An intelligent design for Ni-based superalloy based on machine learning and multi-objective optimization

[Display omitted] •A prediction model of Multi-objective Evolutionary Algorithm combined with Machine Learning was established to optimize multiple properties simultaneously.•Ni-based superalloy candidates were obtained with high γ′ solves temperature, high γ′ volume fraction and low topologically c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials & design Ročník 221; s. 110935
Hlavní autori: Deng, Yuedan, Zhang, Yu, Gong, Xiufang, Hu, Wang, Wang, Yucheng, Liu, Ying, Lian, Lixian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2022
Elsevier
Predmet:
ISSN:0264-1275, 1873-4197
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •A prediction model of Multi-objective Evolutionary Algorithm combined with Machine Learning was established to optimize multiple properties simultaneously.•Ni-based superalloy candidates were obtained with high γ′ solves temperature, high γ′ volume fraction and low topologically closed-packed phase content.•Properties of Ni-based superalloy candidates verified by experiment showed great accuracy with prediction. The simultaneous consideration of multiple conflicting properties in alloy optimization design is necessary yet remains challenging. A comprehensive strategy of machine learning (ML) and multi-objective optimization based on thermodynamic simulation data was proposed to accelerate the composition design of Ni-based superalloys. The microscopic parameters were determined by Pearson correlation analysis and domain knowledge as the key affect factors of tensile strength and elongation. The Multi-objectives Evolutionary Algorithm (MOEA) was adopted to search the well-built surrogate by ML meta-heuristically for the Pareto front of three objectives and its responding Pareto optimal solution set of composition. Furthermore, nine high-performance superalloy samples selected from the obtained Pareto front were well verified by fabricating and testing in the laboratory. Specially, a new composition among the nine as-fabricated samples was the best one according to the pre-defined design preferences with the γ′ solvus temperature, γ′ volume fraction, and TCP phases content approximating to 1210 °C, 65%, and 0.01%, respectively. This intelligent cooperation strategy based on ML and MOEA extends the methodology for multi-composition and multi-property design materials, which can optimize multiple conflicting objectives simultaneously rather than do one by one.
AbstractList [Display omitted] •A prediction model of Multi-objective Evolutionary Algorithm combined with Machine Learning was established to optimize multiple properties simultaneously.•Ni-based superalloy candidates were obtained with high γ′ solves temperature, high γ′ volume fraction and low topologically closed-packed phase content.•Properties of Ni-based superalloy candidates verified by experiment showed great accuracy with prediction. The simultaneous consideration of multiple conflicting properties in alloy optimization design is necessary yet remains challenging. A comprehensive strategy of machine learning (ML) and multi-objective optimization based on thermodynamic simulation data was proposed to accelerate the composition design of Ni-based superalloys. The microscopic parameters were determined by Pearson correlation analysis and domain knowledge as the key affect factors of tensile strength and elongation. The Multi-objectives Evolutionary Algorithm (MOEA) was adopted to search the well-built surrogate by ML meta-heuristically for the Pareto front of three objectives and its responding Pareto optimal solution set of composition. Furthermore, nine high-performance superalloy samples selected from the obtained Pareto front were well verified by fabricating and testing in the laboratory. Specially, a new composition among the nine as-fabricated samples was the best one according to the pre-defined design preferences with the γ′ solvus temperature, γ′ volume fraction, and TCP phases content approximating to 1210 °C, 65%, and 0.01%, respectively. This intelligent cooperation strategy based on ML and MOEA extends the methodology for multi-composition and multi-property design materials, which can optimize multiple conflicting objectives simultaneously rather than do one by one.
The simultaneous consideration of multiple conflicting properties in alloy optimization design is necessary yet remains challenging. A comprehensive strategy of machine learning (ML) and multi-objective optimization based on thermodynamic simulation data was proposed to accelerate the composition design of Ni-based superalloys. The microscopic parameters were determined by Pearson correlation analysis and domain knowledge as the key affect factors of tensile strength and elongation. The Multi-objectives Evolutionary Algorithm (MOEA) was adopted to search the well-built surrogate by ML meta-heuristically for the Pareto front of three objectives and its responding Pareto optimal solution set of composition. Furthermore, nine high-performance superalloy samples selected from the obtained Pareto front were well verified by fabricating and testing in the laboratory. Specially, a new composition among the nine as-fabricated samples was the best one according to the pre-defined design preferences with the γ′ solvus temperature, γ′ volume fraction, and TCP phases content approximating to 1210 °C, 65%, and 0.01%, respectively. This intelligent cooperation strategy based on ML and MOEA extends the methodology for multi-composition and multi-property design materials, which can optimize multiple conflicting objectives simultaneously rather than do one by one.
ArticleNumber 110935
Author Wang, Yucheng
Liu, Ying
Zhang, Yu
Lian, Lixian
Deng, Yuedan
Gong, Xiufang
Hu, Wang
Author_xml – sequence: 1
  givenname: Yuedan
  surname: Deng
  fullname: Deng, Yuedan
  organization: College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0003-3728-3342
  surname: Zhang
  fullname: Zhang, Yu
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu 611731, PR China
– sequence: 3
  givenname: Xiufang
  surname: Gong
  fullname: Gong, Xiufang
  organization: State Key Laboratory for Long-life High Temperature Materials, 666 Jinshajing West Road, Deyang 618000, PR China
– sequence: 4
  givenname: Wang
  surname: Hu
  fullname: Hu, Wang
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu 611731, PR China
– sequence: 5
  givenname: Yucheng
  surname: Wang
  fullname: Wang, Yucheng
  organization: College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
– sequence: 6
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
– sequence: 7
  givenname: Lixian
  surname: Lian
  fullname: Lian, Lixian
  email: scu_lianyi@126.com
  organization: College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
BookMark eNqFkMtq3TAQQEVJoTdp_6AL_YBv9bJkdVEIoY9ASDftWsjS6GaMr3SRlUD69XXi0kUX6WpgmHNgzjk5yyUDIe8523PG9Ydpf_QtwrIXTIg958zK_hXZ8cHITnFrzsiOCa06Lkz_hpwvy8TWQyPVjtxdZoq5wTzjAXKjqwUPmaZS6S12o18g0uX-BNXPc3mk26JkevThDjPQGXzNmA_U50iP93PDrowThIYPQMup4RF_-YYlvyWvk58XePdnXpCfXz7_uPrW3Xz_en11edMFxYfW8bHXiSkveAoxSNuboE3vpUlJRy4YDJYHmaK2XCYBtteCcRiiTrwX1kR5Qa43byx-cqeKR18fXfHonhelHpyvDcMMTgU9GlADcDkqr43tpYWBMaYk08KG1aU2V6hlWSqkvz7O3FN5N7mtvHsq77byK_bxHyxge47Qqsf5f_CnDYY10gNCdUtAyAEi1jXr-gW-LPgNqJKj9Q
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_112387
crossref_primary_10_1016_j_mtcomm_2025_111691
crossref_primary_10_20517_jmi_2024_108
crossref_primary_10_1016_j_jmst_2023_11_073
crossref_primary_10_1016_j_isci_2024_111580
crossref_primary_10_1016_j_jallcom_2025_181859
crossref_primary_10_1007_s40195_025_01913_2
crossref_primary_10_1016_j_actamat_2023_119631
crossref_primary_10_1016_j_matdes_2025_114325
crossref_primary_10_1016_j_cscm_2025_e04647
crossref_primary_10_1016_j_commatsci_2023_112283
crossref_primary_10_1002_adfm_202507734
crossref_primary_10_1016_j_matdes_2024_112981
crossref_primary_10_1002_mgea_70006
crossref_primary_10_3390_ma17112723
crossref_primary_10_1016_j_actamat_2025_121167
crossref_primary_10_1016_j_engstruct_2024_118079
crossref_primary_10_1016_j_matchemphys_2025_130618
crossref_primary_10_1007_s41230_024_3111_0
crossref_primary_10_1177_16878132241269244
crossref_primary_10_1002_mgea_14
crossref_primary_10_1016_j_jmst_2023_04_072
crossref_primary_10_1016_j_matdes_2024_113260
crossref_primary_10_1007_s40962_024_01291_y
crossref_primary_10_1038_s41524_025_01730_2
crossref_primary_10_1016_j_jmst_2022_10_072
crossref_primary_10_1016_j_mtcomm_2024_109731
crossref_primary_10_1109_TSMC_2024_3519675
Cites_doi 10.1007/BF02782418
10.1016/0025-5564(70)90140-9
10.1016/j.apsusc.2020.145936
10.1016/S0921-5093(01)01825-1
10.1023/A:1008653015451
10.1038/s41563-020-0777-6
10.1038/nmat4709
10.1109/ICEC.1994.350037
10.1142/9789812702838_0003
10.1023/A:1024629716452
10.1038/ncomms11241
10.1016/j.corsci.2016.12.009
10.1038/s41524-020-0334-5
10.1016/j.msea.2021.142550
10.1016/j.jallcom.2014.05.154
10.1007/s00170-012-3980-z
10.1016/j.jallcom.2020.155141
10.1016/j.matdes.2021.110326
10.1016/0079-6425(85)90001-5
10.1016/j.matdes.2020.108996
10.1016/j.jmst.2020.10.042
10.1016/j.intermet.2021.107431
10.1109/TEVC.2007.892759
10.1162/106365605774666895
10.1007/978-3-540-72964-8
10.1016/j.ijfatigue.2021.106558
10.1016/S1005-0302(10)60142-9
10.1007/s13369-013-0715-x
10.1007/s11740-009-0189-6
10.1016/j.actamat.2020.05.001
10.1016/j.actamat.2019.02.017
10.3390/ma13102397
10.1016/j.optlastec.2013.03.020
10.1016/j.msea.2004.01.030
10.1016/j.matdes.2021.109954
10.1016/j.actamat.2020.01.004
10.1016/j.actamat.2004.04.028
10.1016/j.acme.2013.01.008
10.1016/j.pnsc.2017.12.003
10.1007/s10589-007-9053-9
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2022.110935
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_4c6b7e48e13b4a679539e8000430629c
10_1016_j_matdes_2022_110935
S0264127522005573
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c418t-1b56f04a21fcdc3957c675a37ff6d120e891c3fd6913f2e956201e8d6f15297d3
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853017900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-1275
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Nov 18 19:56:16 EST 2025
Sat Nov 29 07:21:57 EST 2025
Fri Feb 23 02:38:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ni-based superalloys
Multi-objective evolutionary algorithm
Microscopic parameters
Thermo-Calc
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-1b56f04a21fcdc3957c675a37ff6d120e891c3fd6913f2e956201e8d6f15297d3
ORCID 0000-0003-3728-3342
OpenAccessLink https://doaj.org/article/4c6b7e48e13b4a679539e8000430629c
ParticipantIDs doaj_primary_oai_doaj_org_article_4c6b7e48e13b4a679539e8000430629c
crossref_primary_10_1016_j_matdes_2022_110935
crossref_citationtrail_10_1016_j_matdes_2022_110935
elsevier_sciencedirect_doi_10_1016_j_matdes_2022_110935
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Deb, Mohan, Mishra (b0160) 2014; 13
Shin, Yamamoto, Brady, Lee, Haynes (b0035) 2019; 168
Han, Li, Yu, Chen, Fei, Lu (b0010) 2022; 154
Sun, Li, Yu, Wang, Wang, Dong (b0170) 2022; 833
Rakoczy, Milkovič, Rutkowski, Cygan, Grudzień-Rakoczy, Kromka, Zielińska-Lipiec (b0175) 2020; 13
Liu, Huang, Antonov, Wen, Xue, Chen, Li, Feng, Omori, Su (b0055) 2020; 6
Liu, Cai, Chen, Chen, Chen, Yang, Lu, Han, Wang (b0135) 2022; 141
Jaladurgam, Kabra, Colliander (b0030) 2021; 209
Murakumo, Kobayashi, Koizumi, Harada (b0040) 2004; 52
Ruan, Xu, Yang, Yu, Yang, Luan, Omori, Wang, Kainuma, Ishida, Liu, Liu (b0065) 2020; 186
Zhang, Hui (b0155) 2008; 11
J. Knowles, D. Corne, K. Deb, Multiobjective problem solving from nature: from concepts to applications, Springer Science & Business Media, 2007.
Al-Jarba, Fuchs (b0145) 2004; 373
Wang, Wei, Ren, Wang, Xu (b0075) 2022; 213
Gilles, Mukherji, Eckerlebe, Karge, Staron, Strunz, Lippmann (b0200) 2014; 612
Zhou, Wang, Lin, Fu (b0130) 2013; 13
Deb, Saxena (b0100) 2005; 2005011
Garg, Jain, Bhushan (b0115) 2014; 39
Y.-C. Lin, C.-Y. Wang, Alloying-element dependence of structural, elastic and electronic properties of nickel-based superalloys: Influence of γ’ volume fraction, J. Alloys Compd. 838 (2020) 155141.
Zheng, Xiao, Zhang, Tang, Tang (b0195) 2012; 41
K. Deb, Single and multi-objective optimization using evolutionary computation, Hydroinformatics (In 2 Volumes, with CD-ROM), 2004.
Zhang, Li, Jin, Sun, Hu (b0215) 2010; 26
T. Thepsonthi, T. ?Zel, Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy, The Int. J. Adv. Manuf. Technol. 63(9-12) (2012) 903–914.
V. Kumar, J.S. Kham Ba Parametric optimization of ultrasonic machining of co-based super alloy using the Taguchi multi-objective approach, Prod. Eng. 3(4) (2009) 417–425.
Ismail, Vorontsov, Lindley, Hardy, Dye, Shollock (b0220) 2017; 116
J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, vol. 1, 1994, pp. 82-87.
Zhou, Feng, Zhao, Meng, Zhang, Ding, Wang (b0205) 2018; 28
Li, Sun, Jin, Guan, Hu (b0225) 2003; 60
Pollock (b0015) 2016; 15
Nembach, Neite (b0045) 1985; 29
Friederich, Hase, Proppe, Aspuru-Guzik (b0050) 2021; 20
Campanelli, Casalino, Contuzzi (b0110) 2013; 52
Park, Ryu, Hong, Kim (b0230) 1998; 5
R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press2008.
Mackay, Nathal, Pearson (b0210) 1990; 21
Fuchs, Boutwell (b0180) 2002; 333
Liu, Zhang, Yuan, Cui, Liang, Liu, Gu, Zhou, Sun (b0190) 2021; 77
Yue, Jw, Zw, Xglb, Mad, Ssb, Cw, Tao (b0070) 2020; 195
Zhou, Huang, Chen, Li, Guo, Peng (b0140) 2020; 514
C. Academic Committee of the Superalloys, CHINA SUPERALLOYS HANDBOOK, Standards Press of China, Beijing, 2012.
Gaspar-Cunha, Covas (b0080) 2008; 39
Yu, Wang, Chen, Wang, Liu (b0060) 2020; 195
Rosenberg (b0105) 1970; 8
Chatterjee, Kishore, Sarkar, Rao (b0185) 2016
Xue, Balachandran, Hogden, Theiler, Xue, Lookman (b0025) 2016; 7
Ding, Bei, Yao, Zhao, Wei, Wang, Zhang (b0020) 2021; 23
10.1016/j.matdes.2022.110935_b0095
10.1016/j.matdes.2022.110935_b0150
10.1016/j.matdes.2022.110935_b0090
Zhang (10.1016/j.matdes.2022.110935_b0155) 2008; 11
Zhang (10.1016/j.matdes.2022.110935_b0215) 2010; 26
Yue (10.1016/j.matdes.2022.110935_b0070) 2020; 195
Gaspar-Cunha (10.1016/j.matdes.2022.110935_b0080) 2008; 39
Zhou (10.1016/j.matdes.2022.110935_b0205) 2018; 28
Chatterjee (10.1016/j.matdes.2022.110935_b0185) 2016
Jaladurgam (10.1016/j.matdes.2022.110935_b0030) 2021; 209
Friederich (10.1016/j.matdes.2022.110935_b0050) 2021; 20
Deb (10.1016/j.matdes.2022.110935_b0160) 2014; 13
Xue (10.1016/j.matdes.2022.110935_b0025) 2016; 7
Campanelli (10.1016/j.matdes.2022.110935_b0110) 2013; 52
Pollock (10.1016/j.matdes.2022.110935_b0015) 2016; 15
Park (10.1016/j.matdes.2022.110935_b0230) 1998; 5
Garg (10.1016/j.matdes.2022.110935_b0115) 2014; 39
10.1016/j.matdes.2022.110935_b0005
Gilles (10.1016/j.matdes.2022.110935_b0200) 2014; 612
10.1016/j.matdes.2022.110935_b0125
10.1016/j.matdes.2022.110935_b0120
Nembach (10.1016/j.matdes.2022.110935_b0045) 1985; 29
10.1016/j.matdes.2022.110935_b0165
Fuchs (10.1016/j.matdes.2022.110935_b0180) 2002; 333
10.1016/j.matdes.2022.110935_b0085
Shin (10.1016/j.matdes.2022.110935_b0035) 2019; 168
Deb (10.1016/j.matdes.2022.110935_b0100) 2005; 2005011
Liu (10.1016/j.matdes.2022.110935_b0190) 2021; 77
Zheng (10.1016/j.matdes.2022.110935_b0195) 2012; 41
Zhou (10.1016/j.matdes.2022.110935_b0130) 2013; 13
Zhou (10.1016/j.matdes.2022.110935_b0140) 2020; 514
Mackay (10.1016/j.matdes.2022.110935_b0210) 1990; 21
Sun (10.1016/j.matdes.2022.110935_b0170) 2022; 833
Liu (10.1016/j.matdes.2022.110935_b0135) 2022; 141
Rakoczy (10.1016/j.matdes.2022.110935_b0175) 2020; 13
Al-Jarba (10.1016/j.matdes.2022.110935_b0145) 2004; 373
Wang (10.1016/j.matdes.2022.110935_b0075) 2022; 213
Rosenberg (10.1016/j.matdes.2022.110935_b0105) 1970; 8
Li (10.1016/j.matdes.2022.110935_b0225) 2003; 60
Han (10.1016/j.matdes.2022.110935_b0010) 2022; 154
Liu (10.1016/j.matdes.2022.110935_b0055) 2020; 6
Ismail (10.1016/j.matdes.2022.110935_b0220) 2017; 116
Yu (10.1016/j.matdes.2022.110935_b0060) 2020; 195
Murakumo (10.1016/j.matdes.2022.110935_b0040) 2004; 52
Ding (10.1016/j.matdes.2022.110935_b0020) 2021; 23
Ruan (10.1016/j.matdes.2022.110935_b0065) 2020; 186
References_xml – volume: 141
  year: 2022
  ident: b0135
  article-title: Effects of alloying additions on the microstructure, lattice misfit, and solvus temperature of a novel Co–Ni-based superalloy
  publication-title: Intermetallics
– volume: 514
  year: 2020
  ident: b0140
  article-title: Brazing of Ni-based single crystal superalloy with high carbon content γ layer
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 279
  year: 1998
  end-page: 290
  ident: b0230
  article-title: Microstructure and Mechanical Behavior of Mechanically Alloyed ODS Ni-Base Superalloy for Aerospace Gas Turbine Application
  publication-title: Adv. Perform. Mater.
– volume: 8
  start-page: 1
  year: 1970
  end-page: 37
  ident: b0105
  article-title: Simulation of genetic populations with biochemical properties: II. Selection of crossover probabilities
  publication-title: Math. Biosci.
– volume: 168
  start-page: 321
  year: 2019
  end-page: 330
  ident: b0035
  article-title: Modern data analytics approach to predict creep of high-temperature alloys
  publication-title: Acta Mater.
– reference: J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, vol. 1, 1994, pp. 82-87.
– volume: 6
  start-page: 62
  year: 2020
  ident: b0055
  article-title: Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization
  publication-title: npj Comput. Mater.
– volume: 2005011
  start-page: 1
  year: 2005
  end-page: 19
  ident: b0100
  article-title: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
  publication-title: Kangal Report
– volume: 13
  start-page: 2397
  year: 2020
  ident: b0175
  article-title: Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD
  publication-title: Materials
– volume: 28
  start-page: 45
  year: 2018
  end-page: 53
  ident: b0205
  article-title: Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy
  publication-title: Prog. Natl. Sci.: Mater. Int.
– volume: 60
  start-page: 195
  year: 2003
  end-page: 210
  ident: b0225
  article-title: Oxidation behavior of a single-crystal Ni-base superalloy in air—II: at 1000, 1100, and 1150 C
  publication-title: Oxid. Met.
– volume: 195
  year: 2020
  ident: b0060
  article-title: Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data
  publication-title: Mater. Des.
– volume: 154
  year: 2022
  ident: b0010
  article-title: Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism
  publication-title: Int. J. Fatigue
– volume: 116
  start-page: 44
  year: 2017
  end-page: 52
  ident: b0220
  article-title: Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloys
  publication-title: Corros. Sci.
– volume: 20
  start-page: 750
  year: 2021
  end-page: 761
  ident: b0050
  article-title: Machine-learned potentials for next-generation matter simulations
  publication-title: Nat. Mater.
– volume: 186
  start-page: 425
  year: 2020
  end-page: 433
  ident: b0065
  article-title: Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods
  publication-title: Acta Mater.
– start-page: 357
  year: 2016
  end-page: 363
  ident: b0185
  article-title: Effect of Processing Conditions on Structure, Properties and Performance of a Nickel Base Cast Superalloy for High Temperature Applications
  publication-title: Ni-Co 2013
– volume: 209
  year: 2021
  ident: b0030
  article-title: Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures
  publication-title: Mater. Des.
– volume: 213
  year: 2022
  ident: b0075
  article-title: High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm
  publication-title: Mater. Des.
– reference: R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press2008.
– volume: 7
  start-page: 11241
  year: 2016
  ident: b0025
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
– reference: J. Knowles, D. Corne, K. Deb, Multiobjective problem solving from nature: from concepts to applications, Springer Science & Business Media, 2007.
– reference: T. Thepsonthi, T. ?Zel, Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy, The Int. J. Adv. Manuf. Technol. 63(9-12) (2012) 903–914.
– volume: 39
  start-page: 75
  year: 2008
  end-page: 96
  ident: b0080
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
  publication-title: Comput. Optim. Appl.
– volume: 52
  start-page: 48
  year: 2013
  end-page: 56
  ident: b0110
  article-title: Multi-objective optimization of laser milling of 5754 aluminum alloy
  publication-title: Opt. Laser Technol.
– reference: V. Kumar, J.S. Kham Ba Parametric optimization of ultrasonic machining of co-based super alloy using the Taguchi multi-objective approach, Prod. Eng. 3(4) (2009) 417–425.
– volume: 23
  year: 2021
  ident: b0020
  article-title: Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy
  publication-title: Appl. Mater. Today
– volume: 39
  start-page: 1465
  year: 2014
  end-page: 1476
  ident: b0115
  article-title: Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 Alloy
  publication-title: Arab. J. Sci. Eng.
– reference: C. Academic Committee of the Superalloys, CHINA SUPERALLOYS HANDBOOK, Standards Press of China, Beijing, 2012.
– volume: 11
  start-page: 712
  year: 2008
  end-page: 731
  ident: b0155
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y.-C. Lin, C.-Y. Wang, Alloying-element dependence of structural, elastic and electronic properties of nickel-based superalloys: Influence of γ’ volume fraction, J. Alloys Compd. 838 (2020) 155141.
– volume: 41
  start-page: 1457
  year: 2012
  end-page: 1462
  ident: b0195
  article-title: Solidification and Segregation Behavior of Cast Ni-Base Superalloy IN792
  publication-title: Rare Metal Mater. Eng.
– volume: 52
  start-page: 3737
  year: 2004
  end-page: 3744
  ident: b0040
  article-title: Creep behaviour of Ni-base single-crystal superalloys with various γ ′ volume fraction
  publication-title: Acta Mater.
– volume: 195
  start-page: 454
  year: 2020
  end-page: 467
  ident: b0070
  article-title: Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning - ScienceDirect
  publication-title: Acta Mater.
– reference: K. Deb, Single and multi-objective optimization using evolutionary computation, Hydroinformatics (In 2 Volumes, with CD-ROM), 2004.
– volume: 13
  start-page: 401
  year: 2013
  end-page: 411
  ident: b0130
  article-title: Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm
  publication-title: Arch. Civil & Mech. Eng.
– volume: 333
  start-page: 72
  year: 2002
  end-page: 79
  ident: b0180
  article-title: Modeling of the partitioning and phase transformation temperatures of an as-cast third generation single crystal Ni-base superalloy
  publication-title: Mater. Sci. Eng., A
– volume: 77
  start-page: 66
  year: 2021
  end-page: 81
  ident: b0190
  article-title: Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures
  publication-title: J. Mater. Sci. Technol.
– volume: 373
  start-page: 255
  year: 2004
  end-page: 267
  ident: b0145
  article-title: Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy
  publication-title: Mater. Sci. Eng., A
– volume: 26
  start-page: 889
  year: 2010
  end-page: 894
  ident: b0215
  article-title: Effect of Solidification Parameters on the Microstructure and Creep Property of a Single Crystal Ni-base Superalloy
  publication-title: J. Mater. Sci. Technol.
– volume: 15
  start-page: 809
  year: 2016
  end-page: 815
  ident: b0015
  article-title: Alloy design for aircraft engines
  publication-title: Nat. Mater.
– volume: 13
  start-page: 501
  year: 2014
  end-page: 525
  ident: b0160
  article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
– volume: 612
  start-page: 90
  year: 2014
  end-page: 97
  ident: b0200
  article-title: Investigations of early stage precipitation in a tungsten-rich nickel-base superalloy using SAXS and SANS
  publication-title: J. Alloy. Compd.
– volume: 833
  year: 2022
  ident: b0170
  article-title: Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ′ nanoprecipitates
  publication-title: Mater. Sci. Eng., A
– volume: 29
  start-page: 177
  year: 1985
  end-page: 319
  ident: b0045
  article-title: Precipitation hardening of superalloys by ordered γ′-particles
  publication-title: Prog. Mater. Sci.
– volume: 21
  start-page: 381
  year: 1990
  end-page: 388
  ident: b0210
  article-title: Influence of molybdenum on the creep properties of nickel-base superalloy single crystals
  publication-title: Metall. Mater. Trans. A
– volume: 21
  start-page: 381
  issue: 1
  year: 1990
  ident: 10.1016/j.matdes.2022.110935_b0210
  article-title: Influence of molybdenum on the creep properties of nickel-base superalloy single crystals
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02782418
– volume: 8
  start-page: 1
  issue: 1–2
  year: 1970
  ident: 10.1016/j.matdes.2022.110935_b0105
  article-title: Simulation of genetic populations with biochemical properties: II. Selection of crossover probabilities
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(70)90140-9
– volume: 514
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0140
  article-title: Brazing of Ni-based single crystal superalloy with high carbon content γ layer
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145936
– volume: 333
  start-page: 72
  issue: 1–2
  year: 2002
  ident: 10.1016/j.matdes.2022.110935_b0180
  article-title: Modeling of the partitioning and phase transformation temperatures of an as-cast third generation single crystal Ni-base superalloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(01)01825-1
– volume: 41
  start-page: 1457
  issue: 8
  year: 2012
  ident: 10.1016/j.matdes.2022.110935_b0195
  article-title: Solidification and Segregation Behavior of Cast Ni-Base Superalloy IN792
  publication-title: Rare Metal Mater. Eng.
– volume: 5
  start-page: 279
  issue: 4
  year: 1998
  ident: 10.1016/j.matdes.2022.110935_b0230
  article-title: Microstructure and Mechanical Behavior of Mechanically Alloyed ODS Ni-Base Superalloy for Aerospace Gas Turbine Application
  publication-title: Adv. Perform. Mater.
  doi: 10.1023/A:1008653015451
– volume: 20
  start-page: 750
  issue: 6
  year: 2021
  ident: 10.1016/j.matdes.2022.110935_b0050
  article-title: Machine-learned potentials for next-generation matter simulations
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0777-6
– start-page: 357
  year: 2016
  ident: 10.1016/j.matdes.2022.110935_b0185
  article-title: Effect of Processing Conditions on Structure, Properties and Performance of a Nickel Base Cast Superalloy for High Temperature Applications
– volume: 15
  start-page: 809
  issue: 8
  year: 2016
  ident: 10.1016/j.matdes.2022.110935_b0015
  article-title: Alloy design for aircraft engines
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4709
– ident: 10.1016/j.matdes.2022.110935_b0085
  doi: 10.1109/ICEC.1994.350037
– ident: 10.1016/j.matdes.2022.110935_b0095
  doi: 10.1142/9789812702838_0003
– volume: 60
  start-page: 195
  issue: 1
  year: 2003
  ident: 10.1016/j.matdes.2022.110935_b0225
  article-title: Oxidation behavior of a single-crystal Ni-base superalloy in air—II: at 1000, 1100, and 1150 C
  publication-title: Oxid. Met.
  doi: 10.1023/A:1024629716452
– volume: 7
  start-page: 11241
  year: 2016
  ident: 10.1016/j.matdes.2022.110935_b0025
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 116
  start-page: 44
  year: 2017
  ident: 10.1016/j.matdes.2022.110935_b0220
  article-title: Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2016.12.009
– volume: 6
  start-page: 62
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0055
  article-title: Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0334-5
– volume: 833
  year: 2022
  ident: 10.1016/j.matdes.2022.110935_b0170
  article-title: Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ′ nanoprecipitates
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2021.142550
– volume: 612
  start-page: 90
  year: 2014
  ident: 10.1016/j.matdes.2022.110935_b0200
  article-title: Investigations of early stage precipitation in a tungsten-rich nickel-base superalloy using SAXS and SANS
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.05.154
– ident: 10.1016/j.matdes.2022.110935_b0005
– ident: 10.1016/j.matdes.2022.110935_b0125
  doi: 10.1007/s00170-012-3980-z
– ident: 10.1016/j.matdes.2022.110935_b0150
– volume: 23
  year: 2021
  ident: 10.1016/j.matdes.2022.110935_b0020
  article-title: Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy
  publication-title: Appl. Mater. Today
– ident: 10.1016/j.matdes.2022.110935_b0165
  doi: 10.1016/j.jallcom.2020.155141
– volume: 213
  year: 2022
  ident: 10.1016/j.matdes.2022.110935_b0075
  article-title: High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110326
– volume: 29
  start-page: 177
  issue: 3
  year: 1985
  ident: 10.1016/j.matdes.2022.110935_b0045
  article-title: Precipitation hardening of superalloys by ordered γ′-particles
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(85)90001-5
– volume: 195
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0060
  article-title: Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108996
– volume: 77
  start-page: 66
  year: 2021
  ident: 10.1016/j.matdes.2022.110935_b0190
  article-title: Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.10.042
– volume: 141
  year: 2022
  ident: 10.1016/j.matdes.2022.110935_b0135
  article-title: Effects of alloying additions on the microstructure, lattice misfit, and solvus temperature of a novel Co–Ni-based superalloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2021.107431
– volume: 11
  start-page: 712
  issue: 6
  year: 2008
  ident: 10.1016/j.matdes.2022.110935_b0155
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 13
  start-page: 501
  issue: 4
  year: 2014
  ident: 10.1016/j.matdes.2022.110935_b0160
  article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666895
– ident: 10.1016/j.matdes.2022.110935_b0090
  doi: 10.1007/978-3-540-72964-8
– volume: 154
  year: 2022
  ident: 10.1016/j.matdes.2022.110935_b0010
  article-title: Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106558
– volume: 26
  start-page: 889
  issue: 10
  year: 2010
  ident: 10.1016/j.matdes.2022.110935_b0215
  article-title: Effect of Solidification Parameters on the Microstructure and Creep Property of a Single Crystal Ni-base Superalloy
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60142-9
– volume: 39
  start-page: 1465
  issue: 2
  year: 2014
  ident: 10.1016/j.matdes.2022.110935_b0115
  article-title: Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 Alloy
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-013-0715-x
– volume: 2005011
  start-page: 1
  year: 2005
  ident: 10.1016/j.matdes.2022.110935_b0100
  article-title: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
  publication-title: Kangal Report
– ident: 10.1016/j.matdes.2022.110935_b0120
  doi: 10.1007/s11740-009-0189-6
– volume: 195
  start-page: 454
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0070
  article-title: Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning - ScienceDirect
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.05.001
– volume: 168
  start-page: 321
  year: 2019
  ident: 10.1016/j.matdes.2022.110935_b0035
  article-title: Modern data analytics approach to predict creep of high-temperature alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.02.017
– volume: 13
  start-page: 2397
  issue: 10
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0175
  article-title: Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD
  publication-title: Materials
  doi: 10.3390/ma13102397
– volume: 52
  start-page: 48
  year: 2013
  ident: 10.1016/j.matdes.2022.110935_b0110
  article-title: Multi-objective optimization of laser milling of 5754 aluminum alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2013.03.020
– volume: 373
  start-page: 255
  issue: 1
  year: 2004
  ident: 10.1016/j.matdes.2022.110935_b0145
  article-title: Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2004.01.030
– volume: 209
  year: 2021
  ident: 10.1016/j.matdes.2022.110935_b0030
  article-title: Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109954
– volume: 186
  start-page: 425
  year: 2020
  ident: 10.1016/j.matdes.2022.110935_b0065
  article-title: Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.01.004
– volume: 52
  start-page: 3737
  issue: 12
  year: 2004
  ident: 10.1016/j.matdes.2022.110935_b0040
  article-title: Creep behaviour of Ni-base single-crystal superalloys with various γ ′ volume fraction
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.04.028
– volume: 13
  start-page: 401
  issue: 3
  year: 2013
  ident: 10.1016/j.matdes.2022.110935_b0130
  article-title: Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm
  publication-title: Arch. Civil & Mech. Eng.
  doi: 10.1016/j.acme.2013.01.008
– volume: 28
  start-page: 45
  issue: 1
  year: 2018
  ident: 10.1016/j.matdes.2022.110935_b0205
  article-title: Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy
  publication-title: Prog. Natl. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2017.12.003
– volume: 39
  start-page: 75
  issue: 1
  year: 2008
  ident: 10.1016/j.matdes.2022.110935_b0080
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9053-9
SSID ssj0022734
Score 2.508378
Snippet [Display omitted] •A prediction model of Multi-objective Evolutionary Algorithm combined with Machine Learning was established to optimize multiple properties...
The simultaneous consideration of multiple conflicting properties in alloy optimization design is necessary yet remains challenging. A comprehensive strategy...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110935
SubjectTerms Machine learning
Microscopic parameters
Multi-objective evolutionary algorithm
Ni-based superalloys
Thermo-Calc
Title An intelligent design for Ni-based superalloy based on machine learning and multi-objective optimization
URI https://dx.doi.org/10.1016/j.matdes.2022.110935
https://doaj.org/article/4c6b7e48e13b4a679539e8000430629c
Volume 221
WOSCitedRecordID wos000853017900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-4197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022734
  issn: 0264-1275
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022734
  issn: 0264-1275
  databaseCode: AIEXJ
  dateStart: 20181205
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQMMCAOEU5Kg-sFnGcwx4LagUIVQyAulmJD2jVJlWbIvHv8ZGUTHRhjXxEz09-32c_fw-AGyuBlmuaISmCGEUaE5RjqVFiiFugVUq0O8p-f06HQzoasZdWqS-bE-blgb3hbiOR5KmKqMIkj7IkZTFhirobrCAJmbC7r0E9DZmqqZYVbfGnK1aVL42bR3Mus8tAQamsVHcYOsFNV-rtNyg57f5WbGrFm8EhOKiBIuz5HzwCW6o4Bvst-cAT8Nkr4HgtqVlB6bIxoIGhcGgor4lPEi5Xc3vqNC2_of9QFnDmEigVrCtGfMCskNBlFqIyn_gdEJZmL5nVjzRPwdug_3r_gOrKCUhEmFYI53GigygLsRZS2Ks4YYhBRlKtE4nDQFGGBdEyYZjoUBmOZHCAojLRJpyzVJIzsF2UhToHMFI6zmOsmIwyG7syZeg0Vdr0MF0Z7QDSmI6LWlbcVreY8iZ_bMK9wbk1OPcG7wC07jX3shob2t_ZVVm3taLY7oNxFV67Ct_kKh2QNmvKa3zhcYMZavzn9Bf_Mf0l2LND-gS1K7BdLVbqGuyKr2q8XHTBTu-xP3rqOj_-AUNm8_M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+design+for+Ni-based+superalloy+based+on+machine+learning+and+multi-objective+optimization&rft.jtitle=Materials+%26+design&rft.au=Yuedan+Deng&rft.au=Yu+Zhang&rft.au=Xiufang+Gong&rft.au=Wang+Hu&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=221&rft.spage=110935&rft_id=info:doi/10.1016%2Fj.matdes.2022.110935&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c6b7e48e13b4a679539e8000430629c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon