Predicting property prices with machine learning algorithms
This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years i...
Uložené v:
| Vydané v: | Journal of property research Ročník 38; číslo 1; s. 48 - 70 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Routledge
02.01.2021
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0959-9916, 1466-4453 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction. |
|---|---|
| AbstractList | This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction. This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction. |
| Author | Tang, Bo-Sin Ho, Winky K.O. Wong, Siu Wai |
| Author_xml | – sequence: 1 givenname: Winky K.O. surname: Ho fullname: Ho, Winky K.O. organization: The University of Hong Kong – sequence: 2 givenname: Bo-Sin surname: Tang fullname: Tang, Bo-Sin email: bsbstang@hku.hk organization: The University of Hong Kong – sequence: 3 givenname: Siu Wai surname: Wong fullname: Wong, Siu Wai organization: The Hong Kong Polytechnic University |
| BookMark | eNqFkMFOAyEQhompiW31EUw28bwVWFggvWgaqyZN9KBnQinb0uxCBZqmby-b1osHPTGB759hvhEYOO8MALcIThDk8B4KKoRA9QRDnK94hSnlF2CISF2XhNBqAIY9U_bQFRjFuIUQI0LgEEzfg1lZnaxbF7vgdyakYy6sNrE42LQpOqU31pmiNSq4nlLt2of80sVrcNmoNpqb8zkGn_Onj9lLuXh7fp09LkpNEE8lhRpDRJhhbMVrJIwRuMEY65qyBivBG10RhJjRRC2XnKqK1FxjhTRZMp7XGYO7U9_8wa-9iUlu_T64PFJiwjmnDAmSqemJ0sHHGEwjtU0qWe9SULaVCMrelvyxJXtb8mwrp-mvdJbQqXD8N_dwylnX-NCpgw_tSiZ1bH1ognLaRln93eIbjAGCUw |
| CitedBy_id | crossref_primary_10_1177_09697764241266411 crossref_primary_10_1016_j_procs_2025_04_008 crossref_primary_10_1007_s00521_025_11035_6 crossref_primary_10_1108_JPIF_08_2021_0073 crossref_primary_10_1080_10527001_2023_2170769 crossref_primary_10_2478_otmcj_2022_0016 crossref_primary_10_1111_tgis_13303 crossref_primary_10_3390_electronics12081789 crossref_primary_10_3390_land13111881 crossref_primary_10_1080_09599916_2025_2550976 crossref_primary_10_1007_s00521_025_11575_x crossref_primary_10_1007_s11146_022_09929_6 crossref_primary_10_2478_remav_2024_0034 crossref_primary_10_1016_j_procs_2025_04_258 crossref_primary_10_2478_remav_2024_0032 crossref_primary_10_1061_JCEMD4_COENG_13559 crossref_primary_10_1186_s13040_021_00284_5 crossref_primary_10_1007_s00521_025_11198_2 crossref_primary_10_1016_j_engappai_2023_105843 crossref_primary_10_1080_09599916_2025_2498971 crossref_primary_10_1016_j_cstp_2024_101277 crossref_primary_10_3390_urbansci9020032 crossref_primary_10_1016_j_cities_2022_103941 crossref_primary_10_1111_eufm_12408 crossref_primary_10_1002_sd_2168 crossref_primary_10_2478_remav_2025_0031 crossref_primary_10_1007_s11146_022_09915_y crossref_primary_10_1371_journal_pone_0255233 crossref_primary_10_1007_s00521_024_10726_w crossref_primary_10_1007_s11334_022_00465_3 crossref_primary_10_1080_08965803_2023_2258012 crossref_primary_10_1007_s00168_024_01263_4 crossref_primary_10_1080_09599916_2024_2412609 crossref_primary_10_3390_app122010660 crossref_primary_10_1080_09599916_2021_1996446 crossref_primary_10_1016_j_jclepro_2023_140340 crossref_primary_10_1016_j_mlwa_2025_100707 crossref_primary_10_1108_ECAM_07_2022_0642 crossref_primary_10_1108_JPIF_06_2023_0051 crossref_primary_10_32604_cmes_2022_021324 crossref_primary_10_1016_j_habitatint_2025_103515 crossref_primary_10_1108_JES_06_2021_0316 crossref_primary_10_2478_picbe_2025_0203 crossref_primary_10_3390_informatics12020052 crossref_primary_10_1016_j_habitatint_2024_103075 crossref_primary_10_1142_S0219876225500070 crossref_primary_10_1002_eng2_12599 crossref_primary_10_1016_j_procs_2024_09_358 crossref_primary_10_1016_j_cities_2023_104432 crossref_primary_10_3390_su13169339 crossref_primary_10_3390_jrfm16100446 crossref_primary_10_1108_JM2_12_2023_0315 crossref_primary_10_3390_urbansci9090348 crossref_primary_10_1108_JFMPC_02_2024_0011 crossref_primary_10_1111_tgis_13273 crossref_primary_10_3390_math13152453 crossref_primary_10_2478_remav_2025_0001 crossref_primary_10_3390_buildings14051471 crossref_primary_10_3390_land11112100 crossref_primary_10_1007_s11146_024_10002_7 crossref_primary_10_3390_app112211029 crossref_primary_10_1051_e3sconf_202341803001 crossref_primary_10_1016_j_cities_2024_105115 crossref_primary_10_1108_IJHMA_09_2023_0120 crossref_primary_10_3390_rs16163006 crossref_primary_10_1016_j_cities_2024_105631 crossref_primary_10_1016_j_cities_2025_106334 crossref_primary_10_3389_frsc_2023_1314967 crossref_primary_10_3390_app14052209 crossref_primary_10_1007_s00521_022_07309_y crossref_primary_10_1016_j_ins_2024_120442 crossref_primary_10_3390_modelling6020035 crossref_primary_10_1080_09599916_2024_2403998 crossref_primary_10_1007_s11135_025_02080_3 crossref_primary_10_1080_08965803_2023_2280280 crossref_primary_10_1108_PM_10_2024_0111 crossref_primary_10_3846_ijspm_2022_17590 crossref_primary_10_1007_s11831_023_10010_5 crossref_primary_10_3390_buildings14103172 crossref_primary_10_3390_su16114453 crossref_primary_10_1111_1540_6229_12397 crossref_primary_10_1080_00396265_2023_2293366 crossref_primary_10_1108_JES_12_2024_0856 crossref_primary_10_1007_s10614_025_10983_4 crossref_primary_10_1108_IJHMA_01_2025_0018 crossref_primary_10_1007_s10614_024_10738_7 crossref_primary_10_3846_ijspm_2022_15962 crossref_primary_10_7717_peerj_cs_444 crossref_primary_10_1080_00396265_2021_1996799 crossref_primary_10_1080_10835547_2022_2110668 crossref_primary_10_3390_buildings15152773 crossref_primary_10_1016_j_apgeog_2024_103248 crossref_primary_10_1108_PM_11_2022_0086 crossref_primary_10_3846_ijspm_2022_17909 crossref_primary_10_1016_j_habitatint_2023_102896 crossref_primary_10_3390_realestate2030012 crossref_primary_10_33317_ssurj_504 crossref_primary_10_3390_buildings15173133 crossref_primary_10_1016_j_dajour_2023_100267 crossref_primary_10_1111_gean_12350 crossref_primary_10_1365_s41056_022_00063_1 crossref_primary_10_3390_su132313088 crossref_primary_10_1108_MSCRA_10_2023_0042 crossref_primary_10_1109_ACCESS_2024_3440502 crossref_primary_10_1007_s43674_024_00075_5 crossref_primary_10_1016_j_habitatint_2022_102660 crossref_primary_10_1108_JFMPC_08_2022_0041 crossref_primary_10_3846_ijspm_2025_23638 crossref_primary_10_1016_j_iswa_2021_200052 crossref_primary_10_36253_aestim_15792 crossref_primary_10_1016_j_procs_2024_09_045 crossref_primary_10_1007_s11146_022_09888_y crossref_primary_10_3390_data10090135 crossref_primary_10_47899_ijss_1270433 crossref_primary_10_1365_s41056_022_00065_z crossref_primary_10_3390_land12040740 crossref_primary_10_1016_j_landusepol_2024_107405 |
| Cites_doi | 10.1007/978-3-662-06384-2 10.1016/j.asoc.2009.12.003 10.1126/science.286.5439.531 10.5753/eniac.2019.9300 10.1080/10835547.2011.12091311 10.19139/soic.v7i1.435 10.1214/10-STS330 10.1016/j.eswa.2010.08.123 10.1109/ICICCI.2010.65 10.20852/ntmsci.2018.327 10.2166/nh.2016.264 10.1080/09599916.2019.1587489 10.1093/bioinformatics/16.10.906 10.1016/j.eswa.2014.11.040 10.1016/j.cub.2007.10.008 10.7551/mitpress/4057.003.0005 10.1038/nbt1206-1565 10.1186/1753-6561-5-S3-S11 10.1016/S0006-3495(03)70050-2 10.1257/jep.31.2.87 10.1016/j.trc.2015.02.019 10.35940/ijrte.B1084.0982S1119 10.35940/ijitee.I7849.078919 10.1093/nar/gki885 10.1073/pnas.211566398 10.1257/jep.28.2.3 10.1007/BF00994018 10.3141/2386-04 10.1016/j.enbuild.2017.04.038 10.1023/A:1010933404324 10.1023/A:1012487302797 10.1109/ICICOS.2017.8276357 10.1145/1143844.1143865 10.1109/ICACE.2018.8687080 10.1109/ICNC.2007.14 10.3844/ajassp.2004.193.201 10.1111/j.1524-4733.2010.00787.x 10.1016/S1470-2045(19)30149-4 10.1007/BF00058655 10.3390/app8112321 10.1109/ICMLC.2009.5212389 10.1016/B978-0-12-805274-7.00006-3 10.1108/13664381211274371 10.1126/science.1171990 10.1080/09599916.2012.755558 10.1126/science.1243089 10.1007/978-3-319-74690-6 10.1061/(ASCE)CO.1943-7862.0001047 10.1007/978-1-4757-2440-0 10.1145/130385.130401 10.1080/09599916.2018.1551923 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION |
| DOI | 10.1080/09599916.2020.1832558 |
| DatabaseName | Taylor & Francis Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 1466-4453 |
| EndPage | 70 |
| ExternalDocumentID | 10_1080_09599916_2020_1832558 1832558 |
| Genre | Research Article |
| GroupedDBID | .7I .QK 0BK 0R~ 0YH 29L 4.4 5GY 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ABZLS ACGFS ACIWK ACTIO ACTOA ADAHI ADCVX ADKVQ ADLRE ADXPE AECIN AEFOU AEISY AEKEX AEMOZ AEOZL AEPSL AEYOC AEZRU AFRAH AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO EBO EBR EBS EBU EMK EOH EPL E~B E~C G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O K1G KYCEM LJTGL M4Z NA5 NY- O9- QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEG TFH TFL TFW TH9 TNTFI TRJHH TUROJ UT5 UT9 VAE ZL0 ~01 ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586644700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-9916 |
| IngestDate | Wed Aug 13 07:47:34 EDT 2025 Sat Nov 29 05:46:30 EST 2025 Tue Nov 18 22:39:57 EST 2025 Mon Oct 20 23:48:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/09599916.2020.1832558 |
| PQID | 2488857194 |
| PQPubID | 426792 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2488857194 informaworld_taylorfrancis_310_1080_09599916_2020_1832558 crossref_citationtrail_10_1080_09599916_2020_1832558 crossref_primary_10_1080_09599916_2020_1832558 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-02 |
| PublicationDateYYYYMMDD | 2021-01-02 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of property research |
| PublicationYear | 2021 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | cit0033 cit0034 cit0075 cit0032 Alpaydin E. (cit0003) 2009 cit0073 cit0030 cit0072 Rabiner L. (cit0052) 1993 cit0070 Koktashev V. (cit0031) 2019; 1353 Jelinek F. (cit0028) 1998 cit0039 cit0038 Zhong Y. (cit0074) 2009 cit0035 cit0036 cit0022 cit0067 cit0020 cit0064 cit0021 cit0065 cit0060 Muralidharan S. (cit0044) 2018; 19 cit0061 Harrington P (cit0023) 2012 Hastie T. (cit0025) 2004; 5 cit0026 cit0027 cit0024 cit0068 cit0069 cit0055 cit0012 cit0053 cit0010 cit0054 cit0051 Mu J. Y. (cit0041) 2014 cit0050 Breiman L. (cit0011) 1984 Vapnik V. (cit0066) 1963; 24 Noble W. S. (cit0046) 2004 Sun D. (cit0062) 2015; 6 Rychetsky M. (cit0057) 2001 cit0019 cit0017 cit0018 cit0015 cit0059 cit0016 Masías V. H. (cit0037) 2016 Swathi B. (cit0063) 2019; 7 cit0013 cit0014 cit0058 cit0001 cit0045 cit0042 cit0043 cit0040 Xie X. S. (cit0071) 2007; 3 Basak D. (cit0005) 2007; 11 Jurafsky D. (cit0029) 2008 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0049 Rogers S. (cit0056) 2011 cit0002 cit0047 |
| References_xml | – volume-title: Algorithms and architectures for machine learning based on regularized neural networks and support vector approaches year: 2001 ident: cit0057 – ident: cit0059 doi: 10.1007/978-3-662-06384-2 – ident: cit0069 doi: 10.1016/j.asoc.2009.12.003 – ident: cit0020 doi: 10.1126/science.286.5439.531 – ident: cit0009 – ident: cit0016 doi: 10.5753/eniac.2019.9300 – ident: cit0075 doi: 10.1080/10835547.2011.12091311 – ident: cit0027 doi: 10.19139/soic.v7i1.435 – ident: cit0061 doi: 10.1214/10-STS330 – ident: cit0021 doi: 10.1016/j.eswa.2010.08.123 – ident: cit0036 doi: 10.1109/ICICCI.2010.65 – ident: cit0070 doi: 10.20852/ntmsci.2018.327 – volume-title: Fundamentals of speech recognition year: 1993 ident: cit0052 – ident: cit0033 doi: 10.2166/nh.2016.264 – volume-title: Machine learning in action year: 2012 ident: cit0023 – ident: cit0051 doi: 10.1080/09599916.2019.1587489 – ident: cit0019 doi: 10.1093/bioinformatics/16.10.906 – ident: cit0050 doi: 10.1016/j.eswa.2014.11.040 – volume-title: A first course in machine learning (Machine learning and pattern recognition) year: 2011 ident: cit0056 – ident: cit0014 – ident: cit0032 doi: 10.1016/j.cub.2007.10.008 – start-page: 71 volume-title: Kernel Methods in Computational Biology year: 2004 ident: cit0046 doi: 10.7551/mitpress/4057.003.0005 – ident: cit0047 doi: 10.1038/nbt1206-1565 – volume: 1353 start-page: 1 issue: 12139 year: 2019 ident: cit0031 publication-title: Journal of Physics. Conference Series – ident: cit0018 – ident: cit0048 doi: 10.1186/1753-6561-5-S3-S11 – ident: cit0012 doi: 10.1016/S0006-3495(03)70050-2 – ident: cit0043 doi: 10.1257/jep.31.2.87 – ident: cit0073 doi: 10.1016/j.trc.2015.02.019 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: cit0005 publication-title: Neural Information Processing – Letters and Reviews – ident: cit0040 doi: 10.35940/ijrte.B1084.0982S1119 – ident: cit0058 doi: 10.35940/ijitee.I7849.078919 – ident: cit0030 – ident: cit0055 doi: 10.1093/nar/gki885 – ident: cit0054 doi: 10.1073/pnas.211566398 – ident: cit0067 doi: 10.1257/jep.28.2.3 – ident: cit0015 doi: 10.1007/BF00994018 – ident: cit0002 doi: 10.3141/2386-04 – volume-title: IEEE Computer Society, International Conference on Computational Intelligence and Security year: 2009 ident: cit0074 – ident: cit0001 doi: 10.1016/j.enbuild.2017.04.038 – ident: cit0010 doi: 10.1023/A:1010933404324 – volume: 24 start-page: 774 year: 1963 ident: cit0066 publication-title: Automatic Remote Control – start-page: 97 volume-title: Selection at the AMSE Conferences-2016 year: 2016 ident: cit0037 – ident: cit0022 doi: 10.1023/A:1012487302797 – volume: 19 start-page: 109 issue: 2 year: 2018 ident: cit0044 publication-title: Issues in Information Systems – ident: cit0042 doi: 10.1109/ICICOS.2017.8276357 – ident: cit0013 doi: 10.1145/1143844.1143865 – ident: cit0060 doi: 10.1109/ICACE.2018.8687080 – volume-title: Introduction to Machine Learning year: 2009 ident: cit0003 – volume-title: Classification and regression trees year: 1984 ident: cit0011 – volume: 3 start-page: 221 year: 2007 ident: cit0071 publication-title: IEEE Computer Society, Third International Conference on Natural Computation doi: 10.1109/ICNC.2007.14 – start-page: 1 volume-title: Abstract and Applied Analysis, year: 2014 ident: cit0041 – volume-title: Statistical methods for speech recognition year: 1998 ident: cit0028 – ident: cit0035 doi: 10.3844/ajassp.2004.193.201 – ident: cit0072 doi: 10.1111/j.1524-4733.2010.00787.x – ident: cit0045 doi: 10.1016/S1470-2045(19)30149-4 – ident: cit0007 doi: 10.1007/BF00058655 – ident: cit0064 – ident: cit0004 doi: 10.3390/app8112321 – ident: cit0008 – ident: cit0034 doi: 10.1109/ICMLC.2009.5212389 – ident: cit0049 doi: 10.1016/B978-0-12-805274-7.00006-3 – volume: 7 start-page: 1483 issue: 5 year: 2019 ident: cit0063 publication-title: International Journal for Research in Applied Science & Engineering Technology – ident: cit0038 doi: 10.1108/13664381211274371 – ident: cit0068 doi: 10.1126/science.1171990 – ident: cit0039 doi: 10.1080/09599916.2012.755558 – volume-title: Speech and language processing: An introduction to Natural language processing, computational linguistics and speech recognition year: 2008 ident: cit0029 – volume: 5 start-page: 1391 year: 2004 ident: cit0025 publication-title: Journal of Machine Learning Research – ident: cit0017 doi: 10.1126/science.1243089 – ident: cit0024 doi: 10.1007/978-3-319-74690-6 – ident: cit0053 doi: 10.1061/(ASCE)CO.1943-7862.0001047 – volume: 6 start-page: 19 year: 2015 ident: cit0062 publication-title: Pacific Asia Journal of the Association for Information Systems – ident: cit0065 doi: 10.1007/978-1-4757-2440-0 – ident: cit0006 doi: 10.1145/130385.130401 – ident: cit0026 doi: 10.1080/09599916.2018.1551923 |
| SSID | ssj0021440 |
| Score | 2.5821612 |
| Snippet | This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 48 |
| SubjectTerms | Algorithms GBM Learning algorithms Machine learning Machine Learning algorithms Performance measurement property valuation Root-mean-square errors Support vector machines SVM |
| Title | Predicting property prices with machine learning algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/09599916.2020.1832558 https://www.proquest.com/docview/2488857194 |
| Volume | 38 |
| WOSCitedRecordID | wos000586644700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1466-4453 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021440 issn: 0959-9916 databaseCode: TFW dateStart: 19910301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86BL34LU7n6MFrtR9Jk-BJxLGDjB0mzlNI0nQI-6Ktgv-9eW06HCI7aE-l5YX25SXvI-_9HkLXgYqkFRNp3RLNfZxi6UuVYN9YU1bylBKdVIXCT3QwYOMxH7pswsKlVYIPndVAEdVeDYtbqqLJiLuF0BWYNda7i-wjK5OEQLmvVf3Qw2DUe1m5XHB0WaPtcR9Imhqe30ZZ005r2KU_9upKAfUO_uHTD9G-sz69-1pcjtCWmR-j3aY4uThBd8McTm4gF9pbQpw-Lz_tDewmHoRsvVmVfGk8121i4snpZJHbN7PiFD33HkcPfd_1V_A1Dlnpk0Bb9Y-poTRl1pEyhkeZtRd0QmgWSc4ybXVcSI3GUilGZIwTpiMZaqyoVfTxGWrNF3NzjjwWa8BG0xiuOEsYUUylMuNBSmNKZBvhhq9CO_Bx6IExFWGDUeo4I4AzwnGmjW5WZMsafWMTAf8-aaKswh5Z3aNExBtoO80MC7eQC2H_ijFCQ44v_jD0JdqLIBcGQjdRB7XK_N1coR39Ub4VeRdtB6_9biW4X6S55fU |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90CvPFb3E6tQ--Vtc2aRJ8ElEmzuHDhPkU0jQdwr7oquB_b64fY0NkD9qn0nKhvVxyH7n7HcBlK_KVFRNl3RItXBIT5aooJK6xpqwSMaM6zAuFO6zb5f2-WKyFwbRK9KGTAigi36txcWMwukqJu8bYFdo11r3z7SMrlJTyddig2DnbynTrrT13uvDwssDbEy7SVFU8vw2zpJ-W0Et_7Na5CnrY-Y-P34Xt0gB1bguJ2YM1M96HelWfPDuAm5cUD28wHdqZYqg-zb7sDW4oDkZtnVGef2mcsuHEwFHDwSS1b0azQ3h9uO_dtd2yxYKricczl7a0tQAIM4zF3PpSxgg_sSaDDilLfCV4oq2a85jRREURpyogIde-8jSJmNX1wRHUxpOxOQaHBxrh0TTBK0hCTiMexSoRrZgFjKoGkIqxUpf449gGYyi9Cqa05IxEzsiSMw24mpNNCwCOVQRicdZklkc-kqJNiQxW0DarKZblWp5J-1ecU-YJcvKHoS-g3u49d2Tnsft0Cls-psZgJMdvQi1LP8wZbOrP7H2Wnufy-w2UFOjy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86Rb34LU6n9uC1urZJk-BJ1KI4xg4Tdwtpmg5hX7RV8L83r02HQ2QH7am0vNC-vOR95L3fQ-iyHfvSiIk0boniLk6wdGUcYlcbU1byhBIVloXCHdrtssGA92w2YW7TKsGHTiugiHKvhsU9S9I6I-4aQldg1hjvzjePjEwSwlbRmjGdQ_C_-tHr3OeCs8sKbo-7QFMX8fw2zIJ6WgAv_bFZlxoo2vmHb99F29b8dG4redlDK3qyjzbr6uT8AN30Mji6gWRoZwaB-qz4NDewnTgQs3XGZfaldmy7iaEjR8NpZt6M80P0Ej307x5d22DBVdhjhUvayuh_TDWlCTOelNbcT43BoEJCU19yliqj5DyqFZZxzIgMcMiULz2FY2o0fXCEGpPpRB8jhwUKwNEUhitIQ0ZiFicy5e2EBpTIJsI1X4Wy6OPQBGMkvBqk1HJGAGeE5UwTXc3JZhX8xjIC_n3SRFHGPdKqSYkIltC26hkWdiXnwvwVY4R6HJ_8YegLtNG7j0Tnqft8irZ8yIuBMI7fQo0ie9dnaF19FG95dl5K7xclJ-ff |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+property+prices+with+machine+learning+algorithms&rft.jtitle=Journal+of+property+research&rft.au=Ho%2C+Winky+K.O.&rft.au=Tang%2C+Bo-Sin&rft.au=Wong%2C+Siu+Wai&rft.date=2021-01-02&rft.pub=Routledge&rft.issn=0959-9916&rft.eissn=1466-4453&rft.volume=38&rft.issue=1&rft.spage=48&rft.epage=70&rft_id=info:doi/10.1080%2F09599916.2020.1832558&rft.externalDBID=0YH&rft.externalDocID=1832558 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9916&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9916&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9916&client=summon |