Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia

Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience Jg. 17; S. 1289027
Hauptverfasser: Indelicato, Elisabetta, Faserl, Klaus, Amprosi, Matthias, Nachbauer, Wolfgang, Schneider, Rainer, Wanschitz, Julia, Sarg, Bettina, Boesch, Sylvia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Frontiers Research Foundation 31.10.2023
Frontiers Media S.A
Schlagworte:
ISSN:1662-453X, 1662-4548, 1662-453X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients ( n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
AbstractList Friedreich´s Ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometrybased proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n=5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a Uniprot human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant DE proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift towards fasttwitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2.Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins.The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle -omics as disease state readout in FRDA.
Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients ( n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Author Faserl, Klaus
Amprosi, Matthias
Boesch, Sylvia
Indelicato, Elisabetta
Sarg, Bettina
Wanschitz, Julia
Nachbauer, Wolfgang
Schneider, Rainer
Author_xml – sequence: 1
  givenname: Elisabetta
  surname: Indelicato
  fullname: Indelicato, Elisabetta
– sequence: 2
  givenname: Klaus
  surname: Faserl
  fullname: Faserl, Klaus
– sequence: 3
  givenname: Matthias
  surname: Amprosi
  fullname: Amprosi, Matthias
– sequence: 4
  givenname: Wolfgang
  surname: Nachbauer
  fullname: Nachbauer, Wolfgang
– sequence: 5
  givenname: Rainer
  surname: Schneider
  fullname: Schneider, Rainer
– sequence: 6
  givenname: Julia
  surname: Wanschitz
  fullname: Wanschitz, Julia
– sequence: 7
  givenname: Bettina
  surname: Sarg
  fullname: Sarg, Bettina
– sequence: 8
  givenname: Sylvia
  surname: Boesch
  fullname: Boesch, Sylvia
BookMark eNp9kc9qVDEUxi9Swbb6Aq4uuHEz0_y_uUspVguFLlRwF84k59pMc5MxyQVn52v4ej6JmU4R6cJVDuH3fZzzfWfdSUwRu-41JWvO9XgxRR_LmhHG15TpkbDhWXdKlWIrIfnXk3_mF91ZKVtCFNOCnXb3n-4xYIXQz0uxAftdThXTjD1ECPviS79Eh3nX_BsSqp_AYkXXz74me5eiy76p3b5MS7TVp9j72F9ljy6jt3e_f_4qPVT44eFl93yCUPDV43vefbl6__ny4-rm9sP15bublRVU1xXdWDko6xiAo0JqDVqAchxH1AN3AjkoopQldNrAxJkUclJy47S0AsGN_Ly7Pvq6BFuzy36GvDcJvHn4SPmbgVx9u9aIgWtJLR0RpXBqA1QIrQZFcLKOC2heb49eLZfvC5ZqZl8shgAR01JMC1sOhCpKG_rmCbpNS24pHigtCCHjwBrFjpTNqZSM098FKTGHLs1Dl-bQpXnsson0E5H1FQ5h1ww-_E_6B4K2quc
CitedBy_id crossref_primary_10_1038_s41582_025_01065_y
crossref_primary_10_1016_j_jbior_2024_101070
crossref_primary_10_1038_s41525_025_00487_3
crossref_primary_10_1208_s12248_025_01054_5
crossref_primary_10_3390_cells14181406
crossref_primary_10_3390_biom14101326
crossref_primary_10_3390_biom14091109
crossref_primary_10_1007_s00415_024_12223_5
crossref_primary_10_1038_s41582_024_00957_9
crossref_primary_10_3390_ijms26146736
crossref_primary_10_3390_ijms25189915
crossref_primary_10_3390_ijms252111615
Cites_doi 10.1002/ANA.22526
10.1016/J.MOLMET.2022.101456
10.1073/PNAS.96.20.11492
10.1177/0883073812453498
10.1016/S0021-9258(18)61421-8
10.1111/J.1469-8749.2011.03931.X
10.1093/BRAIN/AWM272
10.1042/NS20200093
10.1096/FJ.14-257717
10.1016/J.MCPRO.2021.100094
10.1093/hmg/ddg349
10.1007/S13311-019-00764-X
10.1016/S0960-8966(00)00108-5
10.1093/braincomms/fcad007
10.1371/JOURNAL.PONE.0017827
10.1073/PNAS.1909814117
10.1038/NG1097-215
10.1172/JCI.INSIGHT.155201
10.1093/NAR/GKU1003
10.1042/BJ20101116
10.1016/S0021-9258(19)85287-0
10.1089/SCD.2013.0126
10.1111/jnc.12303
10.1074/JBC.RA118.006515
10.1016/J.BBADIS.2018.01.010
10.1016/j.ajhg.2018.01.020
10.1113/JPHYSIOL.2013.268177
10.1016/j.isci.2019.08.056
10.1093/hmg/9.2.275
10.1093/jnen/nlz029
10.1111/FEBS.14502
10.1093/HMG/DDM038
10.1111/SMS.12606
10.1016/j.diabres.2022.109828
10.1080/21678707.2018.1409109
10.1111/JNC.12215
10.1097/NEN.0000000000000160
10.1111/jnc.12317
10.1126/science.271.5254.1423
10.3389/FNINS.2022.885313/BIBTEX
10.1016/J.MITO.2015.08.003
10.1186/S13395-015-0046-6/FIGURES/1
10.1177/088307380201700612
10.1097/NEN.0B013E31825FED76
10.1073/PNAS.192449599
10.3390/microorganisms11102487
10.1016/J.CELL.2016.03.014
10.1111/JNC.12303
10.1093/HMG/DDP183
10.1074/JBC.M203189200
10.1093/HMG/DDAD051
10.1242/DMM.030536
10.1083/JCB.200204081
10.1371/journal.pone.0116396
10.1093/EMBOJ/21.3.221
10.1002/ana.25934
10.1007/s40265-023-01874-9
10.1093/JNEN/NLX087
10.1038/s41586-020-2290-0
10.1038/S41467-020-17954-3
10.1093/DATABASE/BAAC083
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Indelicato, Faserl, Amprosi, Nachbauer, Schneider, Wanschitz, Sarg and Boesch.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Indelicato, Faserl, Amprosi, Nachbauer, Schneider, Wanschitz, Sarg and Boesch.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.3389/fnins.2023.1289027
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a
10_3389_fnins_2023_1289027
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c418t-1bc576cd2aad14588a84a6d3e9e873d4e3a6066c01fbaf32545f65bd85c4ead93
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:35:04 EDT 2025
Fri Sep 05 13:04:01 EDT 2025
Fri Jul 25 11:48:11 EDT 2025
Sat Nov 29 04:31:14 EST 2025
Tue Nov 18 22:02:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-1bc576cd2aad14588a84a6d3e9e873d4e3a6066c01fbaf32545f65bd85c4ead93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/473851c19ee54d6ba14486760efcd34a
PQID 2884000972
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a
proquest_miscellaneous_2895701611
proquest_journals_2884000972
crossref_primary_10_3389_fnins_2023_1289027
crossref_citationtrail_10_3389_fnins_2023_1289027
PublicationCentury 2000
PublicationDate 2023-10-31
PublicationDateYYYYMMDD 2023-10-31
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-31
  day: 31
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Schiaffino (B48); 5
Coppola (B7) 2011; 70
Liu (B30) 2016; 165
Mazzara (B36) 2020; 11
Lee (B28) 2023; 83
Shan (B49) 2007; 16
Bradley (B2) 2000; 9
Lodi (B31) 1999; 96
Télot (B54) 2018; 1864
Hénique (B17) 2015; 29
Hudson (B18) 2008; 131
Qian (B44) 2020; 581
Szklarczyk (B52) 2015; 43
Koeppen (B24); 10
Imbault (B19) 2022; 16
Lai (B27) 2019; 294
Lu (B32) 2019; 78
Pereyra (B43) 2022; 59
Schiaffino (B46) 2018; 285
Lynch (B35) 2012; 27
Liska (B29) 2022; 2022
Yoshinaka (B61) 2019; 19
Thierbach (B55) 2010; 432
Lynch (B34) 2021; 89
Napierala (B39) 2021; 20
Van Der Leij (B56) 2002; 277
Indelicato (B21) 2023; 32
Gallo (B12) 2011; 6
Lynch (B33) 2021; 5
Wei (B60) 2014; 592
Dionisi (B9) 2023; 5
Indelicato (B20) 2018; 6
Rotig (B45) 1997; 17
Koeppen (B25); 74
Campuzano (B4) 1996; 271
Comstock (B6) 1993; 268
Paumard (B42) 2002; 21
Napierala (B38) 2017; 10
Vásquez-Trincado (B58) 2022; 7
Alto (B1) 2002; 158
González-Cabo (B14) 2013; 126
Nachbauer (B37) 2012; 71
Vorgerd (B59) 2000; 10
Oláhová (B40) 2018; 102
Brandls (B3) 1987; 262
Kellnerová (B23) 2023; 11
Singh (B50) 2015; 25
Karthikeyan (B22) 2023; 12
Gallagher (B11) 2002; 17
Vankan (B57) 2013; 126
Gonz Alez-Cabo (B13) 2013; 126
Sival (B51) 2011; 53
Coppola (B8) 2009; 18
Ham (B16) 2020; 117
Eigentler (B10) 2013; 22
Schiaffino (B47); 25
Parkinson (B41) 2013; 126
Chen (B5) 2002; 99
Gottesfeld (B15) 2019; 16
Tamaroff (B53) 2022; 186
Koeppen (B26) 2017; 76
References_xml – volume: 70
  start-page: 790
  year: 2011
  ident: B7
  article-title: A gene expression phenotype in lymphocytes from friedreich ataxia patients.
  publication-title: Ann. Neurol.
  doi: 10.1002/ANA.22526
– volume: 59
  year: 2022
  ident: B43
  article-title: Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation.
  publication-title: Mol. Metab.
  doi: 10.1016/J.MOLMET.2022.101456
– volume: 96
  start-page: 11492
  year: 1999
  ident: B31
  article-title: Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/PNAS.96.20.11492
– volume: 27
  start-page: 1223
  year: 2012
  ident: B35
  article-title: Unanswered questions in Friedreich ataxia.
  publication-title: J. Child Neurol.
  doi: 10.1177/0883073812453498
– volume: 262
  start-page: 3768
  year: 1987
  ident: B3
  article-title: The journal op biological chemistry adult forms of the Ca2+ATPase of sarcoplasmic reticulum expression in developing skeletal muscle*.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)61421-8
– volume: 53
  start-page: 529
  year: 2011
  ident: B51
  article-title: In children with Friedreich ataxia, muscle and ataxia parameters are associated.
  publication-title: Dev. Med. Child. Neurol.
  doi: 10.1111/J.1469-8749.2011.03931.X
– volume: 131
  start-page: 329
  year: 2008
  ident: B18
  article-title: Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: A novel disorder of mtDNA maintenance.
  publication-title: Brain
  doi: 10.1093/BRAIN/AWM272
– volume: 5
  year: 2021
  ident: B33
  article-title: Mitochondrial and metabolic dysfunction in friedreich ataxia: Update on pathophysiological relevance and clinical interventions.
  publication-title: Neuronal Signal.
  doi: 10.1042/NS20200093
– volume: 29
  start-page: 2473
  year: 2015
  ident: B17
  article-title: Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.
  publication-title: FASEB J.
  doi: 10.1096/FJ.14-257717
– volume: 20
  year: 2021
  ident: B39
  article-title: Reverse phase protein array reveals correlation of retinoic acid metabolism with cardiomyopathy in Friedreich’s ataxia.
  publication-title: Mol. Cell Proteom.
  doi: 10.1016/J.MCPRO.2021.100094
– volume: 12
  start-page: 3331
  year: 2023
  ident: B22
  article-title: Reduction in frataxin causes progressive accumulation of mitochondrial damage.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg349
– volume: 16
  start-page: 1032
  year: 2019
  ident: B15
  article-title: Molecular mechanisms and therapeutics for the GAA⋅TTC expansion disease friedreich ataxia.
  publication-title: Neurotherapeutics.
  doi: 10.1007/S13311-019-00764-X
– volume: 10
  start-page: 430
  year: 2000
  ident: B59
  article-title: Mitochondrial impairment of human muscle in Friedreich ataxia in vivo.
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/S0960-8966(00)00108-5
– volume: 5
  year: 2023
  ident: B9
  article-title: Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties.
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcad007
– volume: 6
  year: 2011
  ident: B12
  article-title: MISC-1/OGC links mitochondrial metabolism, apoptosis and insulin secretion.
  publication-title: PLoS One
  doi: 10.1371/JOURNAL.PONE.0017827
– volume: 117
  start-page: 4281
  year: 2020
  ident: B16
  article-title: Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/PNAS.1909814117
– volume: 17
  start-page: 215
  year: 1997
  ident: B45
  article-title: Aconitase and mitochondrial iron-sulphur protein deficiency in friedreich ataxia.
  publication-title: Nat. Genet.
  doi: 10.1038/NG1097-215
– volume: 7
  year: 2022
  ident: B58
  article-title: Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle.
  publication-title: JCI Insight
  doi: 10.1172/JCI.INSIGHT.155201
– volume: 43
  start-page: D447
  year: 2015
  ident: B52
  article-title: STRING v10: Protein–protein interaction networks, integrated over the tree of life.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/NAR/GKU1003
– volume: 432
  start-page: 165
  year: 2010
  ident: B55
  article-title: The Friedreich’s ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101116
– volume: 268
  start-page: 16958
  year: 1993
  ident: B6
  article-title: Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85287-0
– volume: 22
  start-page: 3271
  year: 2013
  ident: B10
  article-title: Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons.
  publication-title: Stem Cells Dev.
  doi: 10.1089/SCD.2013.0126
– volume: 126
  start-page: 53
  year: 2013
  ident: B13
  article-title: Mitochondrial pathophysiology in Friedreich’s ataxia.
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12303
– volume: 294
  start-page: 1846
  year: 2019
  ident: B27
  article-title: Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures.
  publication-title: J. Biol. Chem.
  doi: 10.1074/JBC.RA118.006515
– volume: 1864
  start-page: 997
  year: 2018
  ident: B54
  article-title: Quantitative proteomics in Friedreich’s ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis.
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/J.BBADIS.2018.01.010
– volume: 102
  start-page: 494
  year: 2018
  ident: B40
  article-title: Biallelic mutations in ATP5F1D, which encodes a subunit of ATP synthase, cause a metabolic disorder.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.01.020
– volume: 592
  year: 2014
  ident: B60
  article-title: Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue.
  publication-title: J. Physiol.
  doi: 10.1113/JPHYSIOL.2013.268177
– volume: 19
  start-page: 1065
  year: 2019
  ident: B61
  article-title: Structural basis of mitochondrial scaffolds by prohibitin complexes: Insight into a role of the coiled-coil region.
  publication-title: iScience
  doi: 10.1016/j.isci.2019.08.056
– volume: 9
  start-page: 275
  year: 2000
  ident: B2
  article-title: Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.2.275
– volume: 78
  start-page: 508
  year: 2019
  ident: B32
  article-title: Neurogenic muscle biopsy findings are common in mitochondrial myopathy.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/nlz029
– volume: 285
  start-page: 3688
  year: 2018
  ident: B46
  article-title: Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies.
  publication-title: FEBS J.
  doi: 10.1111/FEBS.14502
– volume: 16
  start-page: 929
  year: 2007
  ident: B49
  article-title: Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/HMG/DDM038
– volume: 25
  start-page: 41
  ident: B47
  article-title: Mitochondrial specialization revealed by single muscle fiber proteomics: Focus on the Krebs cycle.
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/SMS.12606
– volume: 186
  year: 2022
  ident: B53
  article-title: Friedreich’s ataxia related diabetes: Epidemiology and management practices.
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2022.109828
– volume: 6
  start-page: 57
  year: 2018
  ident: B20
  article-title: Emerging therapeutics for the treatment of Friedreich’s ataxia.
  publication-title: Expert Opin. Orphan Drugs
  doi: 10.1080/21678707.2018.1409109
– volume: 126
  start-page: 11
  year: 2013
  ident: B57
  article-title: Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge.
  publication-title: J. Neurochem.
  doi: 10.1111/JNC.12215
– volume: 74
  start-page: 166
  ident: B25
  article-title: Friedreich ataxia: Failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0000000000000160
– volume: 126
  start-page: 103
  year: 2013
  ident: B41
  article-title: Clinical features of Friedreich’s ataxia: Classical and atypical phenotypes.
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12317
– volume: 271
  start-page: 1423
  year: 1996
  ident: B4
  article-title: Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion.
  publication-title: Science.
  doi: 10.1126/science.271.5254.1423
– volume: 16
  year: 2022
  ident: B19
  article-title: Cerebrospinal fluid proteomics in friedreich ataxia reveals markers of neurodegeneration and neuroinflammation.
  publication-title: Front. Neurosci.
  doi: 10.3389/FNINS.2022.885313/BIBTEX
– volume: 25
  start-page: 1
  year: 2015
  ident: B50
  article-title: Investigation of mitochondrial DNA variations among Indian Friedreich’s ataxia (FRDA) patients.
  publication-title: Mitochondrion
  doi: 10.1016/J.MITO.2015.08.003
– volume: 5
  ident: B48
  article-title: Developmental myosins: Expression patterns and functional significance.
  publication-title: Skelet Muscle
  doi: 10.1186/S13395-015-0046-6/FIGURES/1
– volume: 17
  start-page: 453
  year: 2002
  ident: B11
  article-title: Friedreich’s ataxia associated with mitochondrial myopathy: Clinicopathologic report.
  publication-title: J Child Neurol.
  doi: 10.1177/088307380201700612
– volume: 71
  start-page: 708
  year: 2012
  ident: B37
  article-title: Skeletal muscle involvement in friedreich ataxia and potential effects of recombinant human erythropoietin administration on muscle regeneration and neovascularization.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0B013E31825FED76
– volume: 99
  start-page: 12321
  year: 2002
  ident: B5
  article-title: Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/PNAS.192449599
– volume: 11
  year: 2023
  ident: B23
  article-title: Enzymatic cleavage of Stx2a in the gut and identification of pancreatic elastase and trypsin as possible main cleavers.
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11102487
– volume: 165
  start-page: 535
  year: 2016
  ident: B30
  article-title: On the dependency of cellular protein levels on mRNA abundance.
  publication-title: Cell
  doi: 10.1016/J.CELL.2016.03.014
– volume: 126
  start-page: 53
  year: 2013
  ident: B14
  article-title: Mitochondrial pathophysiology in Friedreich’s ataxia.
  publication-title: J. Neurochem.
  doi: 10.1111/JNC.12303
– volume: 18
  start-page: 2452
  year: 2009
  ident: B8
  article-title: Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARγ pathway as a therapeutic target in Friedreich’s ataxia.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/HMG/DDP183
– volume: 277
  start-page: 26994
  year: 2002
  ident: B56
  article-title: Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals.
  publication-title: J. Biol. Chem.
  doi: 10.1074/JBC.M203189200
– volume: 32
  start-page: 2241
  year: 2023
  ident: B21
  article-title: Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/HMG/DDAD051
– volume: 10
  start-page: 1353
  year: 2017
  ident: B38
  article-title: Comprehensive analysis of gene expression patterns in Friedreich’s ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers.
  publication-title: Dis. Model. Mech.
  doi: 10.1242/DMM.030536
– volume: 158
  start-page: 659
  year: 2002
  ident: B1
  article-title: Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics.
  publication-title: J. Cell Biol.
  doi: 10.1083/JCB.200204081
– volume: 10
  ident: B24
  article-title: The pathogenesis of cardiomyopathy in Friedreich ataxia.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116396
– volume: 21
  start-page: 221
  year: 2002
  ident: B42
  article-title: The ATP synthase is involved in generating mitochondrial cristae morphology.
  publication-title: EMBO J.
  doi: 10.1093/EMBOJ/21.3.221
– volume: 89
  start-page: 212
  year: 2021
  ident: B34
  article-title: Safety and efficacy of omaveloxolone in friedreich ataxia (MOXIe Study).
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25934
– volume: 83
  start-page: 725
  year: 2023
  ident: B28
  article-title: Omaveloxolone: First approval.
  publication-title: Drugs
  doi: 10.1007/s40265-023-01874-9
– volume: 76
  start-page: 969
  year: 2017
  ident: B26
  article-title: Friedreich ataxia: Developmental failure of the dorsal root entry zone.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/JNEN/NLX087
– volume: 581
  start-page: 333
  year: 2020
  ident: B44
  article-title: Structural basis for catalysis and substrate specificity of human ACAT1.
  publication-title: Nature
  doi: 10.1038/s41586-020-2290-0
– volume: 11
  year: 2020
  ident: B36
  article-title: Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons.
  publication-title: Nat. Commun.
  doi: 10.1038/S41467-020-17954-3
– volume: 2022
  year: 2022
  ident: B29
  article-title: TFLink: An integrated gateway to access transcription factor–target gene interactions for multiple species.
  publication-title: Database
  doi: 10.1093/DATABASE/BAAC083
SSID ssj0062842
Score 2.4171028
Snippet Friedreich’s ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA...
Friedreich´s Ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA...
Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1289027
SubjectTerms Acids
Ataxia
Biomarkers
Biopsy
Chromatography
Frataxin
Friedreich’s ataxia
Glycolysis
Mass spectrometry
Mitochondria
Muscle contraction
Musculoskeletal system
Oxidative phosphorylation
Pathophysiology
Peptides
Phenotypes
Phosphorylation
Principal components analysis
Protein deficiency
Proteins
Proteomes
Proteomics
Scientific imaging
Skeletal muscle
Solvents
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcODCV0EsFGQkxAWFxmvHiU-oIFYcUFUJkHqL_DGGqGxSkl1Eb_wN_h6_hBmvdyWE1AvXxEmsPHtmnsd-w9izuo6VLV0sqjB3hdJK4JwLsShdDQ7jDykgibi-r4-Pm9NTc5IX3Ka8rXJrE5OhDoOnNfLDeYNUJInNvDr_VlDVKMqu5hIaV9k1UkmQaeveydYSazS9Kdup6WQQhuabQzNIysxh7Lue1Lrn8qVIubb6L8eU9Pv_Mc_J5yxu_W9vb7ObOdrkR5vhcYddgf4u2z_qkWkvL_hznvZ_poX1fXb24QxdEMbifLmesDVPEg7DErjNwiWcDpyNVOuap32I0XoMuQNfolVAK9oHGsw8XEzkLAlw3vV8gVw8jND5L79__pq4Xdkfnb3HPi3efnzzrsilGAqvRLMqhPNITHyYWxsEHW61jbI6SDDQ1DIokJaYkC9FdDZKZJ1V1JULTeUVjlUj77O9fujhAeMRoozRQVkbo4KJjVQ6AuDvqhwYJWdMbHFofdYpp3IZX1vkK4Rdm7BrCbs2YzdjL3bPnG9UOi5t_Zrg3bUkhe10YRg_t3nCtopkfoQXBqBSQTuLzLPRtS4h-iCVnbGDLfJtnvb4lR3sM_Z0dxsnLGVhbA_DmtqYqqZAWzy8_BWP2A3q9cZRHrC91biGx-y6_77qpvFJGul_AKUiCko
  priority: 102
  providerName: ProQuest
Title Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia
URI https://www.proquest.com/docview/2884000972
https://www.proquest.com/docview/2895701611
https://doaj.org/article/473851c19ee54d6ba14486760efcd34a
Volume 17
WOSCitedRecordID wos001101625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag5cAFAQWxtKyMhLig0Dh2YvvYoq5AoquIh7ScIj_VqGwW7aOiN_4Gf49fwoyTXYGQ4MLFh2SiOOMZz3yx_Q0hz6SMpcltzEpf2ExUgoHP-ZjlVgYL-QdnIZG4vpXTqZrNdP1LqS_cE9bTA_eKOxZIt8Ic0yGUwlfWAAJQlazyEJ3nIqVGkPVswVQ_B1cw6Rb9ERmAYPo4dm2H3NwFf8nSypr8LQwltv4_JuMUYSZ3yZ0hNaQnfZfukRuhu08OTjqAxfNr-pymzZrpL_gBuXx_CfECEmc636xAmia-hcU8UDOwjFA8HbbEwtQ0bRqMxkF-7OkcXBimvM6j5VF_vcLIhqND245OADj7ZWjdxY9v31fUrM3X1jwgHydnH169zoa6CZkTTK0zZh2gCOcLYzzDk6hGCVN5HnRQknsRuEHY4nIWrYkcIGIZq9J6VToBhqX5Q7LXLbrwiNAYIo_RhlxqLbyOiosqhgCOX9qgBR8RtlVj4wZScaxt8bkBcIGqb5LqG1R9M6h-RF7snvnSU2r8VfoUR2cniXTY6QIYSTMYSfMvIxmRo-3YNoOPwlsUgNtEXzQiT3e3wbtwycR0YbFBGV1KzIrZ4__Rj0NyG7-tj31HZG-93IQn5Ja7Wrer5ZjclDM1JvunZ9P63TgZNLTnRY2thHa_fnNef_oJE9UAMg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG1FAQkubAExEKCRgAsycbvb2wGhsIwSZRhFIki5mV7BCmMH2wPMjd_gJ_govoSqtj0SQsotB65225bdr6vqubpeEfIoTV0sQ-WC2EQqEIlgsOaMC0KVWgXxB2fWi7jO0vk8Oz7ODzfIr7EWBrdVjjbRG2pTa_xHvhNlQEW82MyL0y8Bdo3C7OrYQqOHxYFdfQPK1j7ffw3z-ziKpm-OXu0FQ1eBQAuWdQFTGmJsbSIpDcM6TZkJmRhuc5ul3AjLJQb1OmROSceBQMUuiZXJYi3gs6P4Epj8CxBGRJnfKng4Wv4ETL3PriZYiQRUoC_SARKY77iqrFAdPOLPmM_tpX85Qt8v4B934H3c9Or_9nWukStDNE13e_hfJxu2ukG2divZ1YsVfUL9_lafONgiJ-9OwMUC16CLZQujqZeoqBeWykGYhWJBXYO9vKnfZ-mkBkph6AKsHniJyuBipWbVYjCAgKZlRacNBPGNLfWn3z9-tlR28nspb5L35_Lat8hmVVf2NqHOOu6csmGa58LkLuMicdbC9MTK5oJPCBvnvdCDDju2A_lcAB9DrBQeKwVipRiwMiFP19ec9iokZ45-iXBaj0QFcX-gbj4Wg0EqBMoYMc1ya2NhEiWBWWdJmoTWacOFnJDtEWnFYNbgKWuYTcjD9WkwSJhlkpWtlzgmj1MkEuzO2bd4QC7tHb2dFbP9-cFdchnfoA8Ktslm1yztPXJRf-3KtrnvVxklH84buH8Ag59opg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VBSEu_BVEoMAiARdk4rXXXvuAUKFEVK2iSIDUm9lfsErsYjtAbrwGr8Lj8CTMrO1ICKm3HrjGG0fOfjszn2fmG0IeCeESGSoXJCZSAU85gzNnXBAqYRXEHzGzXsT1SMzn2fFxvtgiv8ZeGCyrHG2iN9Sm1viOfBplQEW82MzUDWURi_3Zi9MvAU6QwkzrOE6jh8ihXX8D-tY-P9iHvX4cRbPX7169CYYJA4HmLOsCpjTE29pEUhqGPZsy4zI1sc1tJmLDbSwxwNchc0q6GMhU4tJEmSzRHLYAhZjA_F8QKFruywYXoxdIwez7TGuKXUlAC_qGHSCE-dRVZYVK4VH8jPk8n_jLKfrZAf-4Bu_vZlf_53_qGrkyRNl0rz8W18mWrW6Qnb1KdvVyTZ9QX_fqEwo75OTtCbhe4CB0uWphNfXSFfXSUjkItlBstGtwxjf19ZdOaqAahi7BGoL3qAweYmrWLQYJCHRaVnTWQHDf2FJ_-v3jZ0tlJ7-X8iZ5fy6PfYtsV3VlbxPqrIudUzYUec5N7rKYp85a2KpE2ZzHE8JGDBR60GfHMSGfC-BpiJvC46ZA3BQDbibk6eY7p706yZmrXyK0NitRWdx_UDcfi8FQFRzljZhmubUJN6mSwLizVKShddrEXE7I7oi6YjB38CsbyE3Iw81lMFSYfZKVrVe4Jk8EEgx25-xbPCCXAK_F0cH88C65jA_Qxwq7ZLtrVvYeuai_dmXb3PcHjpIP543bPz4JcWM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+proteome+analysis+underpins+multifaceted+mitochondrial+dysfunction+in+Friedreich%E2%80%99s+ataxia&rft.jtitle=Frontiers+in+neuroscience&rft.au=Elisabetta+Indelicato&rft.au=Klaus+Faserl&rft.au=Matthias+Amprosi&rft.au=Wolfgang+Nachbauer&rft.date=2023-10-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1289027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_473851c19ee54d6ba14486760efcd34a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon