An integrated phenology modelling framework in r

Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methods in ecology and evolution Ročník 9; číslo 5; s. 1276 - 1285
Hlavní autoři: Hufkens, Koen, Basler, David, Milliman, Tom, Melaas, Eli K., Richardson, Andrew D., Goslee, Sarah
Médium: Journal Article
Jazyk:angličtina
Vydáno: London John Wiley & Sons, Inc 01.05.2018
Wiley
Wiley-Blackwell
Témata:
ISSN:2041-210X, 2041-210X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
AbstractList Abstract Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the <styled-content style='fixed-case'>USA</styled-content> National Phenology Network ( <styled-content style='fixed-case'>USA</styled-content> ‐ <styled-content style='fixed-case'>NPN</styled-content> ), the Pan European Phenology Project ( <styled-content style='fixed-case'>PEP</styled-content> 725), <styled-content style='fixed-case'>MODIS</styled-content> phenology ( <styled-content style='fixed-case'>MCD</styled-content> 12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared ( <styled-content style='fixed-case'>RMSE</styled-content> ) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data.We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework.In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
1. Phenology is a first-order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. 2. Here, we present the PHENOR R package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA-NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. 3. We show an example analysis, using the PHENOR modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. 4. In conclusion, we hope the PHENOR phenology modelling framework in the R language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network ( USA ‐ NPN ), the Pan European Phenology Project ( PEP 725), MODIS phenology ( MCD 12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared ( RMSE ) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
Author Milliman, Tom
Melaas, Eli K.
Hufkens, Koen
Basler, David
Richardson, Andrew D.
Goslee, Sarah
Author_xml – sequence: 1
  givenname: Koen
  orcidid: 0000-0002-5070-8109
  surname: Hufkens
  fullname: Hufkens, Koen
  email: koen.hufkens@gmail.com
  organization: Harvard University
– sequence: 2
  givenname: David
  surname: Basler
  fullname: Basler, David
  organization: Harvard University
– sequence: 3
  givenname: Tom
  surname: Milliman
  fullname: Milliman, Tom
  organization: University of New Hampshire
– sequence: 4
  givenname: Eli K.
  surname: Melaas
  fullname: Melaas, Eli K.
  organization: Boston University
– sequence: 5
  givenname: Andrew D.
  surname: Richardson
  fullname: Richardson, Andrew D.
  organization: Northern Arizona University
– sequence: 6
  givenname: Sarah
  surname: Goslee
  fullname: Goslee, Sarah
BackLink https://hal.inrae.fr/hal-02622109$$DView record in HAL
https://www.osti.gov/biblio/1420342$$D View this record in Osti.gov
BookMark eNqFkMFLwzAUxoNMcM6dvRY9eejMS9qmOY4xnTDxouAtZG26ZXbJTDrH_ntTqyKC-C7v8fh9X_K-U9Qz1iiEzgGPINQ1wQnEBPDzCAhn-Aj1vze9H_MJGnq_xqFozjFJ-giPTaRNo5ZONqqMtitlbG2Xh2hjS1XX2iyjysmN2lv3EsDInaHjStZeDT_7AD3dTB8ns3j-cHs3Gc_jIoEcx2W2AEgxJGnKF1TlFWUly1gls3KRswo4TRWnDCDnXBYpUxTnvGBQViVnJOF0gC46X-sbLXyhG1WsCmuMKhoBCcE0IQG66qCVrMXW6Y10B2GlFrPxXLQ7TDISDudvENjLjt06-7pTvhFru3Mm3CBaM0h5nraOaUcVznrvVCXCy7LR1jRO6loAFm3goo1UtJGKj8CD7vqX7us7fyuyTrHXtTr8h4v76ZR2wnd-3Y7Y
CitedBy_id crossref_primary_10_1002_pei3_10118
crossref_primary_10_1002_ece3_70988
crossref_primary_10_1016_j_agrformet_2018_12_004
crossref_primary_10_1016_j_ecolmodel_2024_111011
crossref_primary_10_1111_ecog_06143
crossref_primary_10_3390_w14152414
crossref_primary_10_1038_s41558_024_02164_2
crossref_primary_10_1007_s00442_022_05296_4
crossref_primary_10_1016_j_ecolind_2023_111328
crossref_primary_10_3390_rs12162538
crossref_primary_10_1016_j_dib_2020_105328
crossref_primary_10_1007_s10980_023_01595_0
crossref_primary_10_3354_cr01708
crossref_primary_10_1016_j_rse_2023_113617
crossref_primary_10_1002_ece3_10213
crossref_primary_10_1002_jwmg_22638
crossref_primary_10_3390_w14162503
crossref_primary_10_1002_ecs2_4341
crossref_primary_10_1016_j_eja_2023_126791
crossref_primary_10_1016_j_jhydrol_2022_128817
crossref_primary_10_1038_s41598_021_82145_z
crossref_primary_10_1038_s41597_019_0229_9
crossref_primary_10_1002_lol2_10284
crossref_primary_10_1002_aps3_1228
crossref_primary_10_1016_j_envres_2024_119346
crossref_primary_10_1186_s12889_023_15773_x
crossref_primary_10_1016_j_jag_2020_102291
crossref_primary_10_1029_2020JG005969
crossref_primary_10_1111_nph_16114
crossref_primary_10_1016_j_envsoft_2020_104666
crossref_primary_10_1111_pce_13959
crossref_primary_10_1016_j_agrformet_2023_109751
crossref_primary_10_1016_j_scitotenv_2025_179150
crossref_primary_10_1111_nph_70471
crossref_primary_10_1002_ecy_3940
crossref_primary_10_3389_fpls_2023_1266801
crossref_primary_10_1016_j_agsy_2024_104243
crossref_primary_10_1007_s00442_023_05488_6
crossref_primary_10_1016_j_agrformet_2022_109001
crossref_primary_10_1016_j_ecoinf_2020_101178
crossref_primary_10_1016_j_agrformet_2025_110824
crossref_primary_10_1038_sdata_2018_28
crossref_primary_10_1111_evo_14029
crossref_primary_10_1016_j_scienta_2022_111604
crossref_primary_10_1016_j_agrformet_2025_110425
crossref_primary_10_1111_geb_13374
crossref_primary_10_1016_j_rse_2022_113046
crossref_primary_10_1016_j_ecolind_2025_113403
crossref_primary_10_1080_01431161_2021_1931534
crossref_primary_10_1002_ecs2_3989
crossref_primary_10_1016_j_rse_2021_112466
crossref_primary_10_3390_rs12183077
crossref_primary_10_1029_2019JG005297
crossref_primary_10_1002_jeq2_20125
crossref_primary_10_3390_rs17172919
crossref_primary_10_1016_j_jag_2021_102487
crossref_primary_10_3389_fvets_2023_1158306
crossref_primary_10_1016_j_agrformet_2022_109193
crossref_primary_10_1002_ecy_3154
crossref_primary_10_3390_su15043365
crossref_primary_10_5194_cp_20_659_2024
crossref_primary_10_1029_2019MS001935
crossref_primary_10_3389_ffgc_2022_1032066
crossref_primary_10_1002_ecs2_70023
crossref_primary_10_1016_j_biocon_2024_110834
crossref_primary_10_1016_j_tree_2021_04_008
crossref_primary_10_1016_j_agwat_2025_109762
crossref_primary_10_1016_j_agrformet_2023_109739
crossref_primary_10_1007_s10533_024_01188_2
crossref_primary_10_5194_hess_23_2939_2019
crossref_primary_10_5194_bg_16_467_2019
crossref_primary_10_1016_j_envsoft_2025_106352
crossref_primary_10_1016_j_indcrop_2022_114617
crossref_primary_10_1371_journal_pone_0232537
crossref_primary_10_1007_s00442_025_05675_7
crossref_primary_10_1002_ece3_10362
crossref_primary_10_1029_2022WR033912
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_1088_1748_9326_adfe7f
crossref_primary_10_1016_j_agrformet_2021_108491
crossref_primary_10_1002_ajb2_70079
crossref_primary_10_1016_j_foreco_2021_119911
crossref_primary_10_1002_ecs2_4799
crossref_primary_10_1038_s41597_025_05382_1
crossref_primary_10_1002_eco_2332
crossref_primary_10_1016_j_agrformet_2025_110443
crossref_primary_10_1016_j_agrformet_2025_110685
crossref_primary_10_1111_gcb_15098
crossref_primary_10_1111_nph_19674
crossref_primary_10_1111_nph_15591
crossref_primary_10_1007_s00484_021_02152_7
crossref_primary_10_5194_essd_16_277_2024
crossref_primary_10_3390_atmos12080963
crossref_primary_10_1111_nph_70008
crossref_primary_10_1016_j_ecoinf_2025_103134
crossref_primary_10_1016_j_ecolind_2023_110262
crossref_primary_10_1016_j_heliyon_2024_e29838
crossref_primary_10_1029_2022WR034215
crossref_primary_10_3390_d14070560
crossref_primary_10_1111_gcb_14959
crossref_primary_10_1016_j_agrformet_2019_107702
crossref_primary_10_1016_j_agrformet_2022_109204
crossref_primary_10_5194_bg_18_2213_2021
crossref_primary_10_1007_s10980_020_01077_7
crossref_primary_10_3389_fpls_2022_805738
crossref_primary_10_1002_ecs2_4262
crossref_primary_10_3389_fpls_2020_00593
crossref_primary_10_1002_lol2_70014
crossref_primary_10_1016_j_ecoinf_2021_101400
crossref_primary_10_1016_j_fcr_2025_109959
crossref_primary_10_1016_j_agrformet_2022_109295
crossref_primary_10_1111_ecog_07541
crossref_primary_10_5814_j_issn_1674_764x_2019_05_003
crossref_primary_10_1073_pnas_2408564122
crossref_primary_10_1016_j_agrformet_2025_110733
crossref_primary_10_1016_j_isprsjprs_2025_02_026
crossref_primary_10_1029_2021WR031575
crossref_primary_10_1016_j_healthplace_2024_103277
crossref_primary_10_1002_ecy_4061
crossref_primary_10_11922_11_6035_csd_2023_0068_zh
crossref_primary_10_1016_j_jenvman_2020_111418
crossref_primary_10_1126_science_abd8911
crossref_primary_10_1029_2019JG005389
crossref_primary_10_1088_1748_9326_abbd00
crossref_primary_10_1016_j_scitotenv_2023_167408
crossref_primary_10_1016_j_foreco_2021_119813
crossref_primary_10_1016_j_fcr_2025_109822
crossref_primary_10_1016_j_scitotenv_2023_166676
crossref_primary_10_1016_j_tplants_2018_11_006
crossref_primary_10_1007_s00484_020_02068_8
crossref_primary_10_1038_s41467_021_24588_6
crossref_primary_10_1659_MRD_JOURNAL_D_20_00065_1
crossref_primary_10_1016_j_agrformet_2025_110586
crossref_primary_10_3390_rs17162893
crossref_primary_10_5194_soil_10_307_2024
crossref_primary_10_1111_ele_70018
crossref_primary_10_3390_geomatics3010012
crossref_primary_10_1111_nph_20405
crossref_primary_10_1016_j_agrformet_2019_107803
crossref_primary_10_1007_s00484_019_01826_7
crossref_primary_10_1111_1744_7917_13358
crossref_primary_10_1016_j_fcr_2025_110118
crossref_primary_10_1111_1365_2435_14287
crossref_primary_10_1002_ecs2_4487
Cites_doi 10.1046/j.1365-2486.1999.00281.x
10.1111/1365-2435.12309
10.1007/978-94-007-6925-0_15
10.5194/bg-9-2063-2012
10.18637/jss.v042.i11
10.1111/j.1365-2486.2009.01910.x
10.1002/qj.828
10.1111/j.1365-3040.1989.tb01938.x
10.1016/S0378-4371(96)00271-3
10.1093/treephys/26.9.1165
10.1016/j.ecolmodel.2005.10.020
10.1111/gcb.13122
10.1016/S0168-1923(96)02359-3
10.2307/2403139
10.1016/j.agrformet.2008.08.013
10.1038/nclimate2942
10.1111/gcb.13326
10.1111/gcb.12360
10.1111/j.1365-2486.2006.01311.x
10.2307/2404093
10.1016/j.agrformet.2011.09.009
10.1016/j.agrformet.2012.09.012
10.1890/13-0652.1
10.1093/oxfordjournals.aob.a084891
10.1046/j.1469-8137.1999.00445.x
10.1016/j.rse.2015.02.003
10.1006/jtbi.2000.2178
10.2307/2404467
10.1111/geb.12206
10.1029/2005EO510005
10.1890/14-0005.1
10.1093/aob/mcv055
10.1038/sdata.2018.28
10.1016/j.agrformet.2012.05.001
10.1016/j.rse.2009.08.016
10.1098/rstb.2010.0102
10.1029/2008JD010201
10.2307/1931815
10.1002/ece3.1273
10.1111/j.1365-2486.2011.02562.x
10.21273/HORTSCI.22.3.371
10.14214/sf.313
10.1016/j.envsoft.2014.09.005
10.1111/nph.12680
10.1038/432289a
10.32614/RJ-2013-002
10.1371/journal.pone.0057373
10.1016/S0034-4257(02)00135-9
10.1016/j.agrformet.2015.11.007
10.1007/s00442-009-1363-4
10.5194/bgd-11-2305-2014
10.2307/2404609
10.1006/anbo.1996.0321
10.1007/s00484-003-0171-5
10.1046/j.1365-3040.1999.00395.x
ContentType Journal Article
Copyright 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society
Methods in Ecology and Evolution © 2018 British Ecological Society
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society
– notice: Methods in Ecology and Evolution © 2018 British Ecological Society
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
1XC
VOOES
OTOTI
DOI 10.1111/2041-210X.12970
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 2041-210X
EndPage 1285
ExternalDocumentID 1420342
oai:HAL:hal-02622109v1
10_1111_2041_210X_12970
MEE312970
Genre technicalNote
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: LabEx COTE MicroMic project
– fundername: Federaal Wetenschapsbeleid
  funderid: BR/175/A3/COBECORE
– fundername: NSF Macrosystems Biology programme
  funderid: EF‐1065029; EF‐1702697
– fundername: Directorate for Biological Sciences
  funderid: EF‐1065029
– fundername: US Department of Energy
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
AAESR
AAFWJ
AAHBH
AAMMB
AAZKR
ABCUV
ABLJU
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFFHD
AFKRA
AFPKN
AFRAH
AGXDD
AIAGR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
PATMY
PHGZM
PHGZT
PQGLB
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WIN
WOHZO
ZZTAW
~S-
AAYXX
BANNL
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
1XC
VOOES
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AIWBW
AJBDE
OTOTI
P4E
WXSBR
WYJ
ID FETCH-LOGICAL-c4180-d6b115014559b3e8f37d767fa6db87f1935e93711899ac57e3089c71dfd972493
IEDL.DBID WIN
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431666300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-210X
IngestDate Mon Mar 25 05:14:36 EDT 2024
Mon Nov 24 06:20:30 EST 2025
Wed Aug 13 09:46:14 EDT 2025
Sat Nov 29 05:20:29 EST 2025
Tue Nov 18 22:40:06 EST 2025
Tue Nov 11 03:14:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords MODIS land surface phenology
phenology
PEP725
PHENOCAM
modelling
R package
USA-NPN
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4180-d6b115014559b3e8f37d767fa6db87f1935e93711899ac57e3089c71dfd972493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-5070-8109
0000000250708109
OpenAccessLink https://hal.inrae.fr/hal-02622109
PQID 2034159852
PQPubID 1016379
PageCount 10
ParticipantIDs osti_scitechconnect_1420342
hal_primary_oai_HAL_hal_02622109v1
proquest_journals_2034159852
crossref_citationtrail_10_1111_2041_210X_12970
crossref_primary_10_1111_2041_210X_12970
wiley_primary_10_1111_2041_210X_12970_MEE312970
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United Kingdom
PublicationTitle Methods in ecology and evolution
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
– name: Wiley-Blackwell
References 2012; 164
1997; 84
1735; 1735
2013; 20
2013; 169
2014; 24
2014; 28
2013; 8
2014; 62
2013; 5
2011; 18
2014; 23
2014; 4
1990; 213
1960; 41
2010; 114
2000; 207
2006; 26
1983; 20
2003; 47
2009; 161
2008; 113
2003; 84
2014; 202
2014; 11
2009; 15
1994; 31
1974; 38
2011; 137
2015; 161
2010; 365
1999; 143
2005; 86
1999; 22
2007
2006; 194
1989; 26
1999; 5
2007; 13
2016; 6
1987; 22
2012; 152
2015; 25
1989; 12
2004; 432
2012; 1
2015; 116
2016; 217
1997; 79
2011; 42
1992; 29
2018
2017
2016
2013
2007; 41
1996; 233
2009; 149
2016; 22
2012; 9
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_8_1
R Core Team (e_1_2_9_43_1) 2016
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Rosenzweig C. (e_1_2_9_49_1) 2007
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
De Reaumur R.‐A (e_1_2_9_16_1) 1735; 1735
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Rohde R. (e_1_2_9_48_1) 2012; 1
Hänninen H. (e_1_2_9_22_1) 1990; 213
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 41
  start-page: 167
  year: 2007
  end-page: 205
  article-title: A framework for modelling the annual cycle of trees in boreal and temperate regions
  publication-title: Silva Fennica
– volume: 22
  start-page: 792
  year: 2016
  end-page: 805
  article-title: Multiscale modeling of spring phenology across deciduous forests in the Eastern United States
  publication-title: Global Change Biology
– volume: 42
  start-page: 1
  year: 2011
  end-page: 26
  article-title: Genetic optimization using derivatives: The rgenoud package for R
  publication-title: Journal of Statistical Software
– start-page: 275
  year: 2013
  end-page: 293
– volume: 23
  start-page: 1245
  year: 2014
  end-page: 1254
  article-title: Macroscale prediction of autumn leaf coloration throughout the continental United States
  publication-title: Global Ecology and Biogeography
– volume: 18
  start-page: 566
  year: 2011
  end-page: 584
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program
  publication-title: Global Change Biology
– volume: 1735
  start-page: 545
  year: 1735
  end-page: 576
  article-title: Observations du thermometre, faites a Paris pendant l′annee 1735 comparees avec celles qui onte faites sous la ligne et al′Ile de France,a Alger et en quelques‐unes de nos ıles de l′Amerique
  publication-title: Memoires de l'Academie Royale des Sciences de Paris
– start-page: 79
  year: 2007
  end-page: 131
– volume: 79
  start-page: 133
  year: 1997
  end-page: 137
  article-title: Changing environmental effects on frost hardiness of scots pine during dehardening
  publication-title: Annals of Botany
– volume: 4
  start-page: 4658
  year: 2014
  end-page: 4668
  article-title: MODISTools ‐ downloading and processing MODIS remotely sensed data in R
  publication-title: Ecology and Evolution
– volume: 24
  start-page: 1478
  year: 2014
  end-page: 1489
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment
  publication-title: Ecological Applications.
– volume: 1
  start-page: 1
  year: 2012
  end-page: 7
  article-title: A New estimate of the average earth surface land temperature spanning 1753 to 2011
  publication-title: Geoinformatic & Geostatistics: An Overview
– volume: 164
  start-page: 10
  year: 2012
  end-page: 19
  article-title: Shortcomings of classical phenological forcing models and a way to overcome them
  publication-title: Agricultural and Forest Meteorology
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sensing of Environment
– volume: 143
  start-page: 339
  year: 1999
  end-page: 349
  article-title: Climatic determinants of budburst seasonality in four temperate‐zone tree species
  publication-title: New Phytologist
– volume: 31
  start-page: 172
  year: 1994
  end-page: 181
  article-title: Selecting a model to predict the onset of growth of
  publication-title: Journal of Applied Ecology
– volume: 25
  start-page: 99
  year: 2015
  end-page: 115
  article-title: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis
  publication-title: Ecological Applications
– volume: 11
  start-page: 2305
  year: 2014
  end-page: 2342
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences Discussions
– volume: 207
  start-page: 337
  year: 2000
  end-page: 347
  article-title: A unified model for budburst of trees
  publication-title: Journal of theoretical biology
– volume: 86
  start-page: 538
  year: 2005
  article-title: Implementing a U.S. National Phenology Network
  publication-title: Eos, Transactions American Geophysical Union
– volume: 161
  start-page: 187
  year: 2009
  end-page: 198
  article-title: Responses of canopy duration to temperature changes in four temperate tree species: Relative contributions of spring and autumn leaf phenology
  publication-title: Oecologia
– volume: 194
  start-page: 256
  year: 2006
  end-page: 265
  article-title: Modelling of weather variability effect on fitophenology
  publication-title: Ecological Modelling
– volume: 41
  start-page: 785
  year: 1960
  end-page: 790
  article-title: A critique of the heat unit approach to plant response studies
  publication-title: Ecology
– volume: 5
  start-page: 891
  year: 1999
  end-page: 902
  article-title: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest
  publication-title: Global Change Biology
– volume: 12
  start-page: 235
  year: 1989
  end-page: 247
  article-title: Foliar stage in wheat correlates better to photothermal time than to thermal time
  publication-title: Plant, Cell & Environment
– volume: 62
  start-page: 385
  year: 2014
  end-page: 398
  article-title: Plant modelling framework: Software for building and running crop models on the APSIM platform
  publication-title: Environmental Modelling and Software
– volume: 116
  start-page: 875
  year: 2015
  end-page: 888
  article-title: Changes in autumn senescence in northern hemisphere deciduous trees: A meta‐analysis of autumn phenology studies
  publication-title: Annals of Botany
– volume: 213
  start-page: 1
  year: 1990
  end-page: 47
  article-title: Modelling bud dormancy release in trees from cool and temperate regions
  publication-title: Acta Forestalia Fennica
– volume: 202
  start-page: 350
  year: 2014
  end-page: 355
  article-title: Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring
  publication-title: New Phytologist
– volume: 161
  start-page: 63
  year: 2015
  end-page: 77
  article-title: Modeling grassland spring onset across the Western United States using climate variables and MODIS‐derived phenology metrics
  publication-title: Remote Sensing of Environment
– volume: 15
  start-page: 2335
  year: 2009
  end-page: 2359
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982‐2006
  publication-title: Global Change Biology
– volume: 217
  start-page: 10
  year: 2016
  end-page: 21
  article-title: Evaluating phenological models for the prediction of leaf‐out dates in six temperate tree species across central Europe
  publication-title: Agricultural and Forest Meteorology
– volume: 152
  start-page: 159
  year: 2012
  end-page: 177
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agricultural and Forest Meteorology
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 22
  start-page: 1
  year: 1999
  end-page: 13
  article-title: Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling
  publication-title: Plant, Cell and Environment
– volume: 28
  start-page: 1344
  year: 2014
  end-page: 1355
  article-title: Tree phenology responses to winter chilling, spring warming, at north and south range limits
  publication-title: Functional Ecology
– volume: 26
  start-page: 693
  year: 1989
  end-page: 700
  article-title: Date of budburst of fifteen tree species in Britain following climatic warming
  publication-title: Journal of Applied Ecology
– volume: 365
  start-page: 3227
  year: 2010
  end-page: 3246
  article-title: Influence of spring and autumn phenological transitions on forest ecosystem productivity
  publication-title: Philosophical transactions of the Royal Society of London Series B, Biological Sciences
– volume: 84
  start-page: 273
  year: 1997
  end-page: 284
  article-title: Detecting leaf area and surface resistance during transition seasons
  publication-title: Agricultural and Forest Meteorology
– volume: 26
  start-page: 1165
  year: 2006
  end-page: 1172
  article-title: Models of the spring phenology of boreal and temperate trees: Is there something missing?
  publication-title: Tree physiology
– volume: 432
  start-page: 289
  year: 2004
  end-page: 290
  article-title: Historical phenology: Grape ripening as a past climate indicator
  publication-title: Nature
– year: 2016
– volume: 169
  start-page: 156
  year: 2013
  end-page: 173
  article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system
  publication-title: Agricultural and Forest Meteorology
– volume: 8
  start-page: e57373
  year: 2013
  article-title: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest
  publication-title: PLoS ONE
– volume: 29
  start-page: 597
  year: 1992
  end-page: 604
  article-title: Predicting the timing of budburst in temperate trees
  publication-title: Journal of Applied Ecology
– year: 2018
  article-title: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
  publication-title: Scientific Data
– volume: 13
  start-page: 707
  year: 2007
  end-page: 721
  article-title: Phenology model from surface meteorology does not capture satellite‐based greenup estimations
  publication-title: Global Change Biology
– volume: 20
  start-page: 951
  year: 1983
  end-page: 963
  article-title: Thermal time, chill days and prediction of budburst in Picea sitchensis
  publication-title: Journal of applied Ecology
– volume: 114
  start-page: 168
  year: 2010
  end-page: 182
  article-title: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets
  publication-title: Remote Sensing of Environment
– volume: 22
  start-page: 371
  year: 1987
  end-page: 377
  article-title: Endo‐, para‐, and ecodormancy: Physiological terminology and classification for dormancy research
  publication-title: HortScience
– volume: 233
  start-page: 395
  year: 1996
  end-page: 406
  article-title: Generalized Simulated Annealing
  publication-title: Physica A
– volume: 47
  start-page: 193
  year: 2003
  end-page: 201
  article-title: Physiology‐based phenology models for forest tree species in Germany
  publication-title: International journal of biometeorology
– volume: 20
  start-page: 170
  year: 2013
  end-page: 182
  article-title: Chilling outweighs photoperiod in preventing precocious spring development
  publication-title: Global Change Biology
– volume: 5
  start-page: 13
  year: 2013
  end-page: 28
  article-title: Generalized simulated annealing for global optimization: The GenSA Package
  publication-title: R Journal
– volume: 38
  start-page: 1013
  year: 1974
  end-page: 1023
  article-title: Apple fruit bud development and growth; analysis and an empirical model
  publication-title: Annals of Botany
– volume: 113
  start-page: D20119
  year: 2008
  article-title: A European daily high‐resolution gridded data set of surface temperature and precipitation for 1950‐2006
  publication-title: Journal of Geophysical Research Atmospheres
– volume: 9
  start-page: 2063
  year: 2012
  end-page: 2083
  article-title: On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model
  publication-title: Biogeosciences
– volume: 22
  start-page: 3675
  year: 2016
  end-page: 3688
  article-title: A new seasonal‐deciduous spring phenology submodel in the Community Land Model 4.5: Impacts on carbon and water cycling under future climate scenarios
  publication-title: Global Change Biology
– year: 2017
– volume: 149
  start-page: 256
  year: 2009
  end-page: 262
  article-title: Predicting the start and peak dates of the Poaceae pollen season in Spain using process‐based models
  publication-title: Agricultural and Forest Meteorology
– volume: 6
  start-page: 10
  year: 2016
  end-page: 14
  article-title: Productivity of North American grasslands is increased under future climate scenarios despite rising aridity
  publication-title: Nature Climate Change.
– volume: 1735
  start-page: 545
  year: 1735
  ident: e_1_2_9_16_1
  article-title: Observations du thermometre, faites a Paris pendant l′annee 1735 comparees avec celles qui onte faites sous la ligne et al′Ile de France,a Alger et en quelques‐unes de nos ıles de l′Amerique
  publication-title: Memoires de l'Academie Royale des Sciences de Paris
– ident: e_1_2_9_25_1
  doi: 10.1046/j.1365-2486.1999.00281.x
– ident: e_1_2_9_14_1
  doi: 10.1111/1365-2435.12309
– volume: 213
  start-page: 1
  year: 1990
  ident: e_1_2_9_22_1
  article-title: Modelling bud dormancy release in trees from cool and temperate regions
  publication-title: Acta Forestalia Fennica
– ident: e_1_2_9_12_1
  doi: 10.1007/978-94-007-6925-0_15
– ident: e_1_2_9_41_1
  doi: 10.5194/bg-9-2063-2012
– ident: e_1_2_9_39_1
  doi: 10.18637/jss.v042.i11
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1365-2486.2009.01910.x
– ident: e_1_2_9_17_1
  doi: 10.1002/qj.828
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1365-3040.1989.tb01938.x
– start-page: 79
  volume-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_9_49_1
– ident: e_1_2_9_55_1
  doi: 10.1016/S0378-4371(96)00271-3
– ident: e_1_2_9_37_1
  doi: 10.1093/treephys/26.9.1165
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ecolmodel.2005.10.020
– ident: e_1_2_9_40_1
  doi: 10.1111/gcb.13122
– ident: e_1_2_9_50_1
  doi: 10.1016/S0168-1923(96)02359-3
– ident: e_1_2_9_7_1
  doi: 10.2307/2403139
– ident: e_1_2_9_20_1
  doi: 10.1016/j.agrformet.2008.08.013
– ident: e_1_2_9_26_1
  doi: 10.1038/nclimate2942
– ident: e_1_2_9_8_1
  doi: 10.1111/gcb.13326
– ident: e_1_2_9_34_1
  doi: 10.1111/gcb.12360
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1365-2486.2006.01311.x
– ident: e_1_2_9_42_1
  doi: 10.2307/2404093
– ident: e_1_2_9_52_1
  doi: 10.1016/j.agrformet.2011.09.009
– volume: 1
  start-page: 1
  year: 2012
  ident: e_1_2_9_48_1
  article-title: A New estimate of the average earth surface land temperature spanning 1753 to 2011
  publication-title: Geoinformatic & Geostatistics: An Overview
– ident: e_1_2_9_47_1
  doi: 10.1016/j.agrformet.2012.09.012
– ident: e_1_2_9_29_1
  doi: 10.1890/13-0652.1
– ident: e_1_2_9_32_1
  doi: 10.1093/oxfordjournals.aob.a084891
– ident: e_1_2_9_10_1
  doi: 10.1046/j.1469-8137.1999.00445.x
– ident: e_1_2_9_61_1
  doi: 10.1016/j.rse.2015.02.003
– ident: e_1_2_9_9_1
  doi: 10.1006/jtbi.2000.2178
– ident: e_1_2_9_27_1
  doi: 10.2307/2404467
– ident: e_1_2_9_28_1
  doi: 10.1111/geb.12206
– ident: e_1_2_9_4_1
  doi: 10.1029/2005EO510005
– ident: e_1_2_9_54_1
  doi: 10.1890/14-0005.1
– ident: e_1_2_9_21_1
  doi: 10.1093/aob/mcv055
– ident: e_1_2_9_46_1
  doi: 10.1038/sdata.2018.28
– ident: e_1_2_9_5_1
  doi: 10.1016/j.agrformet.2012.05.001
– ident: e_1_2_9_19_1
  doi: 10.1016/j.rse.2009.08.016
– ident: e_1_2_9_45_1
  doi: 10.1098/rstb.2010.0102
– ident: e_1_2_9_24_1
  doi: 10.1029/2008JD010201
– ident: e_1_2_9_58_1
  doi: 10.2307/1931815
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_43_1
– ident: e_1_2_9_56_1
  doi: 10.1002/ece3.1273
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1365-2486.2011.02562.x
– ident: e_1_2_9_33_1
  doi: 10.21273/HORTSCI.22.3.371
– ident: e_1_2_9_23_1
  doi: 10.14214/sf.313
– ident: e_1_2_9_6_1
  doi: 10.1016/j.envsoft.2014.09.005
– ident: e_1_2_9_35_1
  doi: 10.1111/nph.12680
– ident: e_1_2_9_13_1
  doi: 10.1038/432289a
– ident: e_1_2_9_60_1
  doi: 10.32614/RJ-2013-002
– ident: e_1_2_9_2_1
  doi: 10.1371/journal.pone.0057373
– ident: e_1_2_9_62_1
  doi: 10.1016/S0034-4257(02)00135-9
– ident: e_1_2_9_3_1
  doi: 10.1016/j.agrformet.2015.11.007
– ident: e_1_2_9_57_1
  doi: 10.1007/s00442-009-1363-4
– ident: e_1_2_9_30_1
  doi: 10.5194/bgd-11-2305-2014
– ident: e_1_2_9_31_1
  doi: 10.2307/2404609
– ident: e_1_2_9_36_1
  doi: 10.1006/anbo.1996.0321
– ident: e_1_2_9_51_1
  doi: 10.1007/s00484-003-0171-5
– ident: e_1_2_9_11_1
  doi: 10.1046/j.1365-3040.1999.00395.x
– ident: e_1_2_9_53_1
SSID ssj0000389024
Score 2.5641782
Snippet Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and...
1. Phenology is a first-order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and...
Abstract Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and...
SourceID osti
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1276
SubjectTerms Albedo
Biosphere
Climate models
Climate system
Climatic data
Data collection
Environmental Sciences
Evapotranspiration
Life Sciences
modelling
MODIS land surface phenology
PEP725
PhenoCam
Phenology
r package
Reproducibility
Surface roughness
USA‐NPN
Vegetation
Title An integrated phenology modelling framework in r
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12970
https://www.proquest.com/docview/2034159852
https://hal.inrae.fr/hal-02622109
https://www.osti.gov/biblio/1420342
Volume 9
WOSCitedRecordID wos000431666300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90KPjitzido4gPvnS2Tdukj0M6JujwQXFvoc0HCrLJNgVf_Nu9y7oyBRHBt7Z3CSGXa34XLr8DODM841GaMD8wSUQBivaLsjC-TW1g04KZhFlXbIIPBmI4zG6rbEK6CzPnh6gP3Mgz3P-aHLwop0tOHgVx6GPAMuzglsUpag9j55oPV4P6lIXo4wJX2bZWr_h9KJ3nWxdftqbVR0qMbIzR0b6Az2UI6_ag3tY_jH4bNisA6nXnK2YHVsxoF9ZzR179vgdBd-TVFBLaowwwJ_FcyRy6u-7ZRT4XKnqTfbjv5XeXfb-qquCrOBSBr9OSUCARlGclM8IyrnnKbZHqUnCLgC4xRJIXYiRWqIQbFohM8VBbjWaNM3YAjdF4ZA7B46rELrhCaRaXCcO3VKcZw7A3MFqIJnQWEypVRTlOlS-e5SL0oGmQNA3STUMTzusGL3O2jZ9VT9FCtRaxZPe715K-YVgZoWL2FjbhmAwoEU0QJa6i3CE1w3AnIubDJrQWdpWV504lSRDiiQTFF86Cv41E3uQ5c09Hf25xDBuIwMQ8g7IFjdnk1ZzAmnqbPU0nbVi9-cjbbkV_Anr97BA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90Kvritzg_i_jgS7Vt2iR9HLIxce5JYW-hzQcKMmXOgf-9d1lXpiAi-Nb2LiHkcs3vwuV3AOdW5CLhGQsjmyUUoJiwKAsbOu4ixwtmM-Z8sQnR78vBIJ-_CzPlh6gP3Mgz_P-aHJwOpOe8PInSOMSIZXCJe5bAsH0p5Yjf6VbJTb8-ZyECucjXtq31K4YfSuj51seXzWnxkVIjGy_oal_g5zyI9btQZ-M_xr8J6xUGDVrTRbMFC3a4DSttz1_9sQNRaxjULBImoCQwLwl81Ry6vh64WUoXKgajXXjotO-vu2FVWCHUaSyj0PCSgCBxlOcls9IxYQQXruCmlMIhpsss8eTFGIwVOhOWRTLXIjbOoGXTnO1BY_gytPsQCF1iF0KjNE_LjOEbNzxnGPlG1kjZhMvZjCpdsY5T8YtnNYs-aBoUTYPy09CEi7rB65Rw42fVMzRRrUVE2d1WT9E3jCwTVMwncRMOyYIKAQWx4mpKH9JjjHgSIj9swtHMsKpy3jdFEkR5MkPxlTfhbyNRd-02808Hf25xCqvd-7ue6t30bw9hDQGZnCZUHkFjPHq3x7CsJ-Ont9GJX9ifBbLvDw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60PvDiW6zPIB68RJNssrs5Fm1R1OJBobcl2QcK0kqtgv_emW0aqiAieEsys8sys5OZWWa_ATi2IhcJz1gY2SyhBMWERVnY0HEXOV4wmzHnm02Iblf2evn0XZgxPkR94EaW4f_XZOD2xbgpK0-iNA4xY-mdos8SmLbPpRwdIN0querW5ywEIBf53rY1f4XwQwU93-b44pxmH6k0sjFAU_sSfk4Hsd4LdVb-Y_2rsFzFoEFrvGnWYMb212Gh7fGrPzYgavWDGkXCBFQE5imB75pD19cDNynpQsZguAkPnfb9-WVYNVYIdRrLKDS8pECQMMrzklnpmDCCC1dwU0rhMKbLLOHkxZiMFToTlkUy1yI2zqBm05xtQaM_6NttCIQucQqhkZqnZcbwjRueM8x8I2ukbMLpRKJKV6jj1PziWU2yDxKDIjEoL4YmnNQDXsaAGz-zHqGKai4Cyr5s3Sj6hpllgoz5e9yEXdKgwoCCUHE1lQ_pEWY8CYEfNmFvolhVGe-rIgpGeTJD8plX4W8rUbftNvNPO38ecQiLdxcddXPVvd6FJYzH5Liecg8ao-Gb3Yd5_T56eh0e-H39CYtK7oE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+phenology+modelling+framework+in+r&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Hufkens%2C+Koen&rft.au=Basler%2C+David&rft.au=Milliman%2C+Tom&rft.au=Melaas%2C+Eli+K.&rft.date=2018-05-01&rft.pub=Wiley-Blackwell&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=9&rft.issue=5&rft_id=info:doi/10.1111%2F2041-210X.12970&rft.externalDocID=1420342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon