Compact extreme learning machines for biological systems

In biological system modelling using data-driven black-box methods, it is essential to effectively and efficiently produce a parsimonious model to represent the system behaviour. The Extreme Learning Machine (ELM) is a recent development in fast learning paradigms. However, the derived model is not...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computational biology and drug design Ročník 3; číslo 2; s. 112
Hlavní autoři: Li, Kang, Deng, Jing, He, Hai-Bo, Li, Yurong, Du, Da-Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 2010
Témata:
ISSN:1756-0756
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In biological system modelling using data-driven black-box methods, it is essential to effectively and efficiently produce a parsimonious model to represent the system behaviour. The Extreme Learning Machine (ELM) is a recent development in fast learning paradigms. However, the derived model is not necessarily sparse. In this paper, an improved ELM is investigated, aiming to obtain a more compact model without significantly increasing the overall computational complexity. This is achieved by associating each model term to a regularized parameter, thus insignificant ones are automatically unselected, leading to improved model sparsity. Experimental results on biochemical data confirm its effectiveness.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-0756
DOI:10.1504/IJCBDD.2010.035238