Rank Minimization for Snapshot Compressive Imaging

Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 41; číslo 12; s. 2990 - 3006
Hlavní autori: Liu, Yang, Yuan, Xin, Suo, Jinli, Brady, David J., Dai, Qionghai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.
AbstractList Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.
Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.
Author Brady, David J.
Yuan, Xin
Suo, Jinli
Liu, Yang
Dai, Qionghai
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-5787-0934
  surname: Liu
  fullname: Liu, Yang
  email: y-liu16@mails.tsinghua.edu.cn
  organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-8311-7524
  surname: Yuan
  fullname: Yuan, Xin
  email: xyuan@bell-labs.com
  organization: Nokia Bell Labs, Murray Hill, NJ, USA
– sequence: 3
  givenname: Jinli
  orcidid: 0000-0002-3426-1634
  surname: Suo
  fullname: Suo, Jinli
  email: jlsuo@tsinghua.edu.cn
  organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China
– sequence: 4
  givenname: David J.
  orcidid: 0000-0001-5655-2478
  surname: Brady
  fullname: Brady, David J.
  email: david.brady@duke.edu
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
– sequence: 5
  givenname: Qionghai
  orcidid: 0000-0001-7043-3061
  surname: Dai
  fullname: Dai, Qionghai
  email: qhdai@tsinghua.edu.cn
  organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30295611$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC0EgrbwB0BCkVhYUnznxLFHVPFRCQTiY7acYIOhsYudIsGvJ9DCwMB0y3t3pzck6z54Q8gu0DEAlUd318eX0zFSEGMUFStFtUYGCJzmEiWukwEFjrkQKLbIMKVnSqEoKdskW4yiLDnAgOCN9i_ZpfOudR-6c8FnNsTs1ut5egpdNgntPJqU3JvJpq1-dP5xm2xYPUtmZzVH5P705G5ynl9cnU0nxxd5U0DV5dZyYaVuuG1oI6WpmObG1hVnFu2D7N-utcC6RsG4EYWVAAKkrmsoONPMsBE5XO6dx_C6MKlTrUuNmc20N2GRFAJUUBaArEcP_qDPYRF9_51CBv2psugDjcj-ilrUrXlQ8-haHd_VT40eEEugiSGlaKxqXPcdpYvazRRQ9RVefYdXX-HVKnyv4h_1Z_u_0t5ScsaYX0EUAkqJ7BOR_Yyy
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TGRS_2024_3398299
crossref_primary_10_1109_TIP_2021_3086049
crossref_primary_10_3390_rs16234601
crossref_primary_10_1016_j_knosys_2025_114060
crossref_primary_10_1007_s11263_023_01777_y
crossref_primary_10_1016_j_sigpro_2022_108464
crossref_primary_10_1063_5_0195203
crossref_primary_10_1109_TCI_2023_3244396
crossref_primary_10_1109_TPAMI_2020_3027563
crossref_primary_10_1109_TGRS_2024_3410272
crossref_primary_10_3390_s22030822
crossref_primary_10_1109_TCI_2023_3237175
crossref_primary_10_1109_TCI_2023_3241551
crossref_primary_10_1109_TNNLS_2024_3400809
crossref_primary_10_3390_rs16244759
crossref_primary_10_1109_JSTSP_2022_3179806
crossref_primary_10_1002_anie_202209378
crossref_primary_10_1007_s12596_022_00893_1
crossref_primary_10_1016_j_optcom_2023_129618
crossref_primary_10_1016_j_sigpro_2024_109660
crossref_primary_10_1145_3608479
crossref_primary_10_1109_TIP_2025_3597775
crossref_primary_10_1109_TIP_2025_3579208
crossref_primary_10_1109_ACCESS_2025_3538499
crossref_primary_10_1109_TCI_2020_2979373
crossref_primary_10_1109_TPAMI_2021_3059911
crossref_primary_10_1109_TIP_2020_3023629
crossref_primary_10_1007_s11263_021_01481_9
crossref_primary_10_1016_j_cviu_2024_104204
crossref_primary_10_1371_journal_pone_0271441
crossref_primary_10_1109_TNNLS_2023_3294262
crossref_primary_10_1109_TIP_2025_3583951
crossref_primary_10_1515_nanoph_2021_0636
crossref_primary_10_1109_JSTARS_2021_3076793
crossref_primary_10_1364_PRJ_422179
crossref_primary_10_1109_TCI_2025_3564776
crossref_primary_10_1364_PRJ_461064
crossref_primary_10_3390_rs14174184
crossref_primary_10_1109_TCI_2024_3477262
crossref_primary_10_1364_PRJ_435256
crossref_primary_10_1016_j_cviu_2024_104214
crossref_primary_10_1109_JSTARS_2022_3229761
crossref_primary_10_1109_TNNLS_2022_3217198
crossref_primary_10_1073_pnas_2004176118
crossref_primary_10_1007_s10489_023_04668_4
crossref_primary_10_1109_TPAMI_2023_3265749
crossref_primary_10_1049_ipr2_70024
crossref_primary_10_1364_OE_553135
crossref_primary_10_1364_PRJ_458231
crossref_primary_10_3390_s22249793
crossref_primary_10_1007_s11042_023_16636_8
crossref_primary_10_1016_j_optlastec_2025_113268
crossref_primary_10_1007_s00371_024_03700_z
crossref_primary_10_1186_s43074_022_00065_1
crossref_primary_10_1016_j_jfranklin_2025_107635
crossref_primary_10_1109_TCI_2024_3359914
crossref_primary_10_1109_JSTARS_2022_3192484
crossref_primary_10_1109_MSP_2020_3023869
crossref_primary_10_1109_TIP_2025_3556520
crossref_primary_10_1109_LGRS_2022_3164085
crossref_primary_10_1109_TCI_2023_3346301
crossref_primary_10_1109_TIP_2020_2994411
crossref_primary_10_1016_j_sigpro_2022_108707
crossref_primary_10_1109_JSTARS_2025_3580668
crossref_primary_10_1016_j_optlastec_2022_108467
crossref_primary_10_1515_nanoph_2023_0867
crossref_primary_10_1016_j_optcom_2024_131114
crossref_primary_10_1109_JSTARS_2024_3398201
crossref_primary_10_1109_TGRS_2023_3257125
crossref_primary_10_1016_j_optlastec_2025_113254
crossref_primary_10_1016_j_optlaseng_2022_107274
crossref_primary_10_1109_TCSVT_2022_3164241
crossref_primary_10_1109_TCI_2024_3463478
crossref_primary_10_1109_JSTARS_2025_3576179
crossref_primary_10_1109_TIP_2024_3354127
crossref_primary_10_1016_j_neucom_2025_130250
crossref_primary_10_1109_ACCESS_2024_3522978
crossref_primary_10_3390_s25051334
crossref_primary_10_1016_j_optcom_2025_131642
crossref_primary_10_1109_TCI_2024_3458421
crossref_primary_10_1088_1361_6463_acc7b4
crossref_primary_10_1109_TMM_2020_2967646
crossref_primary_10_1109_TPAMI_2024_3464875
crossref_primary_10_1109_TIP_2022_3176220
crossref_primary_10_1109_JPROC_2023_3338272
crossref_primary_10_1109_TCI_2023_3314969
crossref_primary_10_1016_j_optlaseng_2023_107541
crossref_primary_10_1109_TPAMI_2025_3543842
crossref_primary_10_1364_AO_510414
crossref_primary_10_1109_TGRS_2023_3347220
crossref_primary_10_1016_j_asoc_2024_111420
crossref_primary_10_1109_TIM_2025_3551465
crossref_primary_10_3390_rs13040741
crossref_primary_10_1109_OJSP_2025_3571675
crossref_primary_10_1016_j_jfranklin_2025_107545
crossref_primary_10_1109_TCI_2024_3446230
crossref_primary_10_1049_ipr2_12545
crossref_primary_10_3390_s25113286
crossref_primary_10_1016_j_knosys_2024_111659
crossref_primary_10_1016_j_optlaseng_2024_108030
crossref_primary_10_1109_TIP_2024_3374093
crossref_primary_10_1109_TCSVT_2024_3388461
crossref_primary_10_1109_JAS_2024_124362
crossref_primary_10_1109_TPAMI_2024_3395804
crossref_primary_10_1109_TGRS_2023_3335228
crossref_primary_10_3390_info15120773
crossref_primary_10_1109_JSTARS_2021_3136217
crossref_primary_10_1364_OPTCON_566842
crossref_primary_10_1109_TPAMI_2024_3496788
crossref_primary_10_1007_s00371_022_02585_0
crossref_primary_10_1109_TGRS_2020_2993541
crossref_primary_10_1080_01431161_2023_2295836
crossref_primary_10_1109_TCSVT_2024_3399764
crossref_primary_10_1016_j_neunet_2024_106250
crossref_primary_10_1016_j_optlastec_2025_113338
crossref_primary_10_3390_s24196184
crossref_primary_10_1016_j_optlastec_2025_113219
crossref_primary_10_3788_gzxb20255406_0630001
crossref_primary_10_1038_s41598_023_39117_2
crossref_primary_10_1088_1361_6560_ad8c98
crossref_primary_10_1016_j_neucom_2025_131422
crossref_primary_10_1109_TIP_2021_3101916
crossref_primary_10_3390_e25040649
crossref_primary_10_1109_TGRS_2023_3281543
crossref_primary_10_1109_TIP_2024_3360902
crossref_primary_10_1002_lpor_202400646
crossref_primary_10_1016_j_patcog_2025_111734
crossref_primary_10_1109_JSTARS_2024_3447729
crossref_primary_10_1016_j_neunet_2025_108020
crossref_primary_10_1109_TCI_2024_3430478
crossref_primary_10_1002_ange_202209378
crossref_primary_10_1109_TGRS_2024_3406711
crossref_primary_10_1007_s11263_021_01532_1
crossref_primary_10_1109_TCSVT_2024_3409421
crossref_primary_10_1364_OL_555245
crossref_primary_10_1109_TCI_2024_3468615
crossref_primary_10_1016_j_patcog_2025_112022
crossref_primary_10_1016_j_jfranklin_2023_01_041
crossref_primary_10_1109_TGRS_2023_3254505
crossref_primary_10_1016_j_chip_2023_100045
crossref_primary_10_1109_TII_2023_3329674
crossref_primary_10_3390_rs16122071
crossref_primary_10_1109_TIP_2023_3242589
crossref_primary_10_1109_TGRS_2024_3370107
crossref_primary_10_3390_app12052734
crossref_primary_10_1109_TMM_2023_3304450
crossref_primary_10_1364_PRJ_411745
crossref_primary_10_1038_s41467_021_26701_1
crossref_primary_10_3390_s24227362
crossref_primary_10_1109_TPAMI_2023_3265103
crossref_primary_10_1109_JSTARS_2024_3359321
crossref_primary_10_1109_TIP_2020_2989550
crossref_primary_10_1007_s11263_024_02236_y
crossref_primary_10_1109_TGRS_2021_3068405
crossref_primary_10_1109_TCSVT_2025_3543569
crossref_primary_10_1016_j_optcom_2023_130010
crossref_primary_10_3390_app13105922
crossref_primary_10_1016_j_engappai_2024_109099
crossref_primary_10_1109_TPAMI_2022_3225382
crossref_primary_10_1109_TIP_2020_3021291
crossref_primary_10_1109_TCI_2023_3304472
crossref_primary_10_1007_s11433_021_1789_6
crossref_primary_10_1364_AO_555186
crossref_primary_10_1364_AO_531671
crossref_primary_10_1016_j_optlaseng_2024_108754
crossref_primary_10_1016_j_inffus_2025_103366
crossref_primary_10_1016_j_optlastec_2023_110424
crossref_primary_10_1038_s41467_023_40739_3
crossref_primary_10_1016_j_neucom_2022_01_057
crossref_primary_10_1016_j_sigpro_2023_109358
crossref_primary_10_1016_j_sigpro_2023_109236
crossref_primary_10_1109_TIP_2021_3108913
crossref_primary_10_1364_OL_555833
crossref_primary_10_1016_j_sigpro_2024_109513
crossref_primary_10_1109_TIP_2023_3315141
crossref_primary_10_1016_j_compag_2025_110562
crossref_primary_10_1109_ACCESS_2018_2879849
crossref_primary_10_1109_TIP_2025_3533198
crossref_primary_10_1109_TPAMI_2021_3099035
crossref_primary_10_1016_j_nima_2021_165023
crossref_primary_10_1109_TCI_2023_3248943
crossref_primary_10_1109_TPAMI_2022_3161934
crossref_primary_10_1016_j_optlaseng_2022_107443
crossref_primary_10_1002_adma_202313357
crossref_primary_10_1109_TGRS_2021_3100393
crossref_primary_10_3390_a15060176
crossref_primary_10_1016_j_imavis_2023_104794
crossref_primary_10_1109_TIT_2019_2940666
crossref_primary_10_1364_AO_483993
crossref_primary_10_1016_j_optlastec_2025_113757
crossref_primary_10_1109_TIP_2025_3560430
crossref_primary_10_3389_fpls_2022_849606
crossref_primary_10_1109_TNNLS_2023_3266998
crossref_primary_10_1016_j_optlastec_2025_113639
crossref_primary_10_1007_s11263_023_01844_4
crossref_primary_10_1109_TCI_2022_3153227
crossref_primary_10_1109_TGRS_2023_3330196
crossref_primary_10_3390_app132312795
crossref_primary_10_1007_s11263_024_02101_y
crossref_primary_10_1016_j_inffus_2024_102408
crossref_primary_10_1016_j_optlaseng_2024_108544
crossref_primary_10_1016_j_inffus_2024_102528
crossref_primary_10_1016_j_optlaseng_2022_107413
crossref_primary_10_1016_j_apm_2024_115645
crossref_primary_10_1109_TCI_2020_2980159
crossref_primary_10_1364_PRJ_555010
crossref_primary_10_1109_TIM_2025_3593593
crossref_primary_10_1063_5_0127056
Cites_doi 10.1109/TIP.2014.2344294
10.1109/MSP.2017.2717489
10.1109/ICCV.2013.34
10.1109/TPAMI.2016.2621050
10.1137/090771806
10.1561/2200000016
10.1109/TIT.2005.862083
10.1109/TIP.2012.2222899
10.1109/CVPR.2010.5539849
10.1002/cpa.20124
10.1364/OE.23.011912
10.1364/OPTICA.2.000822
10.1109/MSP.2016.2582378
10.1109/ICASSP.2015.7178578
10.1016/j.dsp.2017.09.010
10.1364/OE.15.014013
10.1109/TIP.2014.2329449
10.1109/TIT.2016.2556683
10.1364/AOP.7.000756
10.1038/nature14005
10.1109/CVPR.2014.424
10.1109/TPAMI.2011.282
10.1109/TIP.2003.819861
10.1073/pnas.0909892106
10.1007/s10208-009-9045-5
10.1137/070703983
10.1109/CVPR.2016.55
10.1109/TIT.2006.871582
10.1137/130936658
10.1109/CVPR.2011.5995542
10.1364/OE.26.001962
10.1137/140998779
10.1364/OPTICA.5.000127
10.1109/MSP.2007.914730
10.1109/TPAMI.2018.2817496
10.1109/ICASSP.2015.7178244
10.1109/TIP.2014.2323127
10.1364/OE.21.010526
10.1109/TIP.2014.2365720
10.1364/AO.47.000B44
10.1109/ICCV.2011.6126254
10.1145/1970392.1970395
10.1007/s11263-016-0930-5
10.1364/OE.24.022836
10.1109/TIP.2017.2662206
10.1145/2661229.2661262
10.1007/s11263-007-0052-1
10.1109/JSTSP.2015.2411575
10.1364/OL.40.004054
10.1364/OE.17.006368
10.1145/2461912.2461914
10.1016/j.acha.2015.03.003
10.1364/OE.25.018182
10.1109/ICIP.2016.7532817
10.1007/s00041-008-9045-x
10.1137/080738970
10.1109/TIP.2016.2599290
10.1109/ICME.2017.8019334
10.1109/CVPR.2014.366
10.1109/TIP.2012.2199324
10.1109/ISIT.2018.8437878
10.1109/JSEN.2016.2609201
10.1364/AO.49.006824
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2873587
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 3006
ExternalDocumentID 30295611
10_1109_TPAMI_2018_2873587
8481592
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61327902; 61722110; 61627804; 61631009
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-ff68f9ac6fc0c99e73a6efb763f2fd9201ba82bb2836e84f911819abb1463a3e3
IEDL.DBID RIE
ISICitedReferencesCount 350
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498677600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Oct 01 12:31:28 EDT 2025
Mon Jun 30 05:57:59 EDT 2025
Wed Feb 19 02:31:27 EST 2025
Tue Nov 18 22:12:50 EST 2025
Sat Nov 29 05:15:58 EST 2025
Wed Aug 27 02:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-ff68f9ac6fc0c99e73a6efb763f2fd9201ba82bb2836e84f911819abb1463a3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5787-0934
0000-0002-8311-7524
0000-0002-3426-1634
0000-0001-7043-3061
0000-0001-5655-2478
PMID 30295611
PQID 2312015487
PQPubID 85458
PageCount 17
ParticipantIDs proquest_journals_2312015487
ieee_primary_8481592
pubmed_primary_30295611
crossref_citationtrail_10_1109_TPAMI_2018_2873587
crossref_primary_10_1109_TPAMI_2018_2873587
proquest_miscellaneous_2117154123
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
goodfellow (ref61) 2014; 27
ref59
ref15
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
lin (ref33) 2014; 33
ref46
ref48
buades (ref45) 2006
ref47
ref42
ref44
ref43
xu (ref31) 2016
ref49
ref8
ref7
adelson (ref41) 1991
ref9
ref4
ref3
ref6
marwah (ref32) 2013; 32
donoho (ref56) 2009; 106
gao (ref14) 2014; 516
ref5
ref40
(ref57) 2015
ref35
ref34
ref37
ref36
ref30
ref2
ref1
ref39
ref38
liu (ref26) 2010
ref71
ref70
ref72
ref68
ref24
ref67
ref23
yang (ref64) 2016; 29
ref69
ref25
ref20
ref63
ref66
ref22
ref65
ref21
(ref58) 2017
ref28
ref27
ref29
ref60
ref62
References_xml – start-page: 663
  year: 2010
  ident: ref26
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref19
  doi: 10.1109/TIP.2014.2344294
– ident: ref67
  doi: 10.1109/MSP.2017.2717489
– ident: ref54
  doi: 10.1109/ICCV.2013.34
– ident: ref39
  doi: 10.1109/TPAMI.2016.2621050
– ident: ref62
  doi: 10.1137/090771806
– ident: ref27
  doi: 10.1561/2200000016
– year: 2016
  ident: ref31
  article-title: CSVideoNet: A recurrent convolutional neural network for compressive sensing video reconstruction
  publication-title: arXiv 1612 05203 [cs CV]
– ident: ref2
  doi: 10.1109/TIT.2005.862083
– ident: ref38
  doi: 10.1109/TIT.2005.862083
– ident: ref43
  doi: 10.1109/TIP.2012.2222899
– ident: ref22
  doi: 10.1109/CVPR.2010.5539849
– ident: ref37
  doi: 10.1002/cpa.20124
– ident: ref69
  doi: 10.1364/OE.23.011912
– ident: ref68
  doi: 10.1364/OPTICA.2.000822
– ident: ref13
  doi: 10.1109/MSP.2016.2582378
– ident: ref71
  doi: 10.1109/ICASSP.2015.7178578
– volume: 29
  start-page: 10
  year: 2016
  ident: ref64
  article-title: Deep ADMM-Net for compressive sensing MRI
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref30
  doi: 10.1016/j.dsp.2017.09.010
– ident: ref9
  doi: 10.1364/OE.15.014013
– ident: ref29
  doi: 10.1109/TIP.2014.2329449
– ident: ref21
  doi: 10.1109/TIT.2016.2556683
– ident: ref34
  doi: 10.1364/AOP.7.000756
– year: 2015
  ident: ref57
  article-title: Runner data
– volume: 516
  start-page: 74
  year: 2014
  ident: ref14
  article-title: Single-shot compressed ultrafast photography at one hundred billion frames per second
  publication-title: Nature
  doi: 10.1038/nature14005
– ident: ref6
  doi: 10.1109/CVPR.2014.424
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref61
  article-title: Generative adversarial nets
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref47
  doi: 10.1109/TPAMI.2011.282
– ident: ref59
  doi: 10.1109/TIP.2003.819861
– volume: 106
  start-page: 18 914
  year: 2009
  ident: ref56
  article-title: Message-passing algorithms for compressed sensing
  publication-title: Proc Natl Acad Sci United States America
  doi: 10.1073/pnas.0909892106
– ident: ref49
  doi: 10.1007/s10208-009-9045-5
– ident: ref60
  doi: 10.1137/070703983
– ident: ref63
  doi: 10.1109/CVPR.2016.55
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– ident: ref55
  doi: 10.1137/130936658
– ident: ref4
  doi: 10.1109/CVPR.2011.5995542
– ident: ref65
  doi: 10.1364/OE.26.001962
– ident: ref70
  doi: 10.1137/140998779
– ident: ref36
  doi: 10.1364/OPTICA.5.000127
– ident: ref15
  doi: 10.1109/MSP.2007.914730
– ident: ref40
  doi: 10.1109/TPAMI.2018.2817496
– ident: ref72
  doi: 10.1109/ICASSP.2015.7178244
– ident: ref53
  doi: 10.1109/TIP.2014.2323127
– ident: ref5
  doi: 10.1364/OE.21.010526
– ident: ref20
  doi: 10.1109/TIP.2014.2365720
– ident: ref10
  doi: 10.1364/AO.47.000B44
– start-page: 3
  year: 1991
  ident: ref41
  publication-title: The plenoptic function and the elements of early vision
– ident: ref3
  doi: 10.1109/ICCV.2011.6126254
– ident: ref48
  doi: 10.1145/1970392.1970395
– ident: ref25
  doi: 10.1007/s11263-016-0930-5
– ident: ref7
  doi: 10.1364/OE.24.022836
– start-page: 60
  year: 2006
  ident: ref45
  article-title: A non-local algorithm for image denoising
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref66
  doi: 10.1109/TIP.2017.2662206
– volume: 33
  year: 2014
  ident: ref33
  article-title: Spatial-spectral encoded compressive hyperspectral imaging
  publication-title: ACM Trans Graph
  doi: 10.1145/2661229.2661262
– ident: ref46
  doi: 10.1007/s11263-007-0052-1
– ident: ref12
  doi: 10.1109/JSTSP.2015.2411575
– ident: ref35
  doi: 10.1364/OL.40.004054
– ident: ref11
  doi: 10.1364/OE.17.006368
– volume: 32
  year: 2013
  ident: ref32
  article-title: Compressive light field photography using overcomplete dictionaries and optimized projections
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461914
– ident: ref44
  doi: 10.1016/j.acha.2015.03.003
– ident: ref8
  doi: 10.1364/OE.25.018182
– ident: ref17
  doi: 10.1109/ICIP.2016.7532817
– ident: ref51
  doi: 10.1007/s00041-008-9045-x
– ident: ref23
  doi: 10.1137/080738970
– ident: ref50
  doi: 10.1109/TIP.2016.2599290
– ident: ref52
  doi: 10.1109/ICME.2017.8019334
– ident: ref24
  doi: 10.1109/CVPR.2014.366
– ident: ref28
  doi: 10.1109/TIP.2012.2199324
– year: 2017
  ident: ref58
  article-title: Drop data
– ident: ref16
  doi: 10.1109/ISIT.2018.8437878
– ident: ref18
  doi: 10.1109/JSEN.2016.2609201
– ident: ref42
  doi: 10.1364/AO.49.006824
SSID ssj0014503
Score 2.7069113
Snippet Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2990
SubjectTerms Algorithms
coded aperture
coded aperture compressive temporal imaging (CACTI)
coded aperture snapshot spectral imaging (CASSI)
Compressive sensing
computational imaging
Computer simulation
hyperspectral images
Hyperspectral imaging
Image coding
image processing
Image reconstruction
low rank
Minimization
nuclear norm
Optimization
rank minimization
Self-similarity
Sensors
Video compression
video processing
Workload
Title Rank Minimization for Snapshot Compressive Imaging
URI https://ieeexplore.ieee.org/document/8481592
https://www.ncbi.nlm.nih.gov/pubmed/30295611
https://www.proquest.com/docview/2312015487
https://www.proquest.com/docview/2117154123
Volume 41
WOSCitedRecordID wos000498677600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WxYMeXN_WFxW8abVN2jQ5iijuYRfxAXsrSZvgonbF3fX3O0kfKKjgrdBJW-aRzHQeH8CxKUgRhdoELCnCIFaUBJInJFCKF0lopEp5BTaRDod8NBK3HThte2G01q74TJ_ZS5fLLyb53P4qO7ej3xOBG-5CmrKqV6vNGMSJQ0FGDwYtHMOIpkEmFOcPtxeDvq3i4mcYH9CEW-Q9GhLb0xl9O48cwMrvvqY7c657__vaVVipfUv_olKGNejoch16DW6DX5vxOix_GUK4AeROls_-YFyOX-ueTB8dWf--lG_Tp8nMt-tdseyH9vuvDtRoEx6vrx4ub4IaSSHI4yidBcYwboTMmcnDXAidUsm0Ubi3GGIKgaxRkhOl0NdgmsdG2HZUIZXCfZRKqukWdMtJqXfAp8SC-iU5Y8Zg6CIUI8SwmHEZhVwk1IOo4WeW12PGLdrFS-bCjVBkThyZFUdWi8ODk3bNWzVk40_qDcvslrLmswf7jdiy2g6nGXqvpIrKPDhqb6MF2bSILPVkjjRRlCIJHuEebFfibp_daMnuz-_cgyVi8YBteUu8D93Z-1wfwGL-MRtP3w9RTUf80KnpJ8qB3xg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hWqnl0OVRSii0QeqtDTh27NhHhIpYlV0hupW4RXZiixUli9jH72fsPESlUqm3SBnH0YzHnvE8PoAvrqJVSqxLBK9IkhlGEy05TYyRFSdOm1w2YBP5eCxvbtTVGnzra2GstSH5zB77xxDLr2bl0l-VnfjW71zhhvuKZxklTbVWHzPIeMBBRhsGdRwdia5EhqiTydXpaOjzuOQxegiMS4-9xwj1VZ3pHydSgFh52doMp8754P_-dxPetdZlfNoshy1Ys_U2DDrkhrhV5G3YeNaGcAfota7v4tG0nt63VZkxmrLxz1o_zG9ni9iPD-myKxsP7wOs0Xv4df59cnaRtFgKSZml-SJxTkindClcSUqlbM60sM7g7uKoqxSyxmhJjUFrQ1iZOeULUpU2BndSppllu7Bez2q7BzGjHtaPl0I4h86LMoJSJzIhdUqk4iyCtONnUbaNxj3exe8iOBxEFUEchRdH0Yojgq_9mIemzcY_qXc8s3vKls8RHHRiK1pNnBdov9LGL4vgqH-NOuQDI7q2syXSpGmOJHiIR_ChEXf_7W6V7P99zs_w5mIyuiwuh-MfH-EtTqWaZJcDWF88Lu0hvC5Xi-n88VNYrE9NreF3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank+Minimization+for+Snapshot+Compressive+Imaging&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Yang&rft.au=Yuan%2C+Xin&rft.au=Suo%2C+Jinli&rft.au=Brady%2C+David+J&rft.date=2019-12-01&rft.eissn=1939-3539&rft.volume=41&rft.issue=12&rft.spage=2990&rft_id=info:doi/10.1109%2FTPAMI.2018.2873587&rft_id=info%3Apmid%2F30295611&rft.externalDocID=30295611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon