24
– volume: 113
  start-page: 266
  year: 2020
  ident: 937_CR67
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2020.06.048
– volume: 21
  start-page: 233
  issue: 2
  year: 2020
  ident: 937_CR16
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30739-9
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 937_CR48
  publication-title: Handb Brain Theory Neural Netw
– ident: 937_CR88
– ident: 937_CR77
  doi: 10.23919/EUSIPCO.2017.8081165
– ident: 937_CR90
– ident: 937_CR87
  doi: 10.1155/2018/9845321
– volume: 8
  start-page: 90225
  year: 2020
  ident: 937_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992341
– volume: 35
  start-page: 1149
  issue: 5
  year: 2012
  ident: 937_CR59
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.205
– volume: 23
  start-page: 1749
  issue: 4
  year: 2018
  ident: 937_CR6
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2870319
– ident: 937_CR20
  doi: 10.1109/ICoIAS49312.2020.9081829
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 937_CR49
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 937_CR9
  doi: 10.1109/CVPR.2013.440
– ident: 937_CR74
– volume: 58
  start-page: 7
  issue: 1
  year: 2010
  ident: 937_CR72
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2086456
– ident: 937_CR71
  doi: 10.1145/3123024.3124428
– ident: 937_CR78
  doi: 10.1109/IMTC.2007.379467
– ident: 937_CR26
  doi: 10.1109/CVPR.2009.5206848
– volume: 34
  start-page: 126
  issue: 4
  year: 2020
  ident: 937_CR40
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000458
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 937_CR47
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– ident: 937_CR51
– ident: 937_CR36
  doi: 10.1109/TITS.2020.2988040
– ident: 937_CR93
  doi: 10.1109/JSEN.2021.3049247
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 937_CR28
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 937_CR106
  publication-title: NPJ Digital Med
  doi: 10.1038/s41746-019-0087-z
– volume: 16
  start-page: 5938
  issue: 9
  year: 2019
  ident: 937_CR63
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2960536
– volume: 22
  start-page: 457
  issue: 4
  year: 2017
  ident: 937_CR30
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-017-0382-1
SSID ssj0002389
Score 2.5396512
Snippet The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 783
SubjectTerms Artificial Intelligence
Blood pressure
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Coronaviruses
COVID-19
Deep learning
Disease transmission
Health care
Imaging techniques
Information Systems Applications (incl.Internet)
Machine learning
Oxygen content
Personal computers
Quarantine
Remote monitoring
Respiratory rate
Risk
Software Engineering
Special Issue
Special Issue Article
Telemedicine
Vital signs
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIAD4ykGA-XADSKtzyTcpgGCAwPx0iQOVZt6AgkKWsd-P076QJsACc5N09SOnc-K7Q_gQGoRO7EreBoGmvuh53OFKuSp63kBCo3KK8gmRL8vBwN1XRaF5VW2e3UlaT11XexmWocIblIKTBguuJiHBTrupDHHm9uH2v_SIVSAXvIwvgwGZanM93NMH0dfGHM2Q3LmmtSePmfN_617FVZKtMm6xfZYgznM1qFZMTmw0rDXYfmy7t6ab8Bj94KjralK2QhJl8heremb77K3IZsYphFmUj9yRqCX9a4eLk64o45ZQUidHzH6R1vEmbM4S5muKFvyTbg_O73rnfOShIFr35FjHoS6I_3UUySM0JUoEjdRDprMWFK-IjQWOIkIUSkUspMkKiafoGUwRO0EEl1vCxrZW4bbwDwZxATmMSEI5GsZx66Kh0OFFGEiRVVeC5xKF5EuO5QbooyXqO6tbGUZkSwjK8tItOCwfue96M_x6-h2peKotNU8cgVFGcKl2K4FYkrt9YymB_f0k-z5yfbilhYjdlpwVCn_a-Kf17Hzt-G7sGRY7ouEoTY0xqMP3INFPRk_56N9u_s_AT96_dI
  priority: 102
  providerName: Springer Nature
Title AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges
URI https://link.springer.com/article/10.1007/s00607-021-00937-7
https://www.proquest.com/docview/2788272086
https://pubmed.ncbi.nlm.nih.gov/PMC8006120
Volume 105
WOSCitedRecordID wos000634659600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgM9UCigLrQrH7hRi40TxzYXVLatqFC3qwJlgUOUOLNqpZItm6W_n7HjZLWV6IWLL_nQJDMev7Fn5gG81lblUS4UL1NpeZLGCTdoUl6KOJaoLJq4IZtQo5GeTMw4bLjVIa2y9YneUZcz6_bI3wqK1dyZoU7f3_zmjjXKna4GCo012IiEiJydf1K888S0HDXwl3xNouUkFM340jnXiERxl6DggnrF1erCtESbd3Ml7xyY-nXoeOt_v-AJPA4IlB00JvMUHmC1DVstuwMLk30bNk-7jq71M_h5cMLR11mVbI6kX2S_vDtwUrLZlN069hHm0kFqRkCYDc8uTg55ZN6xhqS63mckry_srFlelcy2NC71c_h6fPRl-JEHYgZuk0gvuEztQCdlbOi3pEKjKkRhInTZsmQQhhCajAqVojGo9KAoTE5-wmo5RRtJjSJ-AevVrMIdYLGWOQF8LAgWJVbnuTD5dGqQok6kSCvuQdRqJbOha7kjz7jOun7LXpMZaTLzmsxUD950z9w0PTvuvXu3VVcW5m-dLXXVA7ViAN0bXV_u1SvV1aXvz609bhz0YL81leWL_y3Hy_vleAWPHNN9kzS0C-uL-R_cg4f2dnFVz_uwpr5978PGh6PR-LzvZwGNp4OhG8UZjWP5g8bzzxd_AV82DkU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB0hqFQ4kJZSEaCtD-0JrGa9H7YrIYRCERGQ9gBVpB62u96JQKIbmg1B_VP8RsbejyhI5cah5921bO_zeMaeeQ_gozIy8RIheRaFhgeRH3CNOuKZ8P0QpUHtl2ITst9Xg4H-vgD3dS2MTausbaIz1NnI2DPyz4JiNXtnqKL9mz_cqkbZ29VaQqOExQn-vaOQrdjrHdL__STE0dfz7jGvVAW4CTw14WFkOirIfI2ZiYRCmYpUe2hTPWk0mtyL0EtlhFqjVJ001QmB3KhwiMYLFVqiAzL5S0FAy8GmCna6jeWn7a90t8m2BSocVEU6rlTPEp9IbhMi7CGC5HJ-I5x5t49zMx9d0Lp976j1v83YK1itPGx2UC6J17CA-Rq0avUKVhmzNVg5axhrizfw86DH0dWRZWyMhF9kv525s7PCRkM2teoqzKa7FIwcfdb99qN3yD39hZUi3MUuo_lxhasFS_KMmVqmpliHi2cZ8FtYzEc5bgDzVZhQAIMpuX2BUUkidDIcaqSoGimS9Nvg1SiITcXKbsVBruOGT9ohJybkxA45sWzDTvPNTclJ8uTb2zU84so-FfEMG22Qc4BrWrS84_NP8qtLxz-unF_cacNuDc1Zw__ux-bT_fgAL4_Pz07j017_ZAuWBS2mMkFqGxYn41t8By_MdHJVjN-7Ncfg13ND9gHnKmRU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpUJwoA9ALBTwoZyo1Y0TxzYSQlW3q662LD0AWolDSJyJqATZslmK-Gv8OsbOY7WV2lsPnJNYtvPNy56ZD2BPW5UGqVA8j6XlURxG3KCJeS7CUKKyaMKabEJNJno6NWdr8LethXFpla1O9Io6n1l3Rn4gKFZzd4Y6PiiatIizwfDdxU_uGKTcTWtLp1FDZIx_flP4Vr0dDehfvxJiePzx6IQ3DAPcRoFecBnbvo7y0GBuY6FRZSIzAbq0T1qZIVdDBpmK0RhUup9lJiXAWy0LtIHU6JoekPq_Q1ZYOhkbK95ZATKFtetNei7SctoU7PiyPdcERXGXHOEOFBRXq0Zx6elezdO8clnrbeBw83_evS140Hje7LAWlW1Yw3IHNltWC9YouR24_77rZFs9hC-HI46-vixncyRcI_vh1aDbITYr2KVjXWEuDaZiFACwow-fRwMemDesJueu9hntlS9orVha5sy29DXVI_h0Kwt-DOvlrMQnwEItUwpsMCN3MLI6TYVJi8IgRdtIEWbYg6BFRGKbbu2ONOR70vWZ9ihKCEWJR1GievC6--ai7lVy49u7LVSSRm9VyRInPVAr4OtGdP3IV5-U5998X3Lt_eV-D_ZbmC4Hvn4eT2-ex0u4S0hNTkeT8TO4J0iu6rypXVhfzH_hc9iwl4vzav7Cix-Dr7eN2H_qQmz6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-enabled+remote+monitoring+of+vital+signs+for+COVID-19%3A+methods%2C+prospects+and+challenges&rft.jtitle=Computing&rft.au=Rohmetra%2C+Honnesh&rft.au=Raghunath%2C+Navaneeth&rft.au=Narang%2C+Pratik&rft.au=Chamola%2C+Vinay&rft.date=2023-04-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007%2Fs00607-021-00937-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_021_00937_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon