Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection
Recently, lattice-reduction-aided detectors have been proposed for multiinput multioutput (MIMO) systems to achieve performance with full diversity like the maximum likelihood receiver. However, these lattice-reduction-aided detectors are based on the traditional Lenstra-Lenstra-Lovasz (LLL) reducti...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 57; číslo 7; s. 2701 - 2710 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.07.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Recently, lattice-reduction-aided detectors have been proposed for multiinput multioutput (MIMO) systems to achieve performance with full diversity like the maximum likelihood receiver. However, these lattice-reduction-aided detectors are based on the traditional Lenstra-Lenstra-Lovasz (LLL) reduction algorithm that was originally introduced for reducing real lattice bases, in spite of the fact that the channel matrices are inherently complex-valued. In this paper, we introduce the complex LLL algorithm for direct application to reducing the basis of a complex lattice which is naturally defined by a complex-valued channel matrix. We derive an upper bound on proximity factors, which not only show the full diversity of complex LLL reduction-aided detectors, but also characterize the performance gap relative to the lattice decoder. Our analysis reveals that the complex LLL algorithm can reduce the complexity by nearly 50% compared to the traditional LLL algorithm, and this is confirmed by simulation. Interestingly, our simulation results suggest that the complex LLL algorithm has practically the same bit-error-rate performance as the traditional LLL algorithm, in spite of its lower complexity. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2009.2016267 |