Flight Anomaly Detection via a Deep Hybrid Model
In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The...
Saved in:
| Published in: | Aerospace Vol. 9; no. 6; p. 329 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2022
|
| Subjects: | |
| ISSN: | 2226-4310, 2226-4310 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The use of flight monitoring data for flight anomaly detection is effective in discovering unknown and potential flight incidents. In this paper, we propose a time-feature attention mechanism and construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at Kunming Changshui International and Chengdu Shuangliu International airports are used as the experimental data, and the results show that (1) the time-feature-based convolutional autoencoder proposed in this paper can better extract the flight features and further discover the different landing patterns; (2) in the representation space of the flights, anomalous flight objects are better separated from normal objects to provide a quality database for subsequent anomaly detection; and (3) the discovered flight patterns are consistent with those at the airports, resulting in anomalies that could be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at each airport are presented to analyze the characteristics of anomalies. |
|---|---|
| AbstractList | In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The use of flight monitoring data for flight anomaly detection is effective in discovering unknown and potential flight incidents. In this paper, we propose a time-feature attention mechanism and construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at Kunming Changshui International and Chengdu Shuangliu International airports are used as the experimental data, and the results show that (1) the time-feature-based convolutional autoencoder proposed in this paper can better extract the flight features and further discover the different landing patterns; (2) in the representation space of the flights, anomalous flight objects are better separated from normal objects to provide a quality database for subsequent anomaly detection; and (3) the discovered flight patterns are consistent with those at the airports, resulting in anomalies that could be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at each airport are presented to analyze the characteristics of anomalies. |
| Audience | Academic |
| Author | Sun, Huabo Qin, Kun Lu, Binbin Shu, Ping Wang, Qixin |
| Author_xml | – sequence: 1 givenname: Kun surname: Qin fullname: Qin, Kun – sequence: 2 givenname: Qixin surname: Wang fullname: Wang, Qixin – sequence: 3 givenname: Binbin orcidid: 0000-0001-7847-7560 surname: Lu fullname: Lu, Binbin – sequence: 4 givenname: Huabo surname: Sun fullname: Sun, Huabo – sequence: 5 givenname: Ping surname: Shu fullname: Shu, Ping |
| BookMark | eNp1kU1LAzEQhoMoWGvvHhc8V_OdzbH41YLiRc8hm0xqynZTs6vQf29qFaRg5pDMMM9L5p0zdNylDhC6IPiKMY2vLeTUb6wDjSVmVB-hEaVUTjkj-PjP-xRN-n6Fy9GE1ViMEL5v4_JtqGZdWtt2W93CAG6Iqas-o61syWFTzbdNjr56Sh7ac3QSbNvD5Oceo9f7u5eb-fTx-WFxM3ucOk7qYcq9ps5L1TglvcAhUIq145bT2gngRAQhJGfCU90oYilnnjTEcekAU-4FG6PFXtcnuzKbHNc2b02y0XwXUl4am4foWjABBKk1D05oxlXttGwgAFGN8pw0CorW5V5rk9P7B_SDWaWP3JXvGyqVlqS4Vpeuq33X0hbR2IU0ZOtKeFhHVwwPsdRnqkzCNCeqAHIPuOJ-nyEYFwe7M6-AsTUEm912zOF2CogPwN_5_kW-AHjLk5k |
| CitedBy_id | crossref_primary_10_3390_aerospace10050409 crossref_primary_10_3390_s24010264 crossref_primary_10_2514_1_I011538 crossref_primary_10_3390_aerospace10050416 crossref_primary_10_3390_aerospace9100580 crossref_primary_10_1007_s40747_023_01053_z crossref_primary_10_3390_aerospace12070645 crossref_primary_10_1109_JSEN_2025_3562842 crossref_primary_10_3390_s23063318 crossref_primary_10_1109_ACCESS_2024_3495519 crossref_primary_10_1016_j_engappai_2025_110911 crossref_primary_10_1016_j_ress_2025_110910 crossref_primary_10_3390_aerospace9090480 crossref_primary_10_1016_j_apenergy_2024_123907 crossref_primary_10_1016_j_knosys_2025_114275 crossref_primary_10_1016_j_jcyt_2023_08_011 crossref_primary_10_1088_1361_6501_acb83c |
| Cites_doi | 10.1007/978-3-030-01234-2_1 10.3390/aerospace7080115 10.1007/s10618-008-0120-3 10.1126/science.1127647 10.1109/TPAMI.1979.4766909 10.20944/preprints201909.0326.v1 10.1002/j.1538-7305.1957.tb01515.x 10.1137/1.9781611973440.96 10.1145/304181.304187 10.1145/3394486.3406704 10.1109/TCBB.2008.32 10.1109/ICDM.2008.17 10.1016/j.ress.2014.03.013 10.1007/978-94-015-3994-4 10.1007/978-3-319-59050-9_12 10.1371/journal.pone.0118309 10.1109/ICDMW.2017.12 10.1016/0169-7439(87)80084-9 10.1080/01621459.2017.1285773 10.1016/S1000-9361(11)60397-X 10.1145/1015330.1015424 10.1016/S0167-8655(99)00087-2 10.1109/CVPR.2018.00745 10.1007/978-3-642-37456-2_14 10.1007/BF00994018 10.1016/j.media.2019.01.010 10.21105/joss.00205 10.1145/364099.364331 10.1016/0377-0427(87)90125-7 10.1145/3178876.3185996 10.1145/3097983.3098052 10.1109/MFI49285.2020.9235263 10.1016/j.ipm.2019.102178 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TB 7TG 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/aerospace9060329 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (NC Live) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2226-4310 |
| ExternalDocumentID | oai_doaj_org_article_fe51894fc593478c96befe17b7d41b7e A722039417 10_3390_aerospace9060329 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X 5VS 85S 8FE 8FG 8FH AADQD AAFWJ AAYXX ABPPZ ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR BQN CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 LK5 M7R MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC 7TB 7TG 8FD ABUWG AZQEC DWQXO FR3 H8D KL. L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c418t-4d92cd67bc76d50ff2209c4a428c5e415f556435d29b71a243d1b1c46ce024d53 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2226-4310 |
| IngestDate | Fri Oct 03 12:17:06 EDT 2025 Fri Jul 25 20:09:29 EDT 2025 Tue Nov 04 17:47:56 EST 2025 Sat Nov 29 07:12:02 EST 2025 Tue Nov 18 21:23:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-4d92cd67bc76d50ff2209c4a428c5e415f556435d29b71a243d1b1c46ce024d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7847-7560 |
| OpenAccessLink | https://www.proquest.com/docview/2679610608?pq-origsite=%requestingapplication% |
| PQID | 2679610608 |
| PQPubID | 2032442 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fe51894fc593478c96befe17b7d41b7e proquest_journals_2679610608 gale_infotracacademiconefile_A722039417 crossref_citationtrail_10_3390_aerospace9060329 crossref_primary_10_3390_aerospace9060329 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Aerospace |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tax (ref_7) 1999; 20 Schlegl (ref_30) 2019; 54 Liu (ref_39) 2020; 57 ref_57 ref_12 ref_11 Rousseeuw (ref_58) 1987; 20 Galler (ref_55) 1964; 7 ref_52 ref_51 McInnes (ref_53) 2017; 2 ref_18 Pei (ref_50) 2009; 18 ref_17 Vaswani (ref_56) 2017; 30 ref_15 Ester (ref_46) 1996; 96 Lanckriet (ref_6) 2004; 5 ref_25 ref_22 Niethammer (ref_23) 2017; Volume 10265 ref_21 ref_20 ref_29 ref_28 ref_26 Prim (ref_54) 1957; 36 Javaid (ref_10) 2016; 3 ref_36 ref_35 ref_34 Reddy (ref_16) 2016; 8 Hinton (ref_24) 2006; 313 ref_33 Qing (ref_2) 2012; 25 ref_31 Wang (ref_32) 2014; 127 Li (ref_8) 2015; 12 Cortes (ref_14) 1995; 20 ref_38 ref_37 Chandola (ref_3) 2007; 14 An (ref_19) 2015; 2 Wold (ref_13) 1987; 2 Gupta (ref_49) 2008; 7 Ankerst (ref_48) 1999; 28 ref_47 ref_45 ref_44 Davies (ref_59) 1979; 1 ref_43 ref_42 ref_41 ref_40 ref_1 ref_9 Blei (ref_27) 2017; 112 ref_5 ref_4 |
| References_xml | – volume: 14 start-page: 15 year: 2007 ident: ref_3 article-title: Outlier detection: A survey publication-title: ACM Comput. Surv. – ident: ref_42 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_1 doi: 10.3390/aerospace7080115 – ident: ref_26 – ident: ref_51 – volume: 18 start-page: 337 year: 2009 ident: ref_50 article-title: DECODE: A new method for discovering clusters of different densities in spatial data publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-008-0120-3 – volume: 313 start-page: 504 year: 2006 ident: ref_24 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science doi: 10.1126/science.1127647 – volume: 1 start-page: 224 year: 1979 ident: ref_59 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – ident: ref_35 – volume: 3 start-page: e2 year: 2016 ident: ref_10 article-title: A deep learning approach for network intrusion detection system publication-title: Eai Endorsed Trans. Secur. Saf. – ident: ref_28 doi: 10.20944/preprints201909.0326.v1 – volume: 36 start-page: 1389 year: 1957 ident: ref_54 article-title: Shortest connection networks and some generalizations publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1957.tb01515.x – ident: ref_57 doi: 10.1137/1.9781611973440.96 – volume: 28 start-page: 49 year: 1999 ident: ref_48 article-title: OPTICS: Ordering points to identify the clustering structure publication-title: ACM Sigmod Rec. doi: 10.1145/304181.304187 – ident: ref_9 doi: 10.1145/3394486.3406704 – volume: 7 start-page: 223 year: 2008 ident: ref_49 article-title: Automated hierarchical density shaving: A robust automated clustering and visualization framework for large biological data sets publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2008.32 – ident: ref_15 doi: 10.1109/ICDM.2008.17 – volume: 127 start-page: 86 year: 2014 ident: ref_32 article-title: An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing incidents publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2014.03.013 – ident: ref_4 doi: 10.1007/978-94-015-3994-4 – volume: 5 start-page: 27 year: 2004 ident: ref_6 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – volume: Volume 10265 start-page: 146 year: 2017 ident: ref_23 article-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery publication-title: Information Processing in Medical Imaging doi: 10.1007/978-3-319-59050-9_12 – ident: ref_38 – ident: ref_11 doi: 10.1371/journal.pone.0118309 – ident: ref_45 – ident: ref_52 doi: 10.1109/ICDMW.2017.12 – volume: 2 start-page: 37 year: 1987 ident: ref_13 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – ident: ref_20 – volume: 96 start-page: 226 year: 1996 ident: ref_46 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – volume: 112 start-page: 859 year: 2017 ident: ref_27 article-title: Variational Inference: A Review for Statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – volume: 25 start-page: 361 year: 2012 ident: ref_2 article-title: Aerodynamic modeling and parameter estimation from QAR data of an airplane approaching a high-altitude airport publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(11)60397-X – ident: ref_5 doi: 10.1145/1015330.1015424 – ident: ref_34 – volume: 12 start-page: 587 year: 2015 ident: ref_8 article-title: Analysis of Flight Data Using Clustering Techniques for Detecting Abnormal Operations publication-title: J. Aerosp. Inf. Syst. – volume: 20 start-page: 1191 year: 1999 ident: ref_7 article-title: Support vector domain description publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(99)00087-2 – ident: ref_41 doi: 10.1109/CVPR.2018.00745 – ident: ref_40 – ident: ref_37 – ident: ref_44 – ident: ref_21 – ident: ref_31 doi: 10.1007/978-3-642-37456-2_14 – volume: 30 start-page: 5998 year: 2017 ident: ref_56 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 273 year: 1995 ident: ref_14 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 54 start-page: 30 year: 2019 ident: ref_30 article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – volume: 2 start-page: 205 year: 2017 ident: ref_53 article-title: hdbscan: Hierarchical density based clustering publication-title: J. Open Source Softw. doi: 10.21105/joss.00205 – ident: ref_25 – volume: 7 start-page: 301 year: 1964 ident: ref_55 article-title: An improved equivalence algorithm publication-title: Commun. ACM doi: 10.1145/364099.364331 – volume: 20 start-page: 53 year: 1987 ident: ref_58 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: ref_29 – ident: ref_33 – ident: ref_12 – ident: ref_18 doi: 10.1145/3178876.3185996 – ident: ref_17 doi: 10.1145/3097983.3098052 – ident: ref_47 doi: 10.1109/MFI49285.2020.9235263 – ident: ref_36 – ident: ref_43 – volume: 2 start-page: 1 year: 2015 ident: ref_19 article-title: Variational Autoencoder based Anomaly Detection using Reconstruction Probability publication-title: Spec. Lect. IE – ident: ref_22 – volume: 57 start-page: 102178 year: 2020 ident: ref_39 article-title: Image caption generation with dual attention mechanism publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2019.102178 – volume: 8 start-page: 7 year: 2016 ident: ref_16 article-title: Anomaly Detection and Fault Disambiguation in Large Flight Data: A Multi-modal Deep Auto-encoder Approach publication-title: Annu. Conf. Progn. Health Monit. Soc. |
| SSID | ssj0000913805 |
| Score | 2.2948036 |
| Snippet | In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 329 |
| SubjectTerms | Accident investigation Accident investigations Accidents Aerospace industry Aircraft accidents & safety Aircraft landing Airport security Airports Algorithms Anomalies Aviation Civil aviation Clustering convolutional autoencoder deep hybrid model Deep learning Detectors Feature extraction flight anomaly detection Forensic engineering HDBSCAN clustering algorithm Machine learning Neural networks Object recognition Random variables Risk management Safety and security measures Time series time-feature attention |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA5FPLQH0VZxdS1zKBQPw-bnZHJcbRcPRXpoZW8hP15gYV1FV8H_3pfM7LoI1UuPM2SGzPcmee9L8r5HyDeWwAQFqtaNTLUMmtXOq1TTlBiGt8aLUjPy6pe-vGynU_N7o9RXPhPWyQN3wI0SKNYamYIyQuo2mMZDAqa9jpJ5DXn2pdpskKkyBxsmWqq6fUmBvH7kAL0O0lAwtKGiRJQvfqjI9f9rUi6eZrJLdvoQsRp3XdsjH2DxmXzaEA78Quhknkl1heT92s2fqh-wLEeqFtXjzFUOr-G2unjK2VhVrnY23yd_Jz__nF_Ufe2DOkjWLmsZDQ-x0T7oJipEjnNqgnTIFhBa9LpJKQwmVOTGa-a4FJF5FmQTAL1uVOKAbC1uFnBIqkB5MCohUwGHLss5qiO-NKpGcy8ABmS0QsKGXhg816eYWyQIGTv7GrsBOV0_cduJYrzR9iyDu26X5azLDTSy7Y1s3zPygHzPprF50GHXgutzB_ADs3yVHWuERxjJ9IAMV9az_Wi8tzwvliH3pe3R_-jNMfnIcxJEWYsZkq3l3QOckO3wuJzd330tP-Iz1VLiag priority: 102 providerName: Directory of Open Access Journals |
| Title | Flight Anomaly Detection via a Deep Hybrid Model |
| URI | https://www.proquest.com/docview/2679610608 https://doaj.org/article/fe51894fc593478c96befe17b7d41b7e |
| Volume | 9 |
| WOSCitedRecordID | wos000815868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) (Open Access) customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: P5Z dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: PCBAR dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2226-4310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913805 issn: 2226-4310 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGFrcoBCXGIGjt2HJ9Qx1oNiVURAjS4WI4_pkkl7dpu0i787bznut00iV24RErsRM57tt_7Pdu_R8g7GryywotcVjzk3Eqam1aEvAiBgnur2jLmjPzxRU4m9cmJalLAbZm2VW7mxDhRu5nFGPmAYcAD8EtRf5yf55g1CldXUwqN-2QXWRIwdUMjfm1jLMh5WRdivTpZArofGA-2B8CoV_ClMvqV19Yokvb_a2qO9mb85H9b-pQ8Tp5mNlx3jWfknu-ek0c3-AdfkGI8RWyeDbvZbzO9yg79Ku7M6rLLM5MZuPfz7OgKD3VlmDRt-pJ8H4--fTrKUwqF3HJar3LuFLOukq2VlROgAMYKZbkB0AEaAuMdhACfRDimWkkN46WjLbW8sh6MtxPlK7LTzTr_mmS2YFaJAIDHG7B8xhTSwUedqCRrS-97ZLARpbaJXxzTXEw14AwUvr4t_B75sH1jvubWuKPuAWpnWw9ZseOD2eJUp0Gmgxe0VjxYoUoua6uq1gdPZSsdp62EJr5H3Wocu9A0a9IRBPhBZMHSQwniKRWnskf2NrrVaVAv9bVi39xd_JY8ZHhKIgZr9sjOanHh98kDe7k6Wy76ZPdgNGm-9iP8h-vxn1E_9lsoaT4fNz__ApGZ9Vc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tukjAgTeisEAOIMQhauzYcXxAqLBUrbZb9bCg5WT8RCuVtLRlUf8Uv5FxmnQREnvbA8ckTjTJfJnPM_bMALwgwUvLPU9FwULKrCCpNjykWQgEp7fS5HXPyE9jMZmUp6dyuge_2lyYuK2ytYm1oXZzG2PkPRoDHui_ZOXbxfc0do2Kq6ttC40tLI785ie6bKs3o0PU70tKBx9O3g_TpqtAahkp1ylzklpXCGNF4TjKRGkmLdM4D0ehkc8C50jT3FFpBNGU5Y4YYllhPfKZi10i0OTvswj2DuxPR8fTz7uoTqyyWWZ8ux6a5zLraY9sh-6vlyh7Xs9kL_ivbhPwLzKoGW5w-3_7NnfgVjOXTvpb8N-FPV_dg5t_VFi8D9lgFqMPSb-af9OzTXLo1_Xesyo5P9OJxmO_SIabmLaWxLZwswfw8UpEfgidal75R5DYjFrJA7p0XiO3a50Jhw91vBDU5N53odeqTtmmgnps5DFT6ElFZau_ld2F17s7FtvqIZeMfRfRsBsX637XJ-bLr6oxIyp4TkrJguUyZ6K0sjA-eCKMcIwYgSK-ilhS0TqhaFY3SRb4grHOl-oL_Dy5ZER04aDFkmrM1kpdAOnx5Zefw_XhyfFYjUeToydwg8ackDo0dQCd9fKHfwrX7Pn6bLV81vwhCXy5auD9BhI0TL0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemgRA88I0oDMgDCPEQNXbsOH5AqFCqTZuqPgCaeDH-RJO6tGvLUP81_jru3KRDSOxtDzwmcaKz73K_u7PvjpCXNAblRBC5rHjMuZM0N1bEvIiRgnmrbJl6Rn45kuNxfXysJjvkV5cLg8cqO52YFLWfOYyR9xkGPMB_Kep-bI9FTIajd_OzHDtI4U5r105jIyKHYf0T3Lfl24Mh8PoVY6OPnz7s522HgdxxWq9y7hVzvpLWycoLoI-xQjluwCaHCQC2RSEAsoVnykpqGC89tdTxygXANo8dI0D9X5PgY-Jxwon4uo3vYL3NuhCbndGyVEXfBMA9cISDglmUyaa9QMLUMOBfsJCwbnTnf16lu-R2a2Fng80vcY_shOY-ufVH3cUHpBhNMSaRDZrZqZmus2FYpRNpTXZ-YjID12Ge7a8xmS3DZnHTh-TzlZD8iOw2syY8JpkrmFMigqMXDCC-MYX08FEvKslsGUKP9Ds2atfWVcf2HlMN_hUyXv_N-B55s31jvqkpcsnY9ygZ23FYDTzdmC2-61a56BgErRWPTqiSy9qpyoYYqLTSc2olkPga5UqjzgLSnGlTL2CCWP1LDyQsT6k4lT2y18mVbpXZUl8I1ZPLH78gN0Da9NHB-PApuckwUSTFq_bI7mrxIzwj19356mS5eJ5-lYx8u2qp-w37rFQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+Anomaly+Detection+via+a+Deep+Hybrid+Model&rft.jtitle=Aerospace&rft.au=Qin%2C+Kun&rft.au=Wang%2C+Qixin&rft.au=Lu%2C+Binbin&rft.au=Sun%2C+Huabo&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.issn=2226-4310&rft.eissn=2226-4310&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Faerospace9060329&rft.externalDocID=A722039417 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-4310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-4310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-4310&client=summon |