AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges
The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible...
Uloženo v:
| Vydáno v: | Computing Ročník 105; číslo 4; s. 783 - 809 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.04.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0010-485X, 1436-5057 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible or infected individuals is a challenging task. Although professional medical attention and hospitalization are necessary for high-risk COVID-19 patients, home isolation is an effective strategy for low and medium risk patients as well as for those who are at risk of infection and have been quarantined. However, this necessitates effective techniques for remotely monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and Deep Learning (DL) have strengthened the power of imaging techniques and can be used to remotely perform several tasks that previously required the physical presence of a medical professional. In this work, we study the prospects of vital signs monitoring for COVID-19 infected as well as quarantined individuals by using DL and image/signal-processing techniques, many of which can be deployed using simple cameras and sensors available on a smartphone or a personal computer, without the need of specialized equipment. We demonstrate the potential of ML-enabled workflows for several vital signs such as heart and respiratory rates, cough, blood pressure, and oxygen saturation. We also discuss the challenges involved in implementing ML-enabled techniques. |
|---|---|
| AbstractList | The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible or infected individuals is a challenging task. Although professional medical attention and hospitalization are necessary for high-risk COVID-19 patients, home isolation is an effective strategy for low and medium risk patients as well as for those who are at risk of infection and have been quarantined. However, this necessitates effective techniques for remotely monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and Deep Learning (DL) have strengthened the power of imaging techniques and can be used to remotely perform several tasks that previously required the physical presence of a medical professional. In this work, we study the prospects of vital signs monitoring for COVID-19 infected as well as quarantined individuals by using DL and image/signal-processing techniques, many of which can be deployed using simple cameras and sensors available on a smartphone or a personal computer, without the need of specialized equipment. We demonstrate the potential of ML-enabled workflows for several vital signs such as heart and respiratory rates, cough, blood pressure, and oxygen saturation. We also discuss the challenges involved in implementing ML-enabled techniques. |
| Author | Narang, Pratik Rohmetra, Honnesh Guizani, Mohsen Chamola, Vinay Raghunath, Navaneeth Lakkaniga, Naga Rajiv |
| Author_xml | – sequence: 1 givenname: Honnesh surname: Rohmetra fullname: Rohmetra, Honnesh organization: Department of CSIS, Birla Institute of Technology and Science, Pilani – sequence: 2 givenname: Navaneeth surname: Raghunath fullname: Raghunath, Navaneeth organization: Department of CSIS, Birla Institute of Technology and Science, Pilani – sequence: 3 givenname: Pratik surname: Narang fullname: Narang, Pratik organization: Department of CSIS, Birla Institute of Technology and Science, Pilani – sequence: 4 givenname: Vinay surname: Chamola fullname: Chamola, Vinay organization: Department of EEE & APPCAIR, Birla Institute of Technology and Science, Pilani – sequence: 5 givenname: Mohsen surname: Guizani fullname: Guizani, Mohsen organization: Qatar University – sequence: 6 givenname: Naga Rajiv orcidid: 0000-0001-8370-2224 surname: Lakkaniga fullname: Lakkaniga, Naga Rajiv email: nlakkaniga@uams.edu organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, SmartBio Labs |
| BookMark | eNp9kc9rFDEUx4NUcFv9BzwFvJr6kvmRxINQVq0LhV5aETyETObN7pSZZEyyhf73zboV0UNPObz3-fLN-5ySEx88EvKWwzkHkB8SQAuSgeAMQFeSyRdkxeuqZQ008oSsADiwWjU_XpHTlO4AQFRKr8jPiw1Db7sJexpxDhnpHPyYQxz9loaB3o_ZTjSNW5_oECJdX3_ffGZcf6Qz5l3o03u6xJAWdDlR63vqdnaa0G8xvSYvBzslfPP0npHbr19u1t_Y1fXlZn1xxVzNVWZN60DVfaWxd61QKDvRaY6tbLVzVteiangnW9QapYKu0xZq5VQzoOONQlGdkU_H3GXfzSUEfY52MkscZxsfTLCj-Xfix53ZhnujytW4gBLw7ikghl97TNnchX30pbMRUikhBai2bKnjliv_TREH48pt8hgOoeNkOJiDC3N0YYoL89uFkQUV_6F_yj0LVUcoLQcZGP-2eoZ6BDapnpo |
| CitedBy_id | crossref_primary_10_1007_s12539_021_00465_0 crossref_primary_10_1007_s12553_023_00790_y crossref_primary_10_1007_s11277_023_10535_9 crossref_primary_10_1109_LSP_2022_3215112 crossref_primary_10_3390_s21238056 crossref_primary_10_7759_cureus_44528 crossref_primary_10_1109_TAI_2022_3224097 crossref_primary_10_1007_s00521_024_09660_8 crossref_primary_10_3390_s22114097 crossref_primary_10_1109_JIOT_2022_3232793 crossref_primary_10_1007_s11277_021_08892_4 crossref_primary_10_1109_TVT_2022_3144358 crossref_primary_10_3390_math10214153 crossref_primary_10_1007_s12559_023_10179_8 crossref_primary_10_3390_healthcare11081152 crossref_primary_10_1016_j_eswa_2025_126815 crossref_primary_10_3390_s22020536 crossref_primary_10_1007_s11042_023_16794_9 crossref_primary_10_1186_s12913_023_10047_z crossref_primary_10_1109_ACCESS_2022_3219845 crossref_primary_10_1109_JIOT_2024_3351838 crossref_primary_10_1109_JSEN_2024_3388950 crossref_primary_10_1007_s11042_024_20332_6 crossref_primary_10_1007_s12559_023_10219_3 crossref_primary_10_1007_s00607_021_00992_0 crossref_primary_10_1007_s10257_022_00617_9 crossref_primary_10_1007_s42452_024_05848_8 crossref_primary_10_1002_widm_1485 crossref_primary_10_1088_1361_6501_acc11e crossref_primary_10_1145_3558518 |
| Cites_doi | 10.1109/JBHI.2017.2721545 10.1016/j.rbmo.2020.06.001 10.1016/j.jpha.2020.03.001 10.1016/j.jaut.2020.102433 10.1109/JBHI.2018.2887209 10.1109/JIOT.2020.3027095 10.1007/978-3-319-24574-4_28 10.1109/ACCESS.2019.2924045 10.1146/annurev-bioeng-071516-044442 10.1049/iet-ipr.2019.1164 10.1016/j.mpmed.2017.07.005 10.1016/S2665-9913(20)30121-1 10.1109/TBME.2016.2609282 10.1109/ICIP.2019.8803649 10.1109/WACV45572.2020.9093324 10.1145/3394486.3412865 10.1109/TNNLS.2020.2995800 10.1161/CIRCULATIONAHA.120.047164 10.1109/CVPR.2016.90 10.1016/S2589-7500(19)30004-4 10.1109/JSAC.2020.3020655 10.1038/s41584-020-0451-z 10.1046/j.1440-1843.2003.00518.x 10.1111/jocs.14596 10.1109/ACCESS.2017.2678521 10.1183/09031936.05.00034805 10.1155/2018/5214067 10.1117/12.2293623 10.1109/JIOT.2020.3044966 10.1016/j.imu.2020.100378 10.1109/MNET.011.1900257 10.1109/TBME.2018.2849502 10.3390/jcm9020538 10.1016/j.tmaid.2020.101607 10.1002/ppul.21416 10.1007/978-3-319-10602-1_48 10.1016/j.apjtb.2017.01.019 10.1142/9789812797926_0003 10.1109/LSP.2019.2952253 10.1038/s41379-020-0603-3 10.1109/IEMBS.2011.6091062 10.1109/MNET.011.2000353 10.1158/1078-0432.CCR-18-2495 10.1109/ACII.2017.8273639 10.1155/2018/4567213 10.3390/s18061802 10.1007/978-3-030-28553-1_6 10.1155/2018/7804243 10.1186/1745-9974-2-8 10.1088/1361-6579/aad948 10.3390/s17112474 10.1109/ISBI.2016.7493307 10.1088/0967-3334/35/5/807 10.1109/FG.2017.41 10.1109/TII.2018.2866917 10.1145/3341105.3373905 10.1109/ICASSP40776.2020.9053446 10.1007/978-3-030-12544-8_8 10.1007/s10916-016-0596-0 10.1371/journal.pone.0202581 10.1109/EHB50910.2020.9280115 10.1016/j.ijnurstu.2015.12.007 10.1016/j.cmpb.2019.105191 10.1109/TBME.2014.2381214 10.1109/TII.2019.2915592 10.1109/JIOT.2019.2950469 10.1038/s41586-020-2008-3 10.1016/S0140-6736(17)31764-6 10.1186/s13054-015-1057-8 10.1038/s41591-020-0897-1 10.1007/978-3-030-58583-9_24 10.1016/j.future.2020.06.048 10.1016/S1470-2045(19)30739-9 10.23919/EUSIPCO.2017.8081165 10.1155/2018/9845321 10.1109/ACCESS.2020.2992341 10.1109/TPAMI.2012.205 10.1109/JBHI.2018.2870319 10.1109/ICoIAS49312.2020.9081829 10.1038/nature14539 10.1109/CVPR.2013.440 10.1109/TBME.2010.2086456 10.1145/3123024.3124428 10.1109/IMTC.2007.379467 10.1109/CVPR.2009.5206848 10.1109/MNET.011.2000458 10.1162/neco.1989.1.4.541 10.1109/TITS.2020.2988040 10.1109/JSEN.2021.3049247 10.1007/s11263-009-0275-4 10.1038/s41746-019-0087-z 10.1109/TII.2019.2960536 10.1007/s10015-017-0382-1 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 5PM |
| DOI | 10.1007/s00607-021-00937-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| EndPage | 809 |
| ExternalDocumentID | PMC8006120 10_1007_s00607_021_00937_7 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFKWF AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U 5PM |
| ID | FETCH-LOGICAL-c418t-56c084d39edc628e7b2b91e6769cca942351b76e99e780bb9a048c85fec158e23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634659600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Tue Nov 04 01:58:23 EST 2025 Wed Nov 26 14:54:54 EST 2025 Sat Nov 29 03:51:38 EST 2025 Tue Nov 18 22:00:35 EST 2025 Fri Feb 21 02:43:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | COVID-19 Deep learning 68T45 Coronavirus Artificial intelligence |
| Language | English |
| License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-56c084d39edc628e7b2b91e6769cca942351b76e99e780bb9a048c85fec158e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8370-2224 |
| OpenAccessLink | http://dx.doi.org/10.1007/s00607-021-00937-7 |
| PQID | 2788272086 |
| PQPubID | 48322 |
| PageCount | 27 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006120 proquest_journals_2788272086 crossref_citationtrail_10_1007_s00607_021_00937_7 crossref_primary_10_1007_s00607_021_00937_7 springer_journals_10_1007_s00607_021_00937_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2023 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Nazario B (2020) High blood pressure and coronavirus (higher-risk people): symptoms, complications, treatments. https://www.webmd.com/lung/coronavirus-high-blood-pressure Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241 Herrmann C, Metzler J, Willersinn D, Beyerer J (2018) Distant pulse oximetry based on skin region extraction and multi-spectral measurement. In: Medical imaging 2018: image-guided procedures, robotic interventions, and modeling, international society for optics and photonics, vol 10576, p 105762O Rao MA, Kausthubha N, Yadav S, Gope D, Krishnaswamy UM, Ghosh PK (2017) Automatic prediction of spirometry readings from cough and wheeze for monitoring of asthma severity. In: 2017 25th European signal processing conference (EUSIPCO), IEEE, pp 41–45 Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018 Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GT (2011) Ballistocardiography—a method worth revisiting. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 4279–4282 AlghoulKAlharthiSAl OsmanHEl SaddikAHeart rate variability extraction from videos signals: Ica versus evm comparisonIEEE Access201754711471910.1109/ACCESS.2017.2678521 Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M (2020) Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J Lee E, Chen E, Lee CY (2020) Meta-rppg: remote heart rate estimation using a transductive meta-learner. arXiv:2007.06786 Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a“ siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744 Chakravarthy AS, Rohmetra H, Goel D, Baskar H, Garg P, Rout BK (2020) Complete scene parsing for autonomous navigation in unstructured environments. In: 2020 3rd international conference on intelligent autonomous systems (ICoIAS), IEEE, pp 41–45 Aujla GS, Jindal A (2020) A decoupled blockchain approach for edge-envisioned iot-based healthcare monitoring. IEEE J Sel Areas Commun BultenWPinckaersHvan BovenHVinkRde BelTvan GinnekenBvan der LaakJHulsbergen-van de KaaCLitjensGAutomated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic studyLancet Oncol202021223324110.1016/S1470-2045(19)30739-9 Gonzalez ViejoCFuentesSTorricoDDDunsheaFRNon-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolateSensors2018186180210.3390/s18061802 ParenteFRSantonicoMZompantiABenassaiMFerriGD’AmicoAPennazzaGAn electronic system for the contactless reading of ecg signalsSensors20171711247410.3390/s17112474 ChamolaVHassijaVGuptaVGuizaniMA comprehensive review of the covid-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impactIEEE Access20208902259026510.1109/ACCESS.2020.2992341 KhanHABaigFKMehboobRNosocomial infections: epidemiology, prevention, control and surveillanceAsian Pac J Trop Biomed20177547848210.1016/j.apjtb.2017.01.019 SharanRVAbeyratneURSwarnkarVRClaxtonSHukinsCPorterPPredicting spirometry readings using cough sound features and regressionPhysiol Meas201839909500110.1088/1361-6579/aad948 EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4 FukunishiMKuritaKYamamotoSTsumuraNNon-contact video-based estimation of heart rate variability spectrogram from hemoglobin compositionArtif Life Robot201722445746310.1007/s10015-017-0382-1 Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B (2020a) Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J Reddy KA, Kumar VJ (2007) Motion artifact reduction in photoplethysmographic signals using singular value decomposition. In: 2007 IEEE instrumentation & measurement technology conference IMTC 2007, IEEE, pp 1–4 DingXNassehiDLarsonECMeasuring oxygen saturation with smartphone cameras using convolutional neural networksIEEE J Biomed Health Inform20182362603261010.1109/JBHI.2018.2887209 MuhammadKRodriguesJJKozlovSPiccialliFde AlbuquerqueVHCEnergy-efficient monitoring of fire scenes for intelligent networksIEEE Netw202034310811510.1109/MNET.011.1900257 Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, Xia T, Cicuta P, Mascolo C (2020) Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data. arXiv:2006.05919 BansalGChamolaVNarangPKumarSRamanSDeep3dscan: deep residual network and morphological descriptor based framework for lung cancer classification and 3d segmentationIET Image Process20201471240124710.1049/iet-ipr.2019.1164 AujlaGSChaudharyRKaurKGargSKumarNRanjanRSafe: Sdn-assisted framework for edge-cloud interplay in secure healthcare ecosystemIEEE Trans Ind Inform201815146948010.1109/TII.2018.2866917 QuerGMuseEDNikzadNTopolEJSteinhublSRAugmenting diagnostic vision with aiThe Lancet20173901009122110.1016/S0140-6736(17)31764-6 ShenDWuGSukHIDeep learning in medical image analysisAnnu Rev Biomed Eng20171922124810.1146/annurev-bioeng-071516-044442 LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput19891454155110.1162/neco.1989.1.4.541 HassijaVChamolaVSaxenaVJainDGoyalPSikdarBA survey on iot security: application areas, security threats, and solution architecturesIEEE Access20197827218274310.1109/ACCESS.2019.2924045 Hassija V, Gupta V, Garg S, Chamola V (2020) Traffic jam probability estimation based on blockchain and deep neural networks. IEEE Trans Intell Transp Syst Mandal M, Kumar LK, Saran MS, Vipparthi SK (2020) Motionrec: a unified deep framework for moving object recognition. In: The IEEE winter conference on applications of computer vision (WACV) PohMZMcDuffDJPicardRWAdvancements in noncontact, multiparameter physiological measurements using a webcamIEEE Trans Biomed Eng201058171110.1109/TBME.2010.2086456 WangWden BrinkerACStuijkSde HaanGAlgorithmic principles of remote ppgIEEE Trans Biomed Eng20166471479149110.1109/TBME.2016.2609282 Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, John CN, Nabeel M (2020) Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv:2004.01275 Liu B, Dai X, Gong H, Guo Z, Liu N, Wang X (2018) Liu M (2018) Deep learning versus professional healthcare equipment: a fine-grained breathing rate monitoring model. Mob Inf Syst MuhammadKKhanSPaladeVMehmoodIDe AlbuquerqueVHCEdge intelligence-assisted smoke detection in foggy surveillance environmentsIEEE Trans Ind Inform20191621067107510.1109/TII.2019.2915592 Tripathi U, Saran JR, Chamola V, Jolfaei A, Chintanpalli A (2021) Advancing remote healthcare using humanoid and affective systems. IEEE Sens J LeCunYBengioYConvolutional networks for images, speech, and time seriesHandb Brain Theory Neural Netw19953361101995 TarassenkoLVillarroelMGuazziAJorgeJCliftonDPughCNon-contact video-based vital sign monitoring using ambient light and auto-regressive modelsPhysiol Meas201435580710.1088/0967-3334/35/5/807 UnakafovAMMöllerSKaganIGailATreueSWolfFUsing imaging photoplethysmography for heart rate estimation in non-human primatesPLoS One2018138e020258110.1371/journal.pone.0202581 Singh C, Kumar V et al (2020) Covid 19 pandemic: impact on masses and prevention knowhow. Int J Med Health Res For Quality I, in Health Care) E (Jun 24 2010) What is blood pressure and how is it measured? https://www.ncbi.nlm.nih.gov/books/NBK279251 MuhammadKKhanSKumarNDel SerJMirjaliliSVision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challengesFut Gener Comput Syst202011326628010.1016/j.future.2020.06.048 McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C (2020) Immune mechanisms of pulmonary intravascular coagulopathy in covid-19 pneumonia. Lancet Rheumatol Schlesinger O, Vigderhouse N, Eytan D, Moshe Y (2020) Blood pressure estimation from ppg signals using convolutional neural networks and siamese network. In: ICASSP 2020 IEEE international conference on acoustics. speech and signal processing (ICASSP), IEEE, pp 1135–1139 WazidMDasAKKumarNContiMVasilakosAVA novel authentication and key agreement scheme for implantable medical devices deploymentIEEE J Biomed Health Inform20172241299130910.1109/JBHI.2017.2721545 XuYHosnyAZeleznikRParmarCCorollerTFrancoIMakRHAertsHJDeep learning predicts lung cancer treatment response from serial medical imagingClin Cancer Res201925113266327510.1158/1078-0432.CCR-18-2495 La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM (2020) Testing for sars-cov-2 (covid-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod BioMed Online Al-KhalidiFQSaatchiRBurkeDElphickHTanSRespiration rate monitoring methods: a reviewPediatr Pulmonol201146652352910.1002/ppul.21416 Futurism (2020) New app attempts to detect signs of COVID-19 using voice analysis. https://futurism.com/neoscope/new-app-detects-covid19-voice Shi Y, Liu H, Wang Y, Cai M, Xu W (2018) Theory and application of audio-based assessment of cough. J Sens WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3 Muhammad K, Khan S, Del Ser J, de Albuquerque VHC (2020a) Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans Neural Netw Learn Syst Schett G, Manger B, Simon D, Caporali R (2020) Covid-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol pp 1–6 LintonNMKobayashiTYangYHay MR Miller (937_CR62) 2005; 26 Y LeCun (937_CR48) 1995; 3361 937_CR77 S Yeung (937_CR106) 2019; 2 MS Hossain (937_CR40) 2020; 34 DR Jenkins (937_CR42) 2017; 45 937_CR79 937_CR78 937_CR73 937_CR74 M Cardona-Morrell (937_CR17) 2016; 56 Y LeCun (937_CR47) 1989; 1 937_CR71 FQ Al-Khalidi (937_CR3) 2011; 46 937_CR69 937_CR66 G Bansal (937_CR11) 2020; 14 NM Linton (937_CR54) 2020; 9 M Wazid (937_CR100) 2016; 40 H He (937_CR37) 2015; 19 M Everingham (937_CR28) 2010; 88 937_CR61 M Wazid (937_CR101) 2017; 22 937_CR60 937_CR15 937_CR14 MZ Poh (937_CR72) 2010; 58 937_CR103 937_CR102 937_CR99 937_CR10 X Ding (937_CR27) 2018; 23 Y Xu (937_CR105) 2019; 25 RV Sharan (937_CR84) 2018; 39 937_CR19 937_CR18 937_CR94 937_CR97 937_CR91 937_CR90 937_CR93 F Wu (937_CR104) 2020; 579 M Fukunishi (937_CR30) 2017; 22 M Usama (937_CR96) 2020; 190 937_CR88 937_CR87 V Chamola (937_CR22) 2020; 8 937_CR89 M Chan-Yeung (937_CR23) 2003; 8 C Gonzalez Viejo (937_CR33) 2018; 18 937_CR83 AM Unakafov (937_CR95) 2018; 13 V Bellemo (937_CR13) 2019; 1 W Bulten (937_CR16) 2020; 21 937_CR80 937_CR82 K Kosasih (937_CR45) 2014; 62 937_CR81 937_CR36 RV Sharan (937_CR85) 2018; 66 937_CR39 937_CR38 937_CR32 937_CR34 L Tarassenko (937_CR92) 2014; 35 K Muhammad (937_CR65) 2019; 16 937_CR31 937_CR26 937_CR25 937_CR21 937_CR24 937_CR29 937_CR9 Y LeCun (937_CR49) 2015; 521 937_CR5 937_CR20 937_CR7 B Martinez (937_CR59) 2012; 35 937_CR2 937_CR1 GS Aujla (937_CR8) 2018; 15 937_CR58 937_CR55 G Quer (937_CR75) 2017; 390 937_CR56 K Muhammad (937_CR68) 2020; 34 K Muhammad (937_CR67) 2020; 113 MA Rahman (937_CR76) 2020; 34 V Hassija (937_CR35) 2019; 7 M Mandal (937_CR57) 2019; 26 D Shen (937_CR86) 2017; 19 937_CR51 K Muhammad (937_CR64) 2019; 7 937_CR50 937_CR53 937_CR52 937_CR44 937_CR46 K Alghoul (937_CR4) 2017; 5 HA Khan (937_CR43) 2017; 7 W Wang (937_CR98) 2016; 64 FR Parente (937_CR70) 2017; 17 K Muhammad (937_CR63) 2019; 16 SJ Barry (937_CR12) 2006; 2 R Amin (937_CR6) 2018; 23 937_CR41 |
| References_xml | – reference: MuhammadKRodriguesJJKozlovSPiccialliFde AlbuquerqueVHCEnergy-efficient monitoring of fire scenes for intelligent networksIEEE Netw202034310811510.1109/MNET.011.1900257 – reference: Bales C, John C, Farooq H, Masood U, Nabeel M, Imran A (2020) Can machine learning be used to recognize and diagnose coughs? arXiv:2004.01495 – reference: WazidMZeadallySDasAKOdeluVAnalysis of security protocols for mobile healthcareJ Med Syst2016401111010.1007/s10916-016-0596-0 – reference: WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3 – reference: Ahan M, Rohmetra H, Mungad A (2018) Social network analysis using data segmentation and neural networks. Int Res J Eng Technol (IRJET) Volume 5 – reference: KhanHABaigFKMehboobRNosocomial infections: epidemiology, prevention, control and surveillanceAsian Pac J Trop Biomed20177547848210.1016/j.apjtb.2017.01.019 – reference: TarassenkoLVillarroelMGuazziAJorgeJCliftonDPughCNon-contact video-based vital sign monitoring using ambient light and auto-regressive modelsPhysiol Meas201435580710.1088/0967-3334/35/5/807 – reference: Whiting P, Elwenspoek M (2020) Accuracy of self-monitoring heart rate, respiratory rate and oxygen saturation in patients with symptoms suggestive of covid infection – reference: Rao MA, Kausthubha N, Yadav S, Gope D, Krishnaswamy UM, Ghosh PK (2017) Automatic prediction of spirometry readings from cough and wheeze for monitoring of asthma severity. In: 2017 25th European signal processing conference (EUSIPCO), IEEE, pp 41–45 – reference: Shi Y, Liu H, Wang Y, Cai M, Xu W (2018) Theory and application of audio-based assessment of cough. J Sens – reference: XuYHosnyAZeleznikRParmarCCorollerTFrancoIMakRHAertsHJDeep learning predicts lung cancer treatment response from serial medical imagingClin Cancer Res201925113266327510.1158/1078-0432.CCR-18-2495 – reference: Chan-YeungMXuRHSars: epidemiologyRespirology20038S910.1046/j.1440-1843.2003.00518.x – reference: Schlesinger O, Vigderhouse N, Eytan D, Moshe Y (2020) Blood pressure estimation from ppg signals using convolutional neural networks and siamese network. In: ICASSP 2020 IEEE international conference on acoustics. speech and signal processing (ICASSP), IEEE, pp 1135–1139 – reference: Nazario B (2020) High blood pressure and coronavirus (higher-risk people): symptoms, complications, treatments. https://www.webmd.com/lung/coronavirus-high-blood-pressure – reference: HossainMSMuhammadGGuizaniNExplainable ai and mass surveillance system-based healthcare framework to combat covid-i9 like pandemicsIEEE Netw202034412613210.1109/MNET.011.2000458 – reference: BarrySJDaneADMoriceAHWalmsleyADThe automatic recognition and counting of coughCough2006211910.1186/1745-9974-2-8 – reference: Špetlík R, Franc V, Matas J (2018) Visual heart rate estimation with convolutional neural network. In: Proceedings of the british machine vision conference, Newcastle, UK, pp 3–6 – reference: PohMZMcDuffDJPicardRWAdvancements in noncontact, multiparameter physiological measurements using a webcamIEEE Trans Biomed Eng201058171110.1109/TBME.2010.2086456 – reference: Alloghani M, Baker T, Al-Jumeily D, Hussain A, Mustafina J, Aljaaf AJ (2020) Prospects of machine and deep learning in analysis of vital signs for the improvement of healthcare services. In: Nature-inspired computation in data mining and machine learning, Springer, pp 113–136 – reference: FukunishiMKuritaKYamamotoSTsumuraNNon-contact video-based estimation of heart rate variability spectrogram from hemoglobin compositionArtif Life Robot201722445746310.1007/s10015-017-0382-1 – reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4 – reference: JenkinsDRNosocomial infections and infection controlMedicine2017451062963310.1016/j.mpmed.2017.07.005 – reference: Patil OR, Gao Y, Li B, Jin Z (2017) Cambp: A camera-based, non-contact blood pressure monitor. In: Proceedings of the 2017 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2017 ACM international symposium on wearable computers, pp 524–529 – reference: AlghoulKAlharthiSAl OsmanHEl SaddikAHeart rate variability extraction from videos signals: Ica versus evm comparisonIEEE Access201754711471910.1109/ACCESS.2017.2678521 – reference: Mandal M, Kumar LK, Saran MS, Vipparthi SK (2020) Motionrec: a unified deep framework for moving object recognition. In: The IEEE winter conference on applications of computer vision (WACV) – reference: Balakrishnan G, Durand F, Guttag J (2013) Detecting pulse from head motions in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3430–3437 – reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 – reference: Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, John CN, Nabeel M (2020) Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv:2004.01275 – reference: MuhammadKKhanSPaladeVMehmoodIDe AlbuquerqueVHCEdge intelligence-assisted smoke detection in foggy surveillance environmentsIEEE Trans Ind Inform20191621067107510.1109/TII.2019.2915592 – reference: For Quality I, in Health Care) E (Jun 24 2010) What is blood pressure and how is it measured? https://www.ncbi.nlm.nih.gov/books/NBK279251/ – reference: Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M (2020) Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J – reference: Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255 – reference: Hassija V, Gupta V, Garg S, Chamola V (2020) Traffic jam probability estimation based on blockchain and deep neural networks. IEEE Trans Intell Transp Syst – reference: ShenDWuGSukHIDeep learning in medical image analysisAnnu Rev Biomed Eng20171922124810.1146/annurev-bioeng-071516-044442 – reference: ParenteFRSantonicoMZompantiABenassaiMFerriGD’AmicoAPennazzaGAn electronic system for the contactless reading of ecg signalsSensors20171711247410.3390/s17112474 – reference: Schett G, Manger B, Simon D, Caporali R (2020) Covid-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol pp 1–6 – reference: Li X, Geng M, Peng Y, Meng L, Lu S (2020b) Molecular immune pathogenesis and diagnosis of covid-19. J Pharm Anal – reference: Liu B, Dai X, Gong H, Guo Z, Liu N, Wang X (2018) Liu M (2018) Deep learning versus professional healthcare equipment: a fine-grained breathing rate monitoring model. Mob Inf Syst – reference: Reddy KA, Kumar VJ (2007) Motion artifact reduction in photoplethysmographic signals using singular value decomposition. In: 2007 IEEE instrumentation & measurement technology conference IMTC 2007, IEEE, pp 1–4 – reference: Secerbegovic A, Bergsland J, Halvorsen PS, Suljanovic N, Mujcic A, Balasingham I (2016) Blood pressure estimation using video plethysmography. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 461–464 – reference: QuerGMuseEDNikzadNTopolEJSteinhublSRAugmenting diagnostic vision with aiThe Lancet20173901009122110.1016/S0140-6736(17)31764-6 – reference: AujlaGSChaudharyRKaurKGargSKumarNRanjanRSafe: Sdn-assisted framework for edge-cloud interplay in secure healthcare ecosystemIEEE Trans Ind Inform201815146948010.1109/TII.2018.2866917 – reference: McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C (2020) Immune mechanisms of pulmonary intravascular coagulopathy in covid-19 pneumonia. Lancet Rheumatol – reference: Casalino G, Castellano G, Castiello C, Pasquadibisceglie V, Zaza G (2018) A fuzzy rule-based decision support system for cardiovascular risk assessment. In: International workshop on fuzzy logic and applications, Springer, pp 97–108 – reference: Gonzalez ViejoCFuentesSTorricoDDDunsheaFRNon-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolateSensors2018186180210.3390/s18061802 – reference: Muhammad K, Khan S, Del Ser J, de Albuquerque VHC (2020a) Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans Neural Netw Learn Syst – reference: MillerMRHankinsonJBrusascoVBurgosFCasaburiRCoatesACrapoREnrightPvVan der GrintenCGustafssonPStandardisation of spirometryEur Resp J200526231933810.1183/09031936.05.00034805 – reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput19891454155110.1162/neco.1989.1.4.541 – reference: Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B (2020a) Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J – reference: Wang ZK, Kao Y, Hsu CT (2019) Vision-based heart rate estimation via a two-stream cnn. In: 2019 IEEE international conference on image processing (ICIP), IEEE, pp 3327–3331 – reference: Cho Y, Bianchi-Berthouze N, Julier SJ (2017) Deepbreath: deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In: 2017 seventh international conference on affective computing and intelligent interaction (ACII), IEEE, pp 456–463 – reference: DingXNassehiDLarsonECMeasuring oxygen saturation with smartphone cameras using convolutional neural networksIEEE J Biomed Health Inform20182362603261010.1109/JBHI.2018.2887209 – reference: Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, Liao P, Qiu JF, Lin Y, Cai XF, et al (2020) Antibody responses to sars-cov-2 in patients with covid-19. Nat Med pp 845–848 – reference: Lee E, Chen E, Lee CY (2020) Meta-rppg: remote heart rate estimation using a transductive meta-learner. arXiv:2007.06786 – reference: Massaroni C, Lopes DS, Lo Presti D, Schena E, Silvestri S (2018) Contactless monitoring of breathing patterns and respiratory rate at the pit of the neck: a single camera approach. J Sens – reference: MuhammadKKhanSKumarNDel SerJMirjaliliSVision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challengesFut Gener Comput Syst202011326628010.1016/j.future.2020.06.048 – reference: La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM (2020) Testing for sars-cov-2 (covid-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod BioMed Online – reference: WHO (2020) WHO COVID-19 Explorer. https://worldhealthorg.shinyapps.io/covid/ – reference: Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a“ siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744 – reference: UnakafovAMMöllerSKaganIGailATreueSWolfFUsing imaging photoplethysmography for heart rate estimation in non-human primatesPLoS One2018138e020258110.1371/journal.pone.0202581 – reference: YeungSRinaldoFJoplingJLiuBMehraRDowningNLGuoMBianconiGMAlahiALeeJA computer vision system for deep learning-based detection of patient mobilization activities in the icuNPJ Digital Med2019211510.1038/s41746-019-0087-z – reference: HassijaVChamolaVSaxenaVJainDGoyalPSikdarBA survey on iot security: application areas, security threats, and solution architecturesIEEE Access20197827218274310.1109/ACCESS.2019.2924045 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 – reference: Herrmann C, Metzler J, Willersinn D, Beyerer J (2018) Distant pulse oximetry based on skin region extraction and multi-spectral measurement. In: Medical imaging 2018: image-guided procedures, robotic interventions, and modeling, international society for optics and photonics, vol 10576, p 105762O – reference: AminRIslamSHGopePChooKKRTapasNAnonymity preserving and lightweight multimedical server authentication protocol for telecare medical information systemIEEE J Biomed Health Inform20182341749175910.1109/JBHI.2018.2870319 – reference: Khan IH, Zahra SA, Zaim S, Harky A (2020) At the heart of covid-19. J Cardiac Surg – reference: Tripathi U, Saran JR, Chamola V, Jolfaei A, Chintanpalli A (2021) Advancing remote healthcare using humanoid and affective systems. IEEE Sens J – reference: HeHLongYLiuDWangXZhouXClinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion indexCrit Care201519133010.1186/s13054-015-1057-8 – reference: MartinezBValstarMFBinefaXPanticMLocal evidence aggregation for regression-based facial point detectionIEEE Trans Pattern Anal Mach Intell20123551149116310.1109/TPAMI.2012.205 – reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, Springer, pp 740–755 – reference: BultenWPinckaersHvan BovenHVinkRde BelTvan GinnekenBvan der LaakJHulsbergen-van de KaaCLitjensGAutomated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic studyLancet Oncol202021223324110.1016/S1470-2045(19)30739-9 – reference: BansalGChamolaVNarangPKumarSRamanSDeep3dscan: deep residual network and morphological descriptor based framework for lung cancer classification and 3d segmentationIET Image Process20201471240124710.1049/iet-ipr.2019.1164 – reference: Al-KhalidiFQSaatchiRBurkeDElphickHTanSRespiration rate monitoring methods: a reviewPediatr Pulmonol201146652352910.1002/ppul.21416 – reference: ChamolaVHassijaVGuptaVGuizaniMA comprehensive review of the covid-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impactIEEE Access20208902259026510.1109/ACCESS.2020.2992341 – reference: Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GT (2011) Ballistocardiography—a method worth revisiting. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 4279–4282 – reference: UsamaMAhmadBXiaoWHossainMSMuhammadGSelf-attention based recurrent convolutional neural network for disease prediction using healthcare dataComput Methods Progr Biomed202019010519110.1016/j.cmpb.2019.105191 – reference: WazidMDasAKKumarNContiMVasilakosAVA novel authentication and key agreement scheme for implantable medical devices deploymentIEEE J Biomed Health Inform20172241299130910.1109/JBHI.2017.2721545 – reference: Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. (2020a) Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology p 200905 – reference: Statista (2020) COVID-19: has the U.S. closed the testing gap? https://www.statista.com/chart/21108/covid-19-tests-performed-per-million-of-the-population/ – reference: MuhammadKHussainTTanveerMSanninoGde AlbuquerqueVHCCost-effective video summarization using deep cnn with hierarchical weighted fusion for iot surveillance networksIEEE Internet Things J2019754455446310.1109/JIOT.2019.2950469 – reference: Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, Rabbani L, Brodie D, Jain SS, Kirtane A et al (2020) The variety of cardiovascular presentations of covid-19. Circulation – reference: Harding L, Campbell D (2020) Up to 20% of hospital patients with covid-19 caught it at hospital. http://www.theguardian.com/world/2020/may/17/hospital-patients-england-coronavirus-covid-19 – reference: MandalMDharVMishraAVipparthiSK3dfr: a swift 3d feature reductionist framework for scene independent change detectionIEEE Signal Process Lett201926121882188610.1109/LSP.2019.2952253 – reference: KosasihKAbeyratneURSwarnkarVTriasihRWavelet augmented cough analysis for rapid childhood pneumonia diagnosisIEEE Trans Biomed Eng20146241185119410.1109/TBME.2014.2381214 – reference: SharanRVAbeyratneURSwarnkarVRPorterPAutomatic croup diagnosis using cough sound recognitionIEEE Trans Biomed Eng201866248549510.1109/TBME.2018.2849502 – reference: Chakravarthy AS, Rohmetra H, Goel D, Baskar H, Garg P, Rout BK (2020) Complete scene parsing for autonomous navigation in unstructured environments. In: 2020 3rd international conference on intelligent autonomous systems (ICoIAS), IEEE, pp 41–45 – reference: Singh C, Kumar V et al (2020) Covid 19 pandemic: impact on masses and prevention knowhow. Int J Med Health Res – reference: SharanRVAbeyratneURSwarnkarVRClaxtonSHukinsCPorterPPredicting spirometry readings using cough sound features and regressionPhysiol Meas201839909500110.1088/1361-6579/aad948 – reference: Aujla GS, Jindal A (2020) A decoupled blockchain approach for edge-envisioned iot-based healthcare monitoring. IEEE J Sel Areas Commun – reference: RahmanMAHossainMSAlrajehNAGuizaniNB5g and explainable deep learning assisted healthcare vertical at the edge: Covid-i9 perspectiveIEEE Netw20203449810510.1109/MNET.011.2000353 – reference: Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, Xia T, Cicuta P, Mascolo C (2020) Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data. arXiv:2006.05919 – reference: Chaichulee S, Villarroel M, Jorge J, Arteta C, Green G, McCormick K, Zisserman A, Tarassenko L (2017) Multi-task convolutional neural network for patient detection and skin segmentation in continuous non-contact vital sign monitoring. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017), IEEE, pp 266–272 – reference: Cardona-MorrellMPrgometMLakeRNicholsonMHarrisonRLongJWestbrookJBraithwaiteJHillmanKVital signs monitoring and nurse-patient interaction: a qualitative observational study of hospital practiceInt J Nurs Stud20165691610.1016/j.ijnurstu.2015.12.007 – reference: Tarassenko L, Greenhalgh T (2020) Question: should smartphone apps be used clinically as oximeters? answer: No – reference: Tsou YY, Lee YA, Hsu CT, Chang SH (2020) Siamese-rppg network: remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th annual ACM symposium on applied computing, pp 2066–2073 – reference: Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018 – reference: BellemoVLimZWLimGNguyenQDXieYYipMYHamzahHHoJLeeXQHsuWArtificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in africa: a clinical validation studyLancet Digital Health201911e35e4410.1016/S2589-7500(19)30004-4 – reference: Futurism (2020) New app attempts to detect signs of COVID-19 using voice analysis. https://futurism.com/neoscope/new-app-detects-covid19-voice – reference: WangWden BrinkerACStuijkSde HaanGAlgorithmic principles of remote ppgIEEE Trans Biomed Eng20166471479149110.1109/TBME.2016.2609282 – reference: LeCunYBengioYConvolutional networks for images, speech, and time seriesHandb Brain Theory Neural Netw19953361101995 – reference: Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. J Autoimmunity p 102433 – reference: Ahmad T, Khan M, Haroon THM, Nasir S, Hui J, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Covid-19: zoonotic aspects. Travel Medicine and Infectious Disease – reference: LintonNMKobayashiTYangYHayashiKAkhmetzhanovARJungSmYuanBKinoshitaRNishiuraHIncubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case dataJ Clin Med20209253810.3390/jcm9020538 – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241 – reference: MuhammadKHussainTDel SerJPaladeVDe AlbuquerqueVHCDeepres: a deep learning-based video summarization strategy for resource-constrained industrial surveillance scenariosIEEE Trans Ind Inform20191695938594710.1109/TII.2019.2960536 – reference: Polak SB, Van Gool IC, Cohen D, Jan H, van Paassen J (2020) A systematic review of pathological findings in covid-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol pp 1–11 – volume: 22 start-page: 1299 issue: 4 year: 2017 ident: 937_CR101 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2721545 – ident: 937_CR46 doi: 10.1016/j.rbmo.2020.06.001 – ident: 937_CR52 doi: 10.1016/j.jpha.2020.03.001 – ident: 937_CR80 doi: 10.1016/j.jaut.2020.102433 – ident: 937_CR103 – volume: 23 start-page: 2603 issue: 6 year: 2018 ident: 937_CR27 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2887209 – ident: 937_CR24 doi: 10.1109/JIOT.2020.3027095 – ident: 937_CR79 doi: 10.1007/978-3-319-24574-4_28 – volume: 7 start-page: 82721 year: 2019 ident: 937_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924045 – volume: 19 start-page: 221 year: 2017 ident: 937_CR86 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 14 start-page: 1240 issue: 7 year: 2020 ident: 937_CR11 publication-title: IET Image Process doi: 10.1049/iet-ipr.2019.1164 – volume: 45 start-page: 629 issue: 10 year: 2017 ident: 937_CR42 publication-title: Medicine doi: 10.1016/j.mpmed.2017.07.005 – ident: 937_CR61 doi: 10.1016/S2665-9913(20)30121-1 – volume: 64 start-page: 1479 issue: 7 year: 2016 ident: 937_CR98 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2609282 – ident: 937_CR99 doi: 10.1109/ICIP.2019.8803649 – ident: 937_CR1 – ident: 937_CR58 doi: 10.1109/WACV45572.2020.9093324 – ident: 937_CR15 doi: 10.1145/3394486.3412865 – ident: 937_CR66 doi: 10.1109/TNNLS.2020.2995800 – ident: 937_CR29 doi: 10.1161/CIRCULATIONAHA.120.047164 – ident: 937_CR91 – ident: 937_CR38 doi: 10.1109/CVPR.2016.90 – volume: 1 start-page: e35 issue: 1 year: 2019 ident: 937_CR13 publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(19)30004-4 – ident: 937_CR7 doi: 10.1109/JSAC.2020.3020655 – ident: 937_CR81 doi: 10.1038/s41584-020-0451-z – volume: 8 start-page: S9 year: 2003 ident: 937_CR23 publication-title: Respirology doi: 10.1046/j.1440-1843.2003.00518.x – ident: 937_CR44 doi: 10.1111/jocs.14596 – volume: 5 start-page: 4711 year: 2017 ident: 937_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2678521 – volume: 26 start-page: 319 issue: 2 year: 2005 ident: 937_CR62 publication-title: Eur Resp J doi: 10.1183/09031936.05.00034805 – ident: 937_CR55 doi: 10.1155/2018/5214067 – ident: 937_CR39 doi: 10.1117/12.2293623 – ident: 937_CR69 – ident: 937_CR21 doi: 10.1109/JIOT.2020.3044966 – ident: 937_CR41 doi: 10.1016/j.imu.2020.100378 – volume: 34 start-page: 108 issue: 3 year: 2020 ident: 937_CR68 publication-title: IEEE Netw doi: 10.1109/MNET.011.1900257 – volume: 66 start-page: 485 issue: 2 year: 2018 ident: 937_CR85 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2849502 – volume: 9 start-page: 538 issue: 2 year: 2020 ident: 937_CR54 publication-title: J Clin Med doi: 10.3390/jcm9020538 – ident: 937_CR2 doi: 10.1016/j.tmaid.2020.101607 – volume: 46 start-page: 523 issue: 6 year: 2011 ident: 937_CR3 publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21416 – ident: 937_CR53 doi: 10.1007/978-3-319-10602-1_48 – volume: 7 start-page: 478 issue: 5 year: 2017 ident: 937_CR43 publication-title: Asian Pac J Trop Biomed doi: 10.1016/j.apjtb.2017.01.019 – ident: 937_CR14 doi: 10.1142/9789812797926_0003 – volume: 26 start-page: 1882 issue: 12 year: 2019 ident: 937_CR57 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2952253 – ident: 937_CR89 – ident: 937_CR73 doi: 10.1038/s41379-020-0603-3 – ident: 937_CR32 doi: 10.1109/IEMBS.2011.6091062 – volume: 34 start-page: 98 issue: 4 year: 2020 ident: 937_CR76 publication-title: IEEE Netw doi: 10.1109/MNET.011.2000353 – volume: 25 start-page: 3266 issue: 11 year: 2019 ident: 937_CR105 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2495 – ident: 937_CR25 doi: 10.1109/ACII.2017.8273639 – ident: 937_CR60 doi: 10.1155/2018/4567213 – volume: 18 start-page: 1802 issue: 6 year: 2018 ident: 937_CR33 publication-title: Sensors doi: 10.3390/s18061802 – ident: 937_CR5 doi: 10.1007/978-3-030-28553-1_6 – ident: 937_CR97 doi: 10.1155/2018/7804243 – volume: 2 start-page: 1 issue: 1 year: 2006 ident: 937_CR12 publication-title: Cough doi: 10.1186/1745-9974-2-8 – volume: 39 start-page: 095001 issue: 9 year: 2018 ident: 937_CR84 publication-title: Physiol Meas doi: 10.1088/1361-6579/aad948 – volume: 17 start-page: 2474 issue: 11 year: 2017 ident: 937_CR70 publication-title: Sensors doi: 10.3390/s17112474 – ident: 937_CR83 doi: 10.1109/ISBI.2016.7493307 – volume: 35 start-page: 807 issue: 5 year: 2014 ident: 937_CR92 publication-title: Physiol Meas doi: 10.1088/0967-3334/35/5/807 – ident: 937_CR19 doi: 10.1109/FG.2017.41 – ident: 937_CR34 – volume: 15 start-page: 469 issue: 1 year: 2018 ident: 937_CR8 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2866917 – ident: 937_CR94 doi: 10.1145/3341105.3373905 – ident: 937_CR82 doi: 10.1109/ICASSP40776.2020.9053446 – ident: 937_CR18 doi: 10.1007/978-3-030-12544-8_8 – volume: 40 start-page: 1 issue: 11 year: 2016 ident: 937_CR100 publication-title: J Med Syst doi: 10.1007/s10916-016-0596-0 – volume: 13 start-page: e0202581 issue: 8 year: 2018 ident: 937_CR95 publication-title: PLoS One doi: 10.1371/journal.pone.0202581 – ident: 937_CR10 doi: 10.1109/EHB50910.2020.9280115 – ident: 937_CR102 – volume: 56 start-page: 9 year: 2016 ident: 937_CR17 publication-title: Int J Nurs Stud doi: 10.1016/j.ijnurstu.2015.12.007 – volume: 190 start-page: 105191 year: 2020 ident: 937_CR96 publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2019.105191 – volume: 62 start-page: 1185 issue: 4 year: 2014 ident: 937_CR45 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2381214 – ident: 937_CR31 – volume: 16 start-page: 1067 issue: 2 year: 2019 ident: 937_CR65 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2915592 – volume: 7 start-page: 4455 issue: 5 year: 2019 ident: 937_CR64 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2950469 – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: 937_CR104 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 390 start-page: 221 issue: 10091 year: 2017 ident: 937_CR75 publication-title: The Lancet doi: 10.1016/S0140-6736(17)31764-6 – volume: 19 start-page: 330 issue: 1 year: 2015 ident: 937_CR37 publication-title: Crit Care doi: 10.1186/s13054-015-1057-8 – ident: 937_CR56 doi: 10.1038/s41591-020-0897-1 – ident: 937_CR50 doi: 10.1007/978-3-030-58583-9_24 – volume: 113 start-page: 266 year: 2020 ident: 937_CR67 publication-title: Fut Gener Comput Syst doi: 10.1016/j.future.2020.06.048 – volume: 21 start-page: 233 issue: 2 year: 2020 ident: 937_CR16 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30739-9 – volume: 3361 start-page: 1995 issue: 10 year: 1995 ident: 937_CR48 publication-title: Handb Brain Theory Neural Netw – ident: 937_CR88 – ident: 937_CR77 doi: 10.23919/EUSIPCO.2017.8081165 – ident: 937_CR90 – ident: 937_CR87 doi: 10.1155/2018/9845321 – volume: 8 start-page: 90225 year: 2020 ident: 937_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992341 – volume: 35 start-page: 1149 issue: 5 year: 2012 ident: 937_CR59 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.205 – volume: 23 start-page: 1749 issue: 4 year: 2018 ident: 937_CR6 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2870319 – ident: 937_CR20 doi: 10.1109/ICoIAS49312.2020.9081829 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 937_CR49 publication-title: Nature doi: 10.1038/nature14539 – ident: 937_CR9 doi: 10.1109/CVPR.2013.440 – ident: 937_CR74 – volume: 58 start-page: 7 issue: 1 year: 2010 ident: 937_CR72 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2086456 – ident: 937_CR71 doi: 10.1145/3123024.3124428 – ident: 937_CR78 doi: 10.1109/IMTC.2007.379467 – ident: 937_CR26 doi: 10.1109/CVPR.2009.5206848 – volume: 34 start-page: 126 issue: 4 year: 2020 ident: 937_CR40 publication-title: IEEE Netw doi: 10.1109/MNET.011.2000458 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 937_CR47 publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – ident: 937_CR51 – ident: 937_CR36 doi: 10.1109/TITS.2020.2988040 – ident: 937_CR93 doi: 10.1109/JSEN.2021.3049247 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 937_CR28 publication-title: Int J Comput Vis doi: 10.1007/s11263-009-0275-4 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 937_CR106 publication-title: NPJ Digital Med doi: 10.1038/s41746-019-0087-z – volume: 16 start-page: 5938 issue: 9 year: 2019 ident: 937_CR63 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2960536 – volume: 22 start-page: 457 issue: 4 year: 2017 ident: 937_CR30 publication-title: Artif Life Robot doi: 10.1007/s10015-017-0382-1 |
| SSID | ssj0002389 |
| Score | 2.5396512 |
| Snippet | The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 783 |
| SubjectTerms | Artificial Intelligence Blood pressure Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Coronaviruses COVID-19 Deep learning Disease transmission Health care Imaging techniques Information Systems Applications (incl.Internet) Machine learning Oxygen content Personal computers Quarantine Remote monitoring Respiratory rate Risk Software Engineering Special Issue Special Issue Article Telemedicine Vital signs |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6KE9QEtbsZRWPvRWrK5NHNtcEKJFIMTj0FYr9RDFzkQglSzdbPn9HTtOVotULpyTOJPMeB6exwfwyWKOrizHvJbGcdqJgjslFa98Rcaltg6rDmxCX1yYycRepQO3NpVV9joxKupq6sMZ-RdJsVrIGZr84O4PD6hRIbuaIDSewZqQUgQ5P9N80MRkjjr3l3RNZtQkNc3E1rkwiETzUKAQgnrN9bJhWnibD2slHyRMox063njqF7yC9eSBssNOZF7DCjabsNGjO7C02Tfh5fkw0bV9A78OTznGPquKzZD4i-w2qoNAJZvW7D6gj7BQDtIycoTZ0eXP069c2H3WgVS3u4zojY2dLSubivkexqV9Cz-Ov30_OuEJmIH7TJg5V7kfm6zas_RbcmlQO-mswFAtSwJhyUNTwukcrUVtxs7ZkvSEN6pGL5RBufcOVptpg1vAsKaIymemVNJmtvKWFDBFOBq1pneVagSi50rh09TyAJ7xuxjmLUdOFsTJInKy0CP4PDxz183sePTunZ5dRdq_bbHg1Qj0kgAMK4a53MtXmpvrOJ_bRL9xPILdXlQWC_-fju3H6XgPLwLSfVc0tAOr89lf_ADP_f38pp19jHL_D1gUCEU priority: 102 providerName: ProQuest |
| Title | AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges |
| URI | https://link.springer.com/article/10.1007/s00607-021-00937-7 https://www.proquest.com/docview/2788272086 https://pubmed.ncbi.nlm.nih.gov/PMC8006120 |
| Volume | 105 |
| WOSCitedRecordID | wos000634659600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V6KE9lJYWsUBXPvRWLCUmXtvcYAEVIZYVbem2PUSxMxFIJaDNlt_P2HmgRQWpXCxFcRxnJvOSZ-YD-GRwgDbLIl4IbTlJYsytFJLnLifjUhiLeQ02oUYjPZmYcVMUVrXZ7u2RZNDUXbGbbx2iuE8p8GG44moBlsjcaS-OZ1_PO_1LRqh2eknDJFpOmlKZf68xb47ufcyHGZIPjkmD9Tlcft6-38Kbxttku_Xv8Q5eYLkCyy2SA2sEewVen3TdW6v38Hv3iGOoqcrZFImXyK6C6Pv3suuC3XqkEeZTPypGTi8bnp4f7fPY7LAakLraYvSNoYizYlmZM9dCtlQf4PvhwbfhF96AMHCXxHrG5cBFOsm3DRFjIDQqK6yJ0WfGEvMNeWMytmqAxqDSkbUmI53gtCzQxVKj2F6FxfK6xDVgWFD05BKdSWESkztDypaiGYVK0bsy2YO45UXqmg7lHijjT9r1Vg60TImWaaBlqnrwuXvmpu7P8eTszZbFaSOrVSoURRlKUGzXAzXH9m5F34N7_k55eRF6cevgI0Y92GqZf7_w4_tY_7_pG_DKo9zXCUObsDib_sWP8NLdzi6raR8W1I-ffVjaOxiNz-jqWHEaT6KhH8UpjWP5qx9k5A4KQASx |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCgglj7wAU7UIjFxbCMhVG2pumq7cChoJQ5p7ExEJciWzdKKP8VvZOw8VluJ3nrgnMRxnG9e9sx8AC8MpmjzPOKl0JaTJMbcSiF54QoyLqWxWDRkE2o81pOJ-bQCf7paGJ9W2enEoKiLqfN75K8FxWr-zFCn789_cs8a5U9XOwqNBhaH-PuSQrb63WiP_u9LIfY_nAwPeMsqwF0S6zmXqYt0UrwxWLhUaFRWWBOjT_WkrzHkXsjYqhSNQaUja01OIHdaluhiqdE3OiCVfytJSBx8qmA07DU_mb_G3Sbdlmg5aYt0Qqmeb3yiuE-I8JsIiqtlQ7jwbq_mZl45oA12b3_tf1uxB3C_9bDZbiMSD2EFq3VY69grWKvM1uHecd-xtn4EX3dHHEMdWcFmSPhF9iOoO78qbFqyC8-uwny6S83I0WfDj19Gezw2b1lDwl3vMFqfULhas7wqmOtoaurH8PlGPvgJrFbTCp8Cw5IiRpfoXAqTmMIZMjAUwSlUit6VywHEHQoy13Zl9-Qg37O-n3RATkbIyQJyMjWAV_0z501Pkmvv3uzgkbX6qc4W2BiAWgJcP6LvO758pTr7FvqP6-AXRwPY6aC5GPjf83h2_Tyew52Dk-Oj7Gg0PtyAu4KEqUmQ2oTV-ewXbsFtdzE_q2fbQeYYnN40ZP8Ch_Fk4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLUL0QKGAWGiLD3CiVjchjm0khKouK1YLSw-AVuKQxvZEVCrZstkW8df4dYydx2or0VsPnJM4jvPNy56ZD-C5xhRNnvd5ESvDSRIjbkQsuLOOjEuhDbqabEJOJmo61cdr8KethfFpla1ODIrazazfIz-IKVbzZ4YqPSiatIjjwfDt-U_uGaT8SWtLp1FDZIy_f1H4Vr0ZDehfv4jj4bvPR-95wzDAbRKpBRep7avEvdLobBorlCY2OkKf9klfpsnVEJGRKWqNUvWN0TkB3ipRoI2EQt_0gNT_Bllh4WVsLHlnBcgU1q436blEiWlTsBPK9nwTFMl9coTfUJBcrhrFpad7NU_zymFtsIHDrf959e7B3cbzZoe1qNyHNSy3YatltWCNktuGzY9dJ9vqAXw7HHEM9WWOzZFwjexHUIN-hdisYJeedYX5NJiKUQDAjj59HQ14pF-zmpy72me0VqGgtWJ56Zht6Wuqh_DlRj74EayXsxIfA8OCIkmbqFzEOtHOajI8FNlJlJLelYseRC0iMtt0a_ekIWdZ12c6oCgjFGUBRZnswcvumfO6V8m1d--0UMkavVVlS5z0QK6ArxvR9yNfvVKefg99yVXwl_s92G9huhz43_N4cv08nsFtQmr2YTQZP4U7MclVnTe1A-uL-QXuwi17uTit5ntB_Bic3DRi_wKfw22I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-enabled+remote+monitoring+of+vital+signs+for+COVID-19%3A+methods%2C+prospects+and+challenges&rft.jtitle=Computing&rft.au=Rohmetra%2C+Honnesh&rft.au=Raghunath%2C+Navaneeth&rft.au=Narang%2C+Pratik&rft.au=Chamola%2C+Vinay&rft.date=2023-04-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=105&rft.issue=4&rft.spage=783&rft.epage=809&rft_id=info:doi/10.1007%2Fs00607-021-00937-7&rft.externalDocID=10_1007_s00607_021_00937_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |