Predicting property prices with machine learning algorithms

This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of property research Ročník 38; číslo 1; s. 48 - 70
Hlavní autori: Ho, Winky K.O., Tang, Bo-Sin, Wong, Siu Wai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Routledge 02.01.2021
Taylor & Francis Ltd
Predmet:
ISSN:0959-9916, 1466-4453
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.
AbstractList This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.
This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.
Author Tang, Bo-Sin
Ho, Winky K.O.
Wong, Siu Wai
Author_xml – sequence: 1
  givenname: Winky K.O.
  surname: Ho
  fullname: Ho, Winky K.O.
  organization: The University of Hong Kong
– sequence: 2
  givenname: Bo-Sin
  surname: Tang
  fullname: Tang, Bo-Sin
  email: bsbstang@hku.hk
  organization: The University of Hong Kong
– sequence: 3
  givenname: Siu Wai
  surname: Wong
  fullname: Wong, Siu Wai
  organization: The Hong Kong Polytechnic University
BookMark eNqFkMFOAyEQhompiW31EUw28bwVWFggvWgaqyZN9KBnQinb0uxCBZqmby-b1osHPTGB759hvhEYOO8MALcIThDk8B4KKoRA9QRDnK94hSnlF2CISF2XhNBqAIY9U_bQFRjFuIUQI0LgEEzfg1lZnaxbF7vgdyakYy6sNrE42LQpOqU31pmiNSq4nlLt2of80sVrcNmoNpqb8zkGn_Onj9lLuXh7fp09LkpNEE8lhRpDRJhhbMVrJIwRuMEY65qyBivBG10RhJjRRC2XnKqK1FxjhTRZMp7XGYO7U9_8wa-9iUlu_T64PFJiwjmnDAmSqemJ0sHHGEwjtU0qWe9SULaVCMrelvyxJXtb8mwrp-mvdJbQqXD8N_dwylnX-NCpgw_tSiZ1bH1ognLaRln93eIbjAGCUw
CitedBy_id crossref_primary_10_1177_09697764241266411
crossref_primary_10_1016_j_procs_2025_04_008
crossref_primary_10_1007_s00521_025_11035_6
crossref_primary_10_1108_JPIF_08_2021_0073
crossref_primary_10_1080_10527001_2023_2170769
crossref_primary_10_2478_otmcj_2022_0016
crossref_primary_10_1111_tgis_13303
crossref_primary_10_3390_electronics12081789
crossref_primary_10_3390_land13111881
crossref_primary_10_1080_09599916_2025_2550976
crossref_primary_10_1007_s00521_025_11575_x
crossref_primary_10_1007_s11146_022_09929_6
crossref_primary_10_2478_remav_2024_0034
crossref_primary_10_1016_j_procs_2025_04_258
crossref_primary_10_2478_remav_2024_0032
crossref_primary_10_1061_JCEMD4_COENG_13559
crossref_primary_10_1186_s13040_021_00284_5
crossref_primary_10_1007_s00521_025_11198_2
crossref_primary_10_1016_j_engappai_2023_105843
crossref_primary_10_1080_09599916_2025_2498971
crossref_primary_10_1016_j_cstp_2024_101277
crossref_primary_10_3390_urbansci9020032
crossref_primary_10_1016_j_cities_2022_103941
crossref_primary_10_1111_eufm_12408
crossref_primary_10_1002_sd_2168
crossref_primary_10_2478_remav_2025_0031
crossref_primary_10_1007_s11146_022_09915_y
crossref_primary_10_1371_journal_pone_0255233
crossref_primary_10_1007_s00521_024_10726_w
crossref_primary_10_1007_s11334_022_00465_3
crossref_primary_10_1080_08965803_2023_2258012
crossref_primary_10_1007_s00168_024_01263_4
crossref_primary_10_1080_09599916_2024_2412609
crossref_primary_10_3390_app122010660
crossref_primary_10_1080_09599916_2021_1996446
crossref_primary_10_1016_j_jclepro_2023_140340
crossref_primary_10_1016_j_mlwa_2025_100707
crossref_primary_10_1108_ECAM_07_2022_0642
crossref_primary_10_1108_JPIF_06_2023_0051
crossref_primary_10_32604_cmes_2022_021324
crossref_primary_10_1016_j_habitatint_2025_103515
crossref_primary_10_1108_JES_06_2021_0316
crossref_primary_10_2478_picbe_2025_0203
crossref_primary_10_3390_informatics12020052
crossref_primary_10_1016_j_habitatint_2024_103075
crossref_primary_10_1142_S0219876225500070
crossref_primary_10_1002_eng2_12599
crossref_primary_10_1016_j_procs_2024_09_358
crossref_primary_10_1016_j_cities_2023_104432
crossref_primary_10_3390_su13169339
crossref_primary_10_3390_jrfm16100446
crossref_primary_10_1108_JM2_12_2023_0315
crossref_primary_10_3390_urbansci9090348
crossref_primary_10_1108_JFMPC_02_2024_0011
crossref_primary_10_1111_tgis_13273
crossref_primary_10_3390_math13152453
crossref_primary_10_2478_remav_2025_0001
crossref_primary_10_3390_buildings14051471
crossref_primary_10_3390_land11112100
crossref_primary_10_1007_s11146_024_10002_7
crossref_primary_10_3390_app112211029
crossref_primary_10_1051_e3sconf_202341803001
crossref_primary_10_1016_j_cities_2024_105115
crossref_primary_10_1108_IJHMA_09_2023_0120
crossref_primary_10_3390_rs16163006
crossref_primary_10_1016_j_cities_2024_105631
crossref_primary_10_1016_j_cities_2025_106334
crossref_primary_10_3389_frsc_2023_1314967
crossref_primary_10_3390_app14052209
crossref_primary_10_1007_s00521_022_07309_y
crossref_primary_10_1016_j_ins_2024_120442
crossref_primary_10_3390_modelling6020035
crossref_primary_10_1080_09599916_2024_2403998
crossref_primary_10_1007_s11135_025_02080_3
crossref_primary_10_1080_08965803_2023_2280280
crossref_primary_10_1108_PM_10_2024_0111
crossref_primary_10_3846_ijspm_2022_17590
crossref_primary_10_1007_s11831_023_10010_5
crossref_primary_10_3390_buildings14103172
crossref_primary_10_3390_su16114453
crossref_primary_10_1111_1540_6229_12397
crossref_primary_10_1080_00396265_2023_2293366
crossref_primary_10_1108_JES_12_2024_0856
crossref_primary_10_1007_s10614_025_10983_4
crossref_primary_10_1108_IJHMA_01_2025_0018
crossref_primary_10_1007_s10614_024_10738_7
crossref_primary_10_3846_ijspm_2022_15962
crossref_primary_10_7717_peerj_cs_444
crossref_primary_10_1080_00396265_2021_1996799
crossref_primary_10_1080_10835547_2022_2110668
crossref_primary_10_3390_buildings15152773
crossref_primary_10_1016_j_apgeog_2024_103248
crossref_primary_10_1108_PM_11_2022_0086
crossref_primary_10_3846_ijspm_2022_17909
crossref_primary_10_1016_j_habitatint_2023_102896
crossref_primary_10_3390_realestate2030012
crossref_primary_10_33317_ssurj_504
crossref_primary_10_3390_buildings15173133
crossref_primary_10_1016_j_dajour_2023_100267
crossref_primary_10_1111_gean_12350
crossref_primary_10_1365_s41056_022_00063_1
crossref_primary_10_3390_su132313088
crossref_primary_10_1108_MSCRA_10_2023_0042
crossref_primary_10_1109_ACCESS_2024_3440502
crossref_primary_10_1007_s43674_024_00075_5
crossref_primary_10_1016_j_habitatint_2022_102660
crossref_primary_10_1108_JFMPC_08_2022_0041
crossref_primary_10_3846_ijspm_2025_23638
crossref_primary_10_1016_j_iswa_2021_200052
crossref_primary_10_36253_aestim_15792
crossref_primary_10_1016_j_procs_2024_09_045
crossref_primary_10_1007_s11146_022_09888_y
crossref_primary_10_3390_data10090135
crossref_primary_10_47899_ijss_1270433
crossref_primary_10_1365_s41056_022_00065_z
crossref_primary_10_3390_land12040740
crossref_primary_10_1016_j_landusepol_2024_107405
Cites_doi 10.1007/978-3-662-06384-2
10.1016/j.asoc.2009.12.003
10.1126/science.286.5439.531
10.5753/eniac.2019.9300
10.1080/10835547.2011.12091311
10.19139/soic.v7i1.435
10.1214/10-STS330
10.1016/j.eswa.2010.08.123
10.1109/ICICCI.2010.65
10.20852/ntmsci.2018.327
10.2166/nh.2016.264
10.1080/09599916.2019.1587489
10.1093/bioinformatics/16.10.906
10.1016/j.eswa.2014.11.040
10.1016/j.cub.2007.10.008
10.7551/mitpress/4057.003.0005
10.1038/nbt1206-1565
10.1186/1753-6561-5-S3-S11
10.1016/S0006-3495(03)70050-2
10.1257/jep.31.2.87
10.1016/j.trc.2015.02.019
10.35940/ijrte.B1084.0982S1119
10.35940/ijitee.I7849.078919
10.1093/nar/gki885
10.1073/pnas.211566398
10.1257/jep.28.2.3
10.1007/BF00994018
10.3141/2386-04
10.1016/j.enbuild.2017.04.038
10.1023/A:1010933404324
10.1023/A:1012487302797
10.1109/ICICOS.2017.8276357
10.1145/1143844.1143865
10.1109/ICACE.2018.8687080
10.1109/ICNC.2007.14
10.3844/ajassp.2004.193.201
10.1111/j.1524-4733.2010.00787.x
10.1016/S1470-2045(19)30149-4
10.1007/BF00058655
10.3390/app8112321
10.1109/ICMLC.2009.5212389
10.1016/B978-0-12-805274-7.00006-3
10.1108/13664381211274371
10.1126/science.1171990
10.1080/09599916.2012.755558
10.1126/science.1243089
10.1007/978-3-319-74690-6
10.1061/(ASCE)CO.1943-7862.0001047
10.1007/978-1-4757-2440-0
10.1145/130385.130401
10.1080/09599916.2018.1551923
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
DOI 10.1080/09599916.2020.1832558
DatabaseName Taylor & Francis Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1466-4453
EndPage 70
ExternalDocumentID 10_1080_09599916_2020_1832558
1832558
Genre Research Article
GroupedDBID .7I
.QK
0BK
0R~
0YH
29L
4.4
5GY
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABJNI
ABLIJ
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACIWK
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADXPE
AECIN
AEFOU
AEISY
AEKEX
AEMOZ
AEOZL
AEPSL
AEYOC
AEZRU
AFRAH
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EBO
EBR
EBS
EBU
EMK
EOH
EPL
E~B
E~C
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
K1G
KYCEM
LJTGL
M4Z
NA5
NY-
O9-
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEG
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
ZL0
~01
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183
IEDL.DBID TFW
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586644700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-9916
IngestDate Wed Aug 13 07:47:34 EDT 2025
Sat Nov 29 05:46:30 EST 2025
Tue Nov 18 22:39:57 EST 2025
Mon Oct 20 23:48:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/09599916.2020.1832558
PQID 2488857194
PQPubID 426792
PageCount 23
ParticipantIDs proquest_journals_2488857194
informaworld_taylorfrancis_310_1080_09599916_2020_1832558
crossref_citationtrail_10_1080_09599916_2020_1832558
crossref_primary_10_1080_09599916_2020_1832558
PublicationCentury 2000
PublicationDate 2021-01-02
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of property research
PublicationYear 2021
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References cit0033
cit0034
cit0075
cit0032
Alpaydin E. (cit0003) 2009
cit0073
cit0030
cit0072
Rabiner L. (cit0052) 1993
cit0070
Koktashev V. (cit0031) 2019; 1353
Jelinek F. (cit0028) 1998
cit0039
cit0038
Zhong Y. (cit0074) 2009
cit0035
cit0036
cit0022
cit0067
cit0020
cit0064
cit0021
cit0065
cit0060
Muralidharan S. (cit0044) 2018; 19
cit0061
Harrington P (cit0023) 2012
Hastie T. (cit0025) 2004; 5
cit0026
cit0027
cit0024
cit0068
cit0069
cit0055
cit0012
cit0053
cit0010
cit0054
cit0051
Mu J. Y. (cit0041) 2014
cit0050
Breiman L. (cit0011) 1984
Vapnik V. (cit0066) 1963; 24
Noble W. S. (cit0046) 2004
Sun D. (cit0062) 2015; 6
Rychetsky M. (cit0057) 2001
cit0019
cit0017
cit0018
cit0015
cit0059
cit0016
Masías V. H. (cit0037) 2016
Swathi B. (cit0063) 2019; 7
cit0013
cit0014
cit0058
cit0001
cit0045
cit0042
cit0043
cit0040
Xie X. S. (cit0071) 2007; 3
Basak D. (cit0005) 2007; 11
Jurafsky D. (cit0029) 2008
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0049
Rogers S. (cit0056) 2011
cit0002
cit0047
References_xml – volume-title: Algorithms and architectures for machine learning based on regularized neural networks and support vector approaches
  year: 2001
  ident: cit0057
– ident: cit0059
  doi: 10.1007/978-3-662-06384-2
– ident: cit0069
  doi: 10.1016/j.asoc.2009.12.003
– ident: cit0020
  doi: 10.1126/science.286.5439.531
– ident: cit0009
– ident: cit0016
  doi: 10.5753/eniac.2019.9300
– ident: cit0075
  doi: 10.1080/10835547.2011.12091311
– ident: cit0027
  doi: 10.19139/soic.v7i1.435
– ident: cit0061
  doi: 10.1214/10-STS330
– ident: cit0021
  doi: 10.1016/j.eswa.2010.08.123
– ident: cit0036
  doi: 10.1109/ICICCI.2010.65
– ident: cit0070
  doi: 10.20852/ntmsci.2018.327
– volume-title: Fundamentals of speech recognition
  year: 1993
  ident: cit0052
– ident: cit0033
  doi: 10.2166/nh.2016.264
– volume-title: Machine learning in action
  year: 2012
  ident: cit0023
– ident: cit0051
  doi: 10.1080/09599916.2019.1587489
– ident: cit0019
  doi: 10.1093/bioinformatics/16.10.906
– ident: cit0050
  doi: 10.1016/j.eswa.2014.11.040
– volume-title: A first course in machine learning (Machine learning and pattern recognition)
  year: 2011
  ident: cit0056
– ident: cit0014
– ident: cit0032
  doi: 10.1016/j.cub.2007.10.008
– start-page: 71
  volume-title: Kernel Methods in Computational Biology
  year: 2004
  ident: cit0046
  doi: 10.7551/mitpress/4057.003.0005
– ident: cit0047
  doi: 10.1038/nbt1206-1565
– volume: 1353
  start-page: 1
  issue: 12139
  year: 2019
  ident: cit0031
  publication-title: Journal of Physics. Conference Series
– ident: cit0018
– ident: cit0048
  doi: 10.1186/1753-6561-5-S3-S11
– ident: cit0012
  doi: 10.1016/S0006-3495(03)70050-2
– ident: cit0043
  doi: 10.1257/jep.31.2.87
– ident: cit0073
  doi: 10.1016/j.trc.2015.02.019
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: cit0005
  publication-title: Neural Information Processing – Letters and Reviews
– ident: cit0040
  doi: 10.35940/ijrte.B1084.0982S1119
– ident: cit0058
  doi: 10.35940/ijitee.I7849.078919
– ident: cit0030
– ident: cit0055
  doi: 10.1093/nar/gki885
– ident: cit0054
  doi: 10.1073/pnas.211566398
– ident: cit0067
  doi: 10.1257/jep.28.2.3
– ident: cit0015
  doi: 10.1007/BF00994018
– ident: cit0002
  doi: 10.3141/2386-04
– volume-title: IEEE Computer Society, International Conference on Computational Intelligence and Security
  year: 2009
  ident: cit0074
– ident: cit0001
  doi: 10.1016/j.enbuild.2017.04.038
– ident: cit0010
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 774
  year: 1963
  ident: cit0066
  publication-title: Automatic Remote Control
– start-page: 97
  volume-title: Selection at the AMSE Conferences-2016
  year: 2016
  ident: cit0037
– ident: cit0022
  doi: 10.1023/A:1012487302797
– volume: 19
  start-page: 109
  issue: 2
  year: 2018
  ident: cit0044
  publication-title: Issues in Information Systems
– ident: cit0042
  doi: 10.1109/ICICOS.2017.8276357
– ident: cit0013
  doi: 10.1145/1143844.1143865
– ident: cit0060
  doi: 10.1109/ICACE.2018.8687080
– volume-title: Introduction to Machine Learning
  year: 2009
  ident: cit0003
– volume-title: Classification and regression trees
  year: 1984
  ident: cit0011
– volume: 3
  start-page: 221
  year: 2007
  ident: cit0071
  publication-title: IEEE Computer Society, Third International Conference on Natural Computation
  doi: 10.1109/ICNC.2007.14
– start-page: 1
  volume-title: Abstract and Applied Analysis,
  year: 2014
  ident: cit0041
– volume-title: Statistical methods for speech recognition
  year: 1998
  ident: cit0028
– ident: cit0035
  doi: 10.3844/ajassp.2004.193.201
– ident: cit0072
  doi: 10.1111/j.1524-4733.2010.00787.x
– ident: cit0045
  doi: 10.1016/S1470-2045(19)30149-4
– ident: cit0007
  doi: 10.1007/BF00058655
– ident: cit0064
– ident: cit0004
  doi: 10.3390/app8112321
– ident: cit0008
– ident: cit0034
  doi: 10.1109/ICMLC.2009.5212389
– ident: cit0049
  doi: 10.1016/B978-0-12-805274-7.00006-3
– volume: 7
  start-page: 1483
  issue: 5
  year: 2019
  ident: cit0063
  publication-title: International Journal for Research in Applied Science & Engineering Technology
– ident: cit0038
  doi: 10.1108/13664381211274371
– ident: cit0068
  doi: 10.1126/science.1171990
– ident: cit0039
  doi: 10.1080/09599916.2012.755558
– volume-title: Speech and language processing: An introduction to Natural language processing, computational linguistics and speech recognition
  year: 2008
  ident: cit0029
– volume: 5
  start-page: 1391
  year: 2004
  ident: cit0025
  publication-title: Journal of Machine Learning Research
– ident: cit0017
  doi: 10.1126/science.1243089
– ident: cit0024
  doi: 10.1007/978-3-319-74690-6
– ident: cit0053
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– volume: 6
  start-page: 19
  year: 2015
  ident: cit0062
  publication-title: Pacific Asia Journal of the Association for Information Systems
– ident: cit0065
  doi: 10.1007/978-1-4757-2440-0
– ident: cit0006
  doi: 10.1145/130385.130401
– ident: cit0026
  doi: 10.1080/09599916.2018.1551923
SSID ssj0021440
Score 2.5821612
Snippet This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 48
SubjectTerms Algorithms
GBM
Learning algorithms
Machine learning
Machine Learning algorithms
Performance measurement
property valuation
Root-mean-square errors
Support vector machines
SVM
Title Predicting property prices with machine learning algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/09599916.2020.1832558
https://www.proquest.com/docview/2488857194
Volume 38
WOSCitedRecordID wos000586644700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1466-4453
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021440
  issn: 0959-9916
  databaseCode: TFW
  dateStart: 19910301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86BL34LU7n6MFrtR9Jk-BJxLGDjB0mzlNI0nQI-6Ktgv-9eW06HCI7aE-l5YX25SXvI-_9HkLXgYqkFRNp3RLNfZxi6UuVYN9YU1bylBKdVIXCT3QwYOMxH7pswsKlVYIPndVAEdVeDYtbqqLJiLuF0BWYNda7i-wjK5OEQLmvVf3Qw2DUe1m5XHB0WaPtcR9Imhqe30ZZ005r2KU_9upKAfUO_uHTD9G-sz69-1pcjtCWmR-j3aY4uThBd8McTm4gF9pbQpw-Lz_tDewmHoRsvVmVfGk8121i4snpZJHbN7PiFD33HkcPfd_1V_A1Dlnpk0Bb9Y-poTRl1pEyhkeZtRd0QmgWSc4ybXVcSI3GUilGZIwTpiMZaqyoVfTxGWrNF3NzjjwWa8BG0xiuOEsYUUylMuNBSmNKZBvhhq9CO_Bx6IExFWGDUeo4I4AzwnGmjW5WZMsafWMTAf8-aaKswh5Z3aNExBtoO80MC7eQC2H_ijFCQ44v_jD0JdqLIBcGQjdRB7XK_N1coR39Ub4VeRdtB6_9biW4X6S55fU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90CvPFb3E6tQ--Vtc2aRJ8ElEmzuHDhPkU0jQdwr7oquB_b64fY0NkD9qn0nKhvVxyH7n7HcBlK_KVFRNl3RItXBIT5aooJK6xpqwSMaM6zAuFO6zb5f2-WKyFwbRK9KGTAigi36txcWMwukqJu8bYFdo11r3z7SMrlJTyddig2DnbynTrrT13uvDwssDbEy7SVFU8vw2zpJ-W0Et_7Na5CnrY-Y-P34Xt0gB1bguJ2YM1M96HelWfPDuAm5cUD28wHdqZYqg-zb7sDW4oDkZtnVGef2mcsuHEwFHDwSS1b0azQ3h9uO_dtd2yxYKricczl7a0tQAIM4zF3PpSxgg_sSaDDilLfCV4oq2a85jRREURpyogIde-8jSJmNX1wRHUxpOxOQaHBxrh0TTBK0hCTiMexSoRrZgFjKoGkIqxUpf449gGYyi9Cqa05IxEzsiSMw24mpNNCwCOVQRicdZklkc-kqJNiQxW0DarKZblWp5J-1ecU-YJcvKHoS-g3u49d2Tnsft0Cls-psZgJMdvQi1LP8wZbOrP7H2Wnufy-w2UFOjy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86Rb34LU6n9uC1urZJk-BJ1KI4xg4Tdwtpmg5hX7RV8L83r02HQ2QH7am0vNC-vOR95L3fQ-iyHfvSiIk0boniLk6wdGUcYlcbU1byhBIVloXCHdrtssGA92w2YW7TKsGHTiugiHKvhsU9S9I6I-4aQldg1hjvzjePjEwSwlbRmjGdQ_C_-tHr3OeCs8sKbo-7QFMX8fw2zIJ6WgAv_bFZlxoo2vmHb99F29b8dG4redlDK3qyjzbr6uT8AN30Mji6gWRoZwaB-qz4NDewnTgQs3XGZfaldmy7iaEjR8NpZt6M80P0Ej307x5d22DBVdhjhUvayuh_TDWlCTOelNbcT43BoEJCU19yliqj5DyqFZZxzIgMcMiULz2FY2o0fXCEGpPpRB8jhwUKwNEUhitIQ0ZiFicy5e2EBpTIJsI1X4Wy6OPQBGMkvBqk1HJGAGeE5UwTXc3JZhX8xjIC_n3SRFHGPdKqSYkIltC26hkWdiXnwvwVY4R6HJ_8YegLtNG7j0Tnqft8irZ8yIuBMI7fQo0ie9dnaF19FG95dl5K7xclJ-ff
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+property+prices+with+machine+learning+algorithms&rft.jtitle=Journal+of+property+research&rft.au=Ho%2C+Winky+K.O.&rft.au=Tang%2C+Bo-Sin&rft.au=Wong%2C+Siu+Wai&rft.date=2021-01-02&rft.pub=Routledge&rft.issn=0959-9916&rft.eissn=1466-4453&rft.volume=38&rft.issue=1&rft.spage=48&rft.epage=70&rft_id=info:doi/10.1080%2F09599916.2020.1832558&rft.externalDBID=0YH&rft.externalDocID=1832558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9916&client=summon