Flight Anomaly Detection via a Deep Hybrid Model

In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace Vol. 9; no. 6; p. 329
Main Authors: Qin, Kun, Wang, Qixin, Lu, Binbin, Sun, Huabo, Shu, Ping
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2022
Subjects:
ISSN:2226-4310, 2226-4310
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The use of flight monitoring data for flight anomaly detection is effective in discovering unknown and potential flight incidents. In this paper, we propose a time-feature attention mechanism and construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at Kunming Changshui International and Chengdu Shuangliu International airports are used as the experimental data, and the results show that (1) the time-feature-based convolutional autoencoder proposed in this paper can better extract the flight features and further discover the different landing patterns; (2) in the representation space of the flights, anomalous flight objects are better separated from normal objects to provide a quality database for subsequent anomaly detection; and (3) the discovered flight patterns are consistent with those at the airports, resulting in anomalies that could be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at each airport are presented to analyze the characteristics of anomalies.
AbstractList In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The use of flight monitoring data for flight anomaly detection is effective in discovering unknown and potential flight incidents. In this paper, we propose a time-feature attention mechanism and construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at Kunming Changshui International and Chengdu Shuangliu International airports are used as the experimental data, and the results show that (1) the time-feature-based convolutional autoencoder proposed in this paper can better extract the flight features and further discover the different landing patterns; (2) in the representation space of the flights, anomalous flight objects are better separated from normal objects to provide a quality database for subsequent anomaly detection; and (3) the discovered flight patterns are consistent with those at the airports, resulting in anomalies that could be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at each airport are presented to analyze the characteristics of anomalies.
Audience Academic
Author Sun, Huabo
Qin, Kun
Lu, Binbin
Shu, Ping
Wang, Qixin
Author_xml – sequence: 1
  givenname: Kun
  surname: Qin
  fullname: Qin, Kun
– sequence: 2
  givenname: Qixin
  surname: Wang
  fullname: Wang, Qixin
– sequence: 3
  givenname: Binbin
  orcidid: 0000-0001-7847-7560
  surname: Lu
  fullname: Lu, Binbin
– sequence: 4
  givenname: Huabo
  surname: Sun
  fullname: Sun, Huabo
– sequence: 5
  givenname: Ping
  surname: Shu
  fullname: Shu, Ping
BookMark eNp1kU1LAzEQhoMoWGvvHhc8V_OdzbH41YLiRc8hm0xqynZTs6vQf29qFaRg5pDMMM9L5p0zdNylDhC6IPiKMY2vLeTUb6wDjSVmVB-hEaVUTjkj-PjP-xRN-n6Fy9GE1ViMEL5v4_JtqGZdWtt2W93CAG6Iqas-o61syWFTzbdNjr56Sh7ac3QSbNvD5Oceo9f7u5eb-fTx-WFxM3ucOk7qYcq9ps5L1TglvcAhUIq145bT2gngRAQhJGfCU90oYilnnjTEcekAU-4FG6PFXtcnuzKbHNc2b02y0XwXUl4am4foWjABBKk1D05oxlXttGwgAFGN8pw0CorW5V5rk9P7B_SDWaWP3JXvGyqVlqS4Vpeuq33X0hbR2IU0ZOtKeFhHVwwPsdRnqkzCNCeqAHIPuOJ-nyEYFwe7M6-AsTUEm912zOF2CogPwN_5_kW-AHjLk5k
CitedBy_id crossref_primary_10_3390_aerospace10050409
crossref_primary_10_3390_s24010264
crossref_primary_10_2514_1_I011538
crossref_primary_10_3390_aerospace10050416
crossref_primary_10_3390_aerospace9100580
crossref_primary_10_1007_s40747_023_01053_z
crossref_primary_10_3390_aerospace12070645
crossref_primary_10_1109_JSEN_2025_3562842
crossref_primary_10_3390_s23063318
crossref_primary_10_1109_ACCESS_2024_3495519
crossref_primary_10_1016_j_engappai_2025_110911
crossref_primary_10_1016_j_ress_2025_110910
crossref_primary_10_3390_aerospace9090480
crossref_primary_10_1016_j_apenergy_2024_123907
crossref_primary_10_1016_j_knosys_2025_114275
crossref_primary_10_1016_j_jcyt_2023_08_011
crossref_primary_10_1088_1361_6501_acb83c
Cites_doi 10.1007/978-3-030-01234-2_1
10.3390/aerospace7080115
10.1007/s10618-008-0120-3
10.1126/science.1127647
10.1109/TPAMI.1979.4766909
10.20944/preprints201909.0326.v1
10.1002/j.1538-7305.1957.tb01515.x
10.1137/1.9781611973440.96
10.1145/304181.304187
10.1145/3394486.3406704
10.1109/TCBB.2008.32
10.1109/ICDM.2008.17
10.1016/j.ress.2014.03.013
10.1007/978-94-015-3994-4
10.1007/978-3-319-59050-9_12
10.1371/journal.pone.0118309
10.1109/ICDMW.2017.12
10.1016/0169-7439(87)80084-9
10.1080/01621459.2017.1285773
10.1016/S1000-9361(11)60397-X
10.1145/1015330.1015424
10.1016/S0167-8655(99)00087-2
10.1109/CVPR.2018.00745
10.1007/978-3-642-37456-2_14
10.1007/BF00994018
10.1016/j.media.2019.01.010
10.21105/joss.00205
10.1145/364099.364331
10.1016/0377-0427(87)90125-7
10.1145/3178876.3185996
10.1145/3097983.3098052
10.1109/MFI49285.2020.9235263
10.1016/j.ipm.2019.102178
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
7TG
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KL.
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/aerospace9060329
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (NC Live)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2226-4310
ExternalDocumentID oai_doaj_org_article_fe51894fc593478c96befe17b7d41b7e
A722039417
10_3390_aerospace9060329
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABPPZ
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BQN
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
LK5
M7R
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7TB
7TG
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KL.
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c418t-4d92cd67bc76d50ff2209c4a428c5e415f556435d29b71a243d1b1c46ce024d53
IEDL.DBID P5Z
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2226-4310
IngestDate Fri Oct 03 12:17:06 EDT 2025
Fri Jul 25 20:09:29 EDT 2025
Tue Nov 04 17:47:56 EST 2025
Sat Nov 29 07:12:02 EST 2025
Tue Nov 18 21:23:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-4d92cd67bc76d50ff2209c4a428c5e415f556435d29b71a243d1b1c46ce024d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7847-7560
OpenAccessLink https://www.proquest.com/docview/2679610608?pq-origsite=%requestingapplication%
PQID 2679610608
PQPubID 2032442
ParticipantIDs doaj_primary_oai_doaj_org_article_fe51894fc593478c96befe17b7d41b7e
proquest_journals_2679610608
gale_infotracacademiconefile_A722039417
crossref_citationtrail_10_3390_aerospace9060329
crossref_primary_10_3390_aerospace9060329
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Aerospace
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tax (ref_7) 1999; 20
Schlegl (ref_30) 2019; 54
Liu (ref_39) 2020; 57
ref_57
ref_12
ref_11
Rousseeuw (ref_58) 1987; 20
Galler (ref_55) 1964; 7
ref_52
ref_51
McInnes (ref_53) 2017; 2
ref_18
Pei (ref_50) 2009; 18
ref_17
Vaswani (ref_56) 2017; 30
ref_15
Ester (ref_46) 1996; 96
Lanckriet (ref_6) 2004; 5
ref_25
ref_22
Niethammer (ref_23) 2017; Volume 10265
ref_21
ref_20
ref_29
ref_28
ref_26
Prim (ref_54) 1957; 36
Javaid (ref_10) 2016; 3
ref_36
ref_35
ref_34
Reddy (ref_16) 2016; 8
Hinton (ref_24) 2006; 313
ref_33
Qing (ref_2) 2012; 25
ref_31
Wang (ref_32) 2014; 127
Li (ref_8) 2015; 12
Cortes (ref_14) 1995; 20
ref_38
ref_37
Chandola (ref_3) 2007; 14
An (ref_19) 2015; 2
Wold (ref_13) 1987; 2
Gupta (ref_49) 2008; 7
Ankerst (ref_48) 1999; 28
ref_47
ref_45
ref_44
Davies (ref_59) 1979; 1
ref_43
ref_42
ref_41
ref_40
ref_1
ref_9
Blei (ref_27) 2017; 112
ref_5
ref_4
References_xml – volume: 14
  start-page: 15
  year: 2007
  ident: ref_3
  article-title: Outlier detection: A survey
  publication-title: ACM Comput. Surv.
– ident: ref_42
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_1
  doi: 10.3390/aerospace7080115
– ident: ref_26
– ident: ref_51
– volume: 18
  start-page: 337
  year: 2009
  ident: ref_50
  article-title: DECODE: A new method for discovering clusters of different densities in spatial data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-008-0120-3
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_24
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 1
  start-page: 224
  year: 1979
  ident: ref_59
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– ident: ref_35
– volume: 3
  start-page: e2
  year: 2016
  ident: ref_10
  article-title: A deep learning approach for network intrusion detection system
  publication-title: Eai Endorsed Trans. Secur. Saf.
– ident: ref_28
  doi: 10.20944/preprints201909.0326.v1
– volume: 36
  start-page: 1389
  year: 1957
  ident: ref_54
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– ident: ref_57
  doi: 10.1137/1.9781611973440.96
– volume: 28
  start-page: 49
  year: 1999
  ident: ref_48
  article-title: OPTICS: Ordering points to identify the clustering structure
  publication-title: ACM Sigmod Rec.
  doi: 10.1145/304181.304187
– ident: ref_9
  doi: 10.1145/3394486.3406704
– volume: 7
  start-page: 223
  year: 2008
  ident: ref_49
  article-title: Automated hierarchical density shaving: A robust automated clustering and visualization framework for large biological data sets
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2008.32
– ident: ref_15
  doi: 10.1109/ICDM.2008.17
– volume: 127
  start-page: 86
  year: 2014
  ident: ref_32
  article-title: An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing incidents
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2014.03.013
– ident: ref_4
  doi: 10.1007/978-94-015-3994-4
– volume: 5
  start-page: 27
  year: 2004
  ident: ref_6
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– volume: Volume 10265
  start-page: 146
  year: 2017
  ident: ref_23
  article-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
  publication-title: Information Processing in Medical Imaging
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref_38
– ident: ref_11
  doi: 10.1371/journal.pone.0118309
– ident: ref_45
– ident: ref_52
  doi: 10.1109/ICDMW.2017.12
– volume: 2
  start-page: 37
  year: 1987
  ident: ref_13
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref_20
– volume: 96
  start-page: 226
  year: 1996
  ident: ref_46
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 112
  start-page: 859
  year: 2017
  ident: ref_27
  article-title: Variational Inference: A Review for Statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– volume: 25
  start-page: 361
  year: 2012
  ident: ref_2
  article-title: Aerodynamic modeling and parameter estimation from QAR data of an airplane approaching a high-altitude airport
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(11)60397-X
– ident: ref_5
  doi: 10.1145/1015330.1015424
– ident: ref_34
– volume: 12
  start-page: 587
  year: 2015
  ident: ref_8
  article-title: Analysis of Flight Data Using Clustering Techniques for Detecting Abnormal Operations
  publication-title: J. Aerosp. Inf. Syst.
– volume: 20
  start-page: 1191
  year: 1999
  ident: ref_7
  article-title: Support vector domain description
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00087-2
– ident: ref_41
  doi: 10.1109/CVPR.2018.00745
– ident: ref_40
– ident: ref_37
– ident: ref_44
– ident: ref_21
– ident: ref_31
  doi: 10.1007/978-3-642-37456-2_14
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref_56
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_14
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 54
  start-page: 30
  year: 2019
  ident: ref_30
  article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– volume: 2
  start-page: 205
  year: 2017
  ident: ref_53
  article-title: hdbscan: Hierarchical density based clustering
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00205
– ident: ref_25
– volume: 7
  start-page: 301
  year: 1964
  ident: ref_55
  article-title: An improved equivalence algorithm
  publication-title: Commun. ACM
  doi: 10.1145/364099.364331
– volume: 20
  start-page: 53
  year: 1987
  ident: ref_58
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref_29
– ident: ref_33
– ident: ref_12
– ident: ref_18
  doi: 10.1145/3178876.3185996
– ident: ref_17
  doi: 10.1145/3097983.3098052
– ident: ref_47
  doi: 10.1109/MFI49285.2020.9235263
– ident: ref_36
– ident: ref_43
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_19
  article-title: Variational Autoencoder based Anomaly Detection using Reconstruction Probability
  publication-title: Spec. Lect. IE
– ident: ref_22
– volume: 57
  start-page: 102178
  year: 2020
  ident: ref_39
  article-title: Image caption generation with dual attention mechanism
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.102178
– volume: 8
  start-page: 7
  year: 2016
  ident: ref_16
  article-title: Anomaly Detection and Fault Disambiguation in Large Flight Data: A Multi-modal Deep Auto-encoder Approach
  publication-title: Annu. Conf. Progn. Health Monit. Soc.
SSID ssj0000913805
Score 2.2948036
Snippet In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 329
SubjectTerms Accident investigation
Accident investigations
Accidents
Aerospace industry
Aircraft accidents & safety
Aircraft landing
Airport security
Airports
Algorithms
Anomalies
Aviation
Civil aviation
Clustering
convolutional autoencoder
deep hybrid model
Deep learning
Detectors
Feature extraction
flight anomaly detection
Forensic engineering
HDBSCAN clustering algorithm
Machine learning
Neural networks
Object recognition
Random variables
Risk management
Safety and security measures
Time series
time-feature attention
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA5FPLQH0VZxdS1zKBQPw-bnZHJcbRcPRXpoZW8hP15gYV1FV8H_3pfM7LoI1UuPM2SGzPcmee9L8r5HyDeWwAQFqtaNTLUMmtXOq1TTlBiGt8aLUjPy6pe-vGynU_N7o9RXPhPWyQN3wI0SKNYamYIyQuo2mMZDAqa9jpJ5DXn2pdpskKkyBxsmWqq6fUmBvH7kAL0O0lAwtKGiRJQvfqjI9f9rUi6eZrJLdvoQsRp3XdsjH2DxmXzaEA78Quhknkl1heT92s2fqh-wLEeqFtXjzFUOr-G2unjK2VhVrnY23yd_Jz__nF_Ufe2DOkjWLmsZDQ-x0T7oJipEjnNqgnTIFhBa9LpJKQwmVOTGa-a4FJF5FmQTAL1uVOKAbC1uFnBIqkB5MCohUwGHLss5qiO-NKpGcy8ABmS0QsKGXhg816eYWyQIGTv7GrsBOV0_cduJYrzR9iyDu26X5azLDTSy7Y1s3zPygHzPprF50GHXgutzB_ADs3yVHWuERxjJ9IAMV9az_Wi8tzwvliH3pe3R_-jNMfnIcxJEWYsZkq3l3QOckO3wuJzd330tP-Iz1VLiag
  priority: 102
  providerName: Directory of Open Access Journals
Title Flight Anomaly Detection via a Deep Hybrid Model
URI https://www.proquest.com/docview/2679610608
https://doaj.org/article/fe51894fc593478c96befe17b7d41b7e
Volume 9
WOSCitedRecordID wos000815868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ) (Open Access)
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: P5Z
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: PCBAR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGFrcoBCXGIGjt2HJ9Qx1oNiVURAjS4WI4_pkkl7dpu0i787bznut00iV24RErsRM57tt_7Pdu_R8g7GryywotcVjzk3Eqam1aEvAiBgnur2jLmjPzxRU4m9cmJalLAbZm2VW7mxDhRu5nFGPmAYcAD8EtRf5yf55g1CldXUwqN-2QXWRIwdUMjfm1jLMh5WRdivTpZArofGA-2B8CoV_ClMvqV19Yokvb_a2qO9mb85H9b-pQ8Tp5mNlx3jWfknu-ek0c3-AdfkGI8RWyeDbvZbzO9yg79Ku7M6rLLM5MZuPfz7OgKD3VlmDRt-pJ8H4--fTrKUwqF3HJar3LuFLOukq2VlROgAMYKZbkB0AEaAuMdhACfRDimWkkN46WjLbW8sh6MtxPlK7LTzTr_mmS2YFaJAIDHG7B8xhTSwUedqCRrS-97ZLARpbaJXxzTXEw14AwUvr4t_B75sH1jvubWuKPuAWpnWw9ZseOD2eJUp0Gmgxe0VjxYoUoua6uq1gdPZSsdp62EJr5H3Wocu9A0a9IRBPhBZMHSQwniKRWnskf2NrrVaVAv9bVi39xd_JY8ZHhKIgZr9sjOanHh98kDe7k6Wy76ZPdgNGm-9iP8h-vxn1E_9lsoaT4fNz__ApGZ9Vc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tukjAgTeisEAOIMQhauzYcXxAqLBUrbZb9bCg5WT8RCuVtLRlUf8Uv5FxmnQREnvbA8ckTjTJfJnPM_bMALwgwUvLPU9FwULKrCCpNjykWQgEp7fS5HXPyE9jMZmUp6dyuge_2lyYuK2ytYm1oXZzG2PkPRoDHui_ZOXbxfc0do2Kq6ttC40tLI785ie6bKs3o0PU70tKBx9O3g_TpqtAahkp1ylzklpXCGNF4TjKRGkmLdM4D0ehkc8C50jT3FFpBNGU5Y4YYllhPfKZi10i0OTvswj2DuxPR8fTz7uoTqyyWWZ8ux6a5zLraY9sh-6vlyh7Xs9kL_ivbhPwLzKoGW5w-3_7NnfgVjOXTvpb8N-FPV_dg5t_VFi8D9lgFqMPSb-af9OzTXLo1_Xesyo5P9OJxmO_SIabmLaWxLZwswfw8UpEfgidal75R5DYjFrJA7p0XiO3a50Jhw91vBDU5N53odeqTtmmgnps5DFT6ElFZau_ld2F17s7FtvqIZeMfRfRsBsX637XJ-bLr6oxIyp4TkrJguUyZ6K0sjA-eCKMcIwYgSK-ilhS0TqhaFY3SRb4grHOl-oL_Dy5ZER04aDFkmrM1kpdAOnx5Zefw_XhyfFYjUeToydwg8ackDo0dQCd9fKHfwrX7Pn6bLV81vwhCXy5auD9BhI0TL0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemgRA88I0oDMgDCPEQNXbsOH5AqFCqTZuqPgCaeDH-RJO6tGvLUP81_jru3KRDSOxtDzwmcaKz73K_u7PvjpCXNAblRBC5rHjMuZM0N1bEvIiRgnmrbJl6Rn45kuNxfXysJjvkV5cLg8cqO52YFLWfOYyR9xkGPMB_Kep-bI9FTIajd_OzHDtI4U5r105jIyKHYf0T3Lfl24Mh8PoVY6OPnz7s522HgdxxWq9y7hVzvpLWycoLoI-xQjluwCaHCQC2RSEAsoVnykpqGC89tdTxygXANo8dI0D9X5PgY-Jxwon4uo3vYL3NuhCbndGyVEXfBMA9cISDglmUyaa9QMLUMOBfsJCwbnTnf16lu-R2a2Fng80vcY_shOY-ufVH3cUHpBhNMSaRDZrZqZmus2FYpRNpTXZ-YjID12Ge7a8xmS3DZnHTh-TzlZD8iOw2syY8JpkrmFMigqMXDCC-MYX08FEvKslsGUKP9Ds2atfWVcf2HlMN_hUyXv_N-B55s31jvqkpcsnY9ygZ23FYDTzdmC2-61a56BgErRWPTqiSy9qpyoYYqLTSc2olkPga5UqjzgLSnGlTL2CCWP1LDyQsT6k4lT2y18mVbpXZUl8I1ZPLH78gN0Da9NHB-PApuckwUSTFq_bI7mrxIzwj19356mS5eJ5-lYx8u2qp-w37rFQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+Anomaly+Detection+via+a+Deep+Hybrid+Model&rft.jtitle=Aerospace&rft.au=Qin%2C+Kun&rft.au=Wang%2C+Qixin&rft.au=Lu%2C+Binbin&rft.au=Sun%2C+Huabo&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.issn=2226-4310&rft.eissn=2226-4310&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Faerospace9060329&rft.externalDocID=A722039417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-4310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-4310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-4310&client=summon