Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia
Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a m...
Gespeichert in:
| Veröffentlicht in: | Frontiers in neuroscience Jg. 17; S. 1289027 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lausanne
Frontiers Research Foundation
31.10.2023
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1662-453X, 1662-4548, 1662-453X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled
in vivo
to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (
n
= 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA. |
|---|---|
| AbstractList | Friedreich´s Ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometrybased proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n=5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a Uniprot human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant DE proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift towards fasttwitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2.Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins.The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle -omics as disease state readout in FRDA. Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients ( n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA. Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA. Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA. |
| Author | Faserl, Klaus Amprosi, Matthias Boesch, Sylvia Indelicato, Elisabetta Sarg, Bettina Wanschitz, Julia Nachbauer, Wolfgang Schneider, Rainer |
| Author_xml | – sequence: 1 givenname: Elisabetta surname: Indelicato fullname: Indelicato, Elisabetta – sequence: 2 givenname: Klaus surname: Faserl fullname: Faserl, Klaus – sequence: 3 givenname: Matthias surname: Amprosi fullname: Amprosi, Matthias – sequence: 4 givenname: Wolfgang surname: Nachbauer fullname: Nachbauer, Wolfgang – sequence: 5 givenname: Rainer surname: Schneider fullname: Schneider, Rainer – sequence: 6 givenname: Julia surname: Wanschitz fullname: Wanschitz, Julia – sequence: 7 givenname: Bettina surname: Sarg fullname: Sarg, Bettina – sequence: 8 givenname: Sylvia surname: Boesch fullname: Boesch, Sylvia |
| BookMark | eNp9kc9qVDEUxi9Swbb6Aq4uuHEz0_y_uUspVguFLlRwF84k59pMc5MxyQVn52v4ej6JmU4R6cJVDuH3fZzzfWfdSUwRu-41JWvO9XgxRR_LmhHG15TpkbDhWXdKlWIrIfnXk3_mF91ZKVtCFNOCnXb3n-4xYIXQz0uxAftdThXTjD1ECPviS79Eh3nX_BsSqp_AYkXXz74me5eiy76p3b5MS7TVp9j72F9ljy6jt3e_f_4qPVT44eFl93yCUPDV43vefbl6__ny4-rm9sP15bublRVU1xXdWDko6xiAo0JqDVqAchxH1AN3AjkoopQldNrAxJkUclJy47S0AsGN_Ly7Pvq6BFuzy36GvDcJvHn4SPmbgVx9u9aIgWtJLR0RpXBqA1QIrQZFcLKOC2heb49eLZfvC5ZqZl8shgAR01JMC1sOhCpKG_rmCbpNS24pHigtCCHjwBrFjpTNqZSM098FKTGHLs1Dl-bQpXnsson0E5H1FQ5h1ww-_E_6B4K2quc |
| CitedBy_id | crossref_primary_10_1038_s41582_025_01065_y crossref_primary_10_1016_j_jbior_2024_101070 crossref_primary_10_1038_s41525_025_00487_3 crossref_primary_10_1208_s12248_025_01054_5 crossref_primary_10_3390_cells14181406 crossref_primary_10_3390_biom14101326 crossref_primary_10_3390_biom14091109 crossref_primary_10_1007_s00415_024_12223_5 crossref_primary_10_1038_s41582_024_00957_9 crossref_primary_10_3390_ijms26146736 crossref_primary_10_3390_ijms25189915 crossref_primary_10_3390_ijms252111615 |
| Cites_doi | 10.1002/ANA.22526 10.1016/J.MOLMET.2022.101456 10.1073/PNAS.96.20.11492 10.1177/0883073812453498 10.1016/S0021-9258(18)61421-8 10.1111/J.1469-8749.2011.03931.X 10.1093/BRAIN/AWM272 10.1042/NS20200093 10.1096/FJ.14-257717 10.1016/J.MCPRO.2021.100094 10.1093/hmg/ddg349 10.1007/S13311-019-00764-X 10.1016/S0960-8966(00)00108-5 10.1093/braincomms/fcad007 10.1371/JOURNAL.PONE.0017827 10.1073/PNAS.1909814117 10.1038/NG1097-215 10.1172/JCI.INSIGHT.155201 10.1093/NAR/GKU1003 10.1042/BJ20101116 10.1016/S0021-9258(19)85287-0 10.1089/SCD.2013.0126 10.1111/jnc.12303 10.1074/JBC.RA118.006515 10.1016/J.BBADIS.2018.01.010 10.1016/j.ajhg.2018.01.020 10.1113/JPHYSIOL.2013.268177 10.1016/j.isci.2019.08.056 10.1093/hmg/9.2.275 10.1093/jnen/nlz029 10.1111/FEBS.14502 10.1093/HMG/DDM038 10.1111/SMS.12606 10.1016/j.diabres.2022.109828 10.1080/21678707.2018.1409109 10.1111/JNC.12215 10.1097/NEN.0000000000000160 10.1111/jnc.12317 10.1126/science.271.5254.1423 10.3389/FNINS.2022.885313/BIBTEX 10.1016/J.MITO.2015.08.003 10.1186/S13395-015-0046-6/FIGURES/1 10.1177/088307380201700612 10.1097/NEN.0B013E31825FED76 10.1073/PNAS.192449599 10.3390/microorganisms11102487 10.1016/J.CELL.2016.03.014 10.1111/JNC.12303 10.1093/HMG/DDP183 10.1074/JBC.M203189200 10.1093/HMG/DDAD051 10.1242/DMM.030536 10.1083/JCB.200204081 10.1371/journal.pone.0116396 10.1093/EMBOJ/21.3.221 10.1002/ana.25934 10.1007/s40265-023-01874-9 10.1093/JNEN/NLX087 10.1038/s41586-020-2290-0 10.1038/S41467-020-17954-3 10.1093/DATABASE/BAAC083 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Indelicato, Faserl, Amprosi, Nachbauer, Schneider, Wanschitz, Sarg and Boesch. |
| Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Indelicato, Faserl, Amprosi, Nachbauer, Schneider, Wanschitz, Sarg and Boesch. |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 DOA |
| DOI | 10.3389/fnins.2023.1289027 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a 10_3389_fnins_2023_1289027 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK ACXDI PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c418t-1bc576cd2aad14588a84a6d3e9e873d4e3a6066c01fbaf32545f65bd85c4ead93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:35:04 EDT 2025 Fri Sep 05 13:04:01 EDT 2025 Fri Jul 25 11:48:11 EDT 2025 Sat Nov 29 04:31:14 EST 2025 Tue Nov 18 22:02:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-1bc576cd2aad14588a84a6d3e9e873d4e3a6066c01fbaf32545f65bd85c4ead93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/473851c19ee54d6ba14486760efcd34a |
| PQID | 2884000972 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a proquest_miscellaneous_2895701611 proquest_journals_2884000972 crossref_primary_10_3389_fnins_2023_1289027 crossref_citationtrail_10_3389_fnins_2023_1289027 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-31 |
| PublicationDateYYYYMMDD | 2023-10-31 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationYear | 2023 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Schiaffino (B48); 5 Coppola (B7) 2011; 70 Liu (B30) 2016; 165 Mazzara (B36) 2020; 11 Lee (B28) 2023; 83 Shan (B49) 2007; 16 Bradley (B2) 2000; 9 Lodi (B31) 1999; 96 Télot (B54) 2018; 1864 Hénique (B17) 2015; 29 Hudson (B18) 2008; 131 Qian (B44) 2020; 581 Szklarczyk (B52) 2015; 43 Koeppen (B24); 10 Imbault (B19) 2022; 16 Lai (B27) 2019; 294 Lu (B32) 2019; 78 Pereyra (B43) 2022; 59 Schiaffino (B46) 2018; 285 Lynch (B35) 2012; 27 Liska (B29) 2022; 2022 Yoshinaka (B61) 2019; 19 Thierbach (B55) 2010; 432 Lynch (B34) 2021; 89 Napierala (B39) 2021; 20 Van Der Leij (B56) 2002; 277 Indelicato (B21) 2023; 32 Gallo (B12) 2011; 6 Lynch (B33) 2021; 5 Wei (B60) 2014; 592 Dionisi (B9) 2023; 5 Indelicato (B20) 2018; 6 Rotig (B45) 1997; 17 Koeppen (B25); 74 Campuzano (B4) 1996; 271 Comstock (B6) 1993; 268 Paumard (B42) 2002; 21 Napierala (B38) 2017; 10 Vásquez-Trincado (B58) 2022; 7 Alto (B1) 2002; 158 González-Cabo (B14) 2013; 126 Nachbauer (B37) 2012; 71 Vorgerd (B59) 2000; 10 Oláhová (B40) 2018; 102 Brandls (B3) 1987; 262 Kellnerová (B23) 2023; 11 Singh (B50) 2015; 25 Karthikeyan (B22) 2023; 12 Gallagher (B11) 2002; 17 Vankan (B57) 2013; 126 Gonz Alez-Cabo (B13) 2013; 126 Sival (B51) 2011; 53 Coppola (B8) 2009; 18 Ham (B16) 2020; 117 Eigentler (B10) 2013; 22 Schiaffino (B47); 25 Parkinson (B41) 2013; 126 Chen (B5) 2002; 99 Gottesfeld (B15) 2019; 16 Tamaroff (B53) 2022; 186 Koeppen (B26) 2017; 76 |
| References_xml | – volume: 70 start-page: 790 year: 2011 ident: B7 article-title: A gene expression phenotype in lymphocytes from friedreich ataxia patients. publication-title: Ann. Neurol. doi: 10.1002/ANA.22526 – volume: 59 year: 2022 ident: B43 article-title: Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation. publication-title: Mol. Metab. doi: 10.1016/J.MOLMET.2022.101456 – volume: 96 start-page: 11492 year: 1999 ident: B31 article-title: Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/PNAS.96.20.11492 – volume: 27 start-page: 1223 year: 2012 ident: B35 article-title: Unanswered questions in Friedreich ataxia. publication-title: J. Child Neurol. doi: 10.1177/0883073812453498 – volume: 262 start-page: 3768 year: 1987 ident: B3 article-title: The journal op biological chemistry adult forms of the Ca2+ATPase of sarcoplasmic reticulum expression in developing skeletal muscle*. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)61421-8 – volume: 53 start-page: 529 year: 2011 ident: B51 article-title: In children with Friedreich ataxia, muscle and ataxia parameters are associated. publication-title: Dev. Med. Child. Neurol. doi: 10.1111/J.1469-8749.2011.03931.X – volume: 131 start-page: 329 year: 2008 ident: B18 article-title: Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: A novel disorder of mtDNA maintenance. publication-title: Brain doi: 10.1093/BRAIN/AWM272 – volume: 5 year: 2021 ident: B33 article-title: Mitochondrial and metabolic dysfunction in friedreich ataxia: Update on pathophysiological relevance and clinical interventions. publication-title: Neuronal Signal. doi: 10.1042/NS20200093 – volume: 29 start-page: 2473 year: 2015 ident: B17 article-title: Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype. publication-title: FASEB J. doi: 10.1096/FJ.14-257717 – volume: 20 year: 2021 ident: B39 article-title: Reverse phase protein array reveals correlation of retinoic acid metabolism with cardiomyopathy in Friedreich’s ataxia. publication-title: Mol. Cell Proteom. doi: 10.1016/J.MCPRO.2021.100094 – volume: 12 start-page: 3331 year: 2023 ident: B22 article-title: Reduction in frataxin causes progressive accumulation of mitochondrial damage. publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg349 – volume: 16 start-page: 1032 year: 2019 ident: B15 article-title: Molecular mechanisms and therapeutics for the GAA⋅TTC expansion disease friedreich ataxia. publication-title: Neurotherapeutics. doi: 10.1007/S13311-019-00764-X – volume: 10 start-page: 430 year: 2000 ident: B59 article-title: Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. publication-title: Neuromuscul. Disord. doi: 10.1016/S0960-8966(00)00108-5 – volume: 5 year: 2023 ident: B9 article-title: Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. publication-title: Brain Commun. doi: 10.1093/braincomms/fcad007 – volume: 6 year: 2011 ident: B12 article-title: MISC-1/OGC links mitochondrial metabolism, apoptosis and insulin secretion. publication-title: PLoS One doi: 10.1371/JOURNAL.PONE.0017827 – volume: 117 start-page: 4281 year: 2020 ident: B16 article-title: Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/PNAS.1909814117 – volume: 17 start-page: 215 year: 1997 ident: B45 article-title: Aconitase and mitochondrial iron-sulphur protein deficiency in friedreich ataxia. publication-title: Nat. Genet. doi: 10.1038/NG1097-215 – volume: 7 year: 2022 ident: B58 article-title: Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. publication-title: JCI Insight doi: 10.1172/JCI.INSIGHT.155201 – volume: 43 start-page: D447 year: 2015 ident: B52 article-title: STRING v10: Protein–protein interaction networks, integrated over the tree of life. publication-title: Nucleic Acids Res. doi: 10.1093/NAR/GKU1003 – volume: 432 start-page: 165 year: 2010 ident: B55 article-title: The Friedreich’s ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals. publication-title: Biochem. J. doi: 10.1042/BJ20101116 – volume: 268 start-page: 16958 year: 1993 ident: B6 article-title: Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85287-0 – volume: 22 start-page: 3271 year: 2013 ident: B10 article-title: Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. publication-title: Stem Cells Dev. doi: 10.1089/SCD.2013.0126 – volume: 126 start-page: 53 year: 2013 ident: B13 article-title: Mitochondrial pathophysiology in Friedreich’s ataxia. publication-title: J. Neurochem. doi: 10.1111/jnc.12303 – volume: 294 start-page: 1846 year: 2019 ident: B27 article-title: Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures. publication-title: J. Biol. Chem. doi: 10.1074/JBC.RA118.006515 – volume: 1864 start-page: 997 year: 2018 ident: B54 article-title: Quantitative proteomics in Friedreich’s ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis. publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/J.BBADIS.2018.01.010 – volume: 102 start-page: 494 year: 2018 ident: B40 article-title: Biallelic mutations in ATP5F1D, which encodes a subunit of ATP synthase, cause a metabolic disorder. publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.01.020 – volume: 592 year: 2014 ident: B60 article-title: Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. publication-title: J. Physiol. doi: 10.1113/JPHYSIOL.2013.268177 – volume: 19 start-page: 1065 year: 2019 ident: B61 article-title: Structural basis of mitochondrial scaffolds by prohibitin complexes: Insight into a role of the coiled-coil region. publication-title: iScience doi: 10.1016/j.isci.2019.08.056 – volume: 9 start-page: 275 year: 2000 ident: B2 article-title: Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.2.275 – volume: 78 start-page: 508 year: 2019 ident: B32 article-title: Neurogenic muscle biopsy findings are common in mitochondrial myopathy. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/nlz029 – volume: 285 start-page: 3688 year: 2018 ident: B46 article-title: Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. publication-title: FEBS J. doi: 10.1111/FEBS.14502 – volume: 16 start-page: 929 year: 2007 ident: B49 article-title: Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. publication-title: Hum. Mol. Genet. doi: 10.1093/HMG/DDM038 – volume: 25 start-page: 41 ident: B47 article-title: Mitochondrial specialization revealed by single muscle fiber proteomics: Focus on the Krebs cycle. publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/SMS.12606 – volume: 186 year: 2022 ident: B53 article-title: Friedreich’s ataxia related diabetes: Epidemiology and management practices. publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2022.109828 – volume: 6 start-page: 57 year: 2018 ident: B20 article-title: Emerging therapeutics for the treatment of Friedreich’s ataxia. publication-title: Expert Opin. Orphan Drugs doi: 10.1080/21678707.2018.1409109 – volume: 126 start-page: 11 year: 2013 ident: B57 article-title: Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. publication-title: J. Neurochem. doi: 10.1111/JNC.12215 – volume: 74 start-page: 166 ident: B25 article-title: Friedreich ataxia: Failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0000000000000160 – volume: 126 start-page: 103 year: 2013 ident: B41 article-title: Clinical features of Friedreich’s ataxia: Classical and atypical phenotypes. publication-title: J. Neurochem. doi: 10.1111/jnc.12317 – volume: 271 start-page: 1423 year: 1996 ident: B4 article-title: Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. publication-title: Science. doi: 10.1126/science.271.5254.1423 – volume: 16 year: 2022 ident: B19 article-title: Cerebrospinal fluid proteomics in friedreich ataxia reveals markers of neurodegeneration and neuroinflammation. publication-title: Front. Neurosci. doi: 10.3389/FNINS.2022.885313/BIBTEX – volume: 25 start-page: 1 year: 2015 ident: B50 article-title: Investigation of mitochondrial DNA variations among Indian Friedreich’s ataxia (FRDA) patients. publication-title: Mitochondrion doi: 10.1016/J.MITO.2015.08.003 – volume: 5 ident: B48 article-title: Developmental myosins: Expression patterns and functional significance. publication-title: Skelet Muscle doi: 10.1186/S13395-015-0046-6/FIGURES/1 – volume: 17 start-page: 453 year: 2002 ident: B11 article-title: Friedreich’s ataxia associated with mitochondrial myopathy: Clinicopathologic report. publication-title: J Child Neurol. doi: 10.1177/088307380201700612 – volume: 71 start-page: 708 year: 2012 ident: B37 article-title: Skeletal muscle involvement in friedreich ataxia and potential effects of recombinant human erythropoietin administration on muscle regeneration and neovascularization. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0B013E31825FED76 – volume: 99 start-page: 12321 year: 2002 ident: B5 article-title: Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/PNAS.192449599 – volume: 11 year: 2023 ident: B23 article-title: Enzymatic cleavage of Stx2a in the gut and identification of pancreatic elastase and trypsin as possible main cleavers. publication-title: Microorganisms doi: 10.3390/microorganisms11102487 – volume: 165 start-page: 535 year: 2016 ident: B30 article-title: On the dependency of cellular protein levels on mRNA abundance. publication-title: Cell doi: 10.1016/J.CELL.2016.03.014 – volume: 126 start-page: 53 year: 2013 ident: B14 article-title: Mitochondrial pathophysiology in Friedreich’s ataxia. publication-title: J. Neurochem. doi: 10.1111/JNC.12303 – volume: 18 start-page: 2452 year: 2009 ident: B8 article-title: Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARγ pathway as a therapeutic target in Friedreich’s ataxia. publication-title: Hum. Mol. Genet. doi: 10.1093/HMG/DDP183 – volume: 277 start-page: 26994 year: 2002 ident: B56 article-title: Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. publication-title: J. Biol. Chem. doi: 10.1074/JBC.M203189200 – volume: 32 start-page: 2241 year: 2023 ident: B21 article-title: Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia. publication-title: Hum. Mol. Genet. doi: 10.1093/HMG/DDAD051 – volume: 10 start-page: 1353 year: 2017 ident: B38 article-title: Comprehensive analysis of gene expression patterns in Friedreich’s ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers. publication-title: Dis. Model. Mech. doi: 10.1242/DMM.030536 – volume: 158 start-page: 659 year: 2002 ident: B1 article-title: Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. publication-title: J. Cell Biol. doi: 10.1083/JCB.200204081 – volume: 10 ident: B24 article-title: The pathogenesis of cardiomyopathy in Friedreich ataxia. publication-title: PLoS One doi: 10.1371/journal.pone.0116396 – volume: 21 start-page: 221 year: 2002 ident: B42 article-title: The ATP synthase is involved in generating mitochondrial cristae morphology. publication-title: EMBO J. doi: 10.1093/EMBOJ/21.3.221 – volume: 89 start-page: 212 year: 2021 ident: B34 article-title: Safety and efficacy of omaveloxolone in friedreich ataxia (MOXIe Study). publication-title: Ann. Neurol. doi: 10.1002/ana.25934 – volume: 83 start-page: 725 year: 2023 ident: B28 article-title: Omaveloxolone: First approval. publication-title: Drugs doi: 10.1007/s40265-023-01874-9 – volume: 76 start-page: 969 year: 2017 ident: B26 article-title: Friedreich ataxia: Developmental failure of the dorsal root entry zone. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/JNEN/NLX087 – volume: 581 start-page: 333 year: 2020 ident: B44 article-title: Structural basis for catalysis and substrate specificity of human ACAT1. publication-title: Nature doi: 10.1038/s41586-020-2290-0 – volume: 11 year: 2020 ident: B36 article-title: Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. publication-title: Nat. Commun. doi: 10.1038/S41467-020-17954-3 – volume: 2022 year: 2022 ident: B29 article-title: TFLink: An integrated gateway to access transcription factor–target gene interactions for multiple species. publication-title: Database doi: 10.1093/DATABASE/BAAC083 |
| SSID | ssj0062842 |
| Score | 2.4171028 |
| Snippet | Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA... Friedreich´s Ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA... Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1289027 |
| SubjectTerms | Acids Ataxia Biomarkers Biopsy Chromatography Frataxin Friedreich’s ataxia Glycolysis Mass spectrometry Mitochondria Muscle contraction Musculoskeletal system Oxidative phosphorylation Pathophysiology Peptides Phenotypes Phosphorylation Principal components analysis Protein deficiency Proteins Proteomes Proteomics Scientific imaging Skeletal muscle Solvents |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcODCV0EsFGQkxAWFxmvHiU-oIFYcUFUJkHqL_DGGqGxSkl1Eb_wN_h6_hBmvdyWE1AvXxEmsPHtmnsd-w9izuo6VLV0sqjB3hdJK4JwLsShdDQ7jDykgibi-r4-Pm9NTc5IX3Ka8rXJrE5OhDoOnNfLDeYNUJInNvDr_VlDVKMqu5hIaV9k1UkmQaeveydYSazS9Kdup6WQQhuabQzNIysxh7Lue1Lrn8qVIubb6L8eU9Pv_Mc_J5yxu_W9vb7ObOdrkR5vhcYddgf4u2z_qkWkvL_hznvZ_poX1fXb24QxdEMbifLmesDVPEg7DErjNwiWcDpyNVOuap32I0XoMuQNfolVAK9oHGsw8XEzkLAlw3vV8gVw8jND5L79__pq4Xdkfnb3HPi3efnzzrsilGAqvRLMqhPNITHyYWxsEHW61jbI6SDDQ1DIokJaYkC9FdDZKZJ1V1JULTeUVjlUj77O9fujhAeMRoozRQVkbo4KJjVQ6AuDvqhwYJWdMbHFofdYpp3IZX1vkK4Rdm7BrCbs2YzdjL3bPnG9UOi5t_Zrg3bUkhe10YRg_t3nCtopkfoQXBqBSQTuLzLPRtS4h-iCVnbGDLfJtnvb4lR3sM_Z0dxsnLGVhbA_DmtqYqqZAWzy8_BWP2A3q9cZRHrC91biGx-y6_77qpvFJGul_AKUiCko priority: 102 providerName: ProQuest |
| Title | Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia |
| URI | https://www.proquest.com/docview/2884000972 https://www.proquest.com/docview/2895701611 https://doaj.org/article/473851c19ee54d6ba14486760efcd34a |
| Volume | 17 |
| WOSCitedRecordID | wos001101625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag5cAFAQWxtKyMhLig0Dh2YvvYoq5AoquIh7ScIj_VqGwW7aOiN_4Gf49fwoyTXYGQ4MLFh2SiOOMZz3yx_Q0hz6SMpcltzEpf2ExUgoHP-ZjlVgYL-QdnIZG4vpXTqZrNdP1LqS_cE9bTA_eKOxZIt8Ic0yGUwlfWAAJQlazyEJ3nIqVGkPVswVQ_B1cw6Rb9ERmAYPo4dm2H3NwFf8nSypr8LQwltv4_JuMUYSZ3yZ0hNaQnfZfukRuhu08OTjqAxfNr-pymzZrpL_gBuXx_CfECEmc636xAmia-hcU8UDOwjFA8HbbEwtQ0bRqMxkF-7OkcXBimvM6j5VF_vcLIhqND245OADj7ZWjdxY9v31fUrM3X1jwgHydnH169zoa6CZkTTK0zZh2gCOcLYzzDk6hGCVN5HnRQknsRuEHY4nIWrYkcIGIZq9J6VToBhqX5Q7LXLbrwiNAYIo_RhlxqLbyOiosqhgCOX9qgBR8RtlVj4wZScaxt8bkBcIGqb5LqG1R9M6h-RF7snvnSU2r8VfoUR2cniXTY6QIYSTMYSfMvIxmRo-3YNoOPwlsUgNtEXzQiT3e3wbtwycR0YbFBGV1KzIrZ4__Rj0NyG7-tj31HZG-93IQn5Ja7Wrer5ZjclDM1JvunZ9P63TgZNLTnRY2thHa_fnNef_oJE9UAMg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG1FAQkubAExEKCRgAsycbvb2wGhsIwSZRhFIki5mV7BCmMH2wPMjd_gJ_govoSqtj0SQsotB65225bdr6vqubpeEfIoTV0sQ-WC2EQqEIlgsOaMC0KVWgXxB2fWi7jO0vk8Oz7ODzfIr7EWBrdVjjbRG2pTa_xHvhNlQEW82MyL0y8Bdo3C7OrYQqOHxYFdfQPK1j7ffw3z-ziKpm-OXu0FQ1eBQAuWdQFTGmJsbSIpDcM6TZkJmRhuc5ul3AjLJQb1OmROSceBQMUuiZXJYi3gs6P4Epj8CxBGRJnfKng4Wv4ETL3PriZYiQRUoC_SARKY77iqrFAdPOLPmM_tpX85Qt8v4B934H3c9Or_9nWukStDNE13e_hfJxu2ukG2divZ1YsVfUL9_lafONgiJ-9OwMUC16CLZQujqZeoqBeWykGYhWJBXYO9vKnfZ-mkBkph6AKsHniJyuBipWbVYjCAgKZlRacNBPGNLfWn3z9-tlR28nspb5L35_Lat8hmVVf2NqHOOu6csmGa58LkLuMicdbC9MTK5oJPCBvnvdCDDju2A_lcAB9DrBQeKwVipRiwMiFP19ec9iokZ45-iXBaj0QFcX-gbj4Wg0EqBMoYMc1ya2NhEiWBWWdJmoTWacOFnJDtEWnFYNbgKWuYTcjD9WkwSJhlkpWtlzgmj1MkEuzO2bd4QC7tHb2dFbP9-cFdchnfoA8Ktslm1yztPXJRf-3KtrnvVxklH84buH8Ag59opg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VBSEu_BVEoMAiARdk4rXXXvuAUKFEVK2iSIDUm9lfsErsYjtAbrwGr8Lj8CTMrO1ICKm3HrjGG0fOfjszn2fmG0IeCeESGSoXJCZSAU85gzNnXBAqYRXEHzGzXsT1SMzn2fFxvtgiv8ZeGCyrHG2iN9Sm1viOfBplQEW82MzUDWURi_3Zi9MvAU6QwkzrOE6jh8ihXX8D-tY-P9iHvX4cRbPX7169CYYJA4HmLOsCpjTE29pEUhqGPZsy4zI1sc1tJmLDbSwxwNchc0q6GMhU4tJEmSzRHLYAhZjA_F8QKFruywYXoxdIwez7TGuKXUlAC_qGHSCE-dRVZYVK4VH8jPk8n_jLKfrZAf-4Bu_vZlf_53_qGrkyRNl0rz8W18mWrW6Qnb1KdvVyTZ9QX_fqEwo75OTtCbhe4CB0uWphNfXSFfXSUjkItlBstGtwxjf19ZdOaqAahi7BGoL3qAweYmrWLQYJCHRaVnTWQHDf2FJ_-v3jZ0tlJ7-X8iZ5fy6PfYtsV3VlbxPqrIudUzYUec5N7rKYp85a2KpE2ZzHE8JGDBR60GfHMSGfC-BpiJvC46ZA3BQDbibk6eY7p706yZmrXyK0NitRWdx_UDcfi8FQFRzljZhmubUJN6mSwLizVKShddrEXE7I7oi6YjB38CsbyE3Iw81lMFSYfZKVrVe4Jk8EEgx25-xbPCCXAK_F0cH88C65jA_Qxwq7ZLtrVvYeuai_dmXb3PcHjpIP543bPz4JcWM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+proteome+analysis+underpins+multifaceted+mitochondrial+dysfunction+in+Friedreich%E2%80%99s+ataxia&rft.jtitle=Frontiers+in+neuroscience&rft.au=Elisabetta+Indelicato&rft.au=Klaus+Faserl&rft.au=Matthias+Amprosi&rft.au=Wolfgang+Nachbauer&rft.date=2023-10-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1289027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |