Rank Minimization for Snapshot Compressive Imaging
Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 41; číslo 12; s. 2990 - 3006 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications. |
|---|---|
| AbstractList | Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications. Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications. This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications. |
| Author | Brady, David J. Yuan, Xin Suo, Jinli Liu, Yang Dai, Qionghai |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-5787-0934 surname: Liu fullname: Liu, Yang email: y-liu16@mails.tsinghua.edu.cn organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China – sequence: 2 givenname: Xin orcidid: 0000-0002-8311-7524 surname: Yuan fullname: Yuan, Xin email: xyuan@bell-labs.com organization: Nokia Bell Labs, Murray Hill, NJ, USA – sequence: 3 givenname: Jinli orcidid: 0000-0002-3426-1634 surname: Suo fullname: Suo, Jinli email: jlsuo@tsinghua.edu.cn organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China – sequence: 4 givenname: David J. orcidid: 0000-0001-5655-2478 surname: Brady fullname: Brady, David J. email: david.brady@duke.edu organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA – sequence: 5 givenname: Qionghai orcidid: 0000-0001-7043-3061 surname: Dai fullname: Dai, Qionghai email: qhdai@tsinghua.edu.cn organization: Department of Automation and Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30295611$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQQC0EgrbwB0BCkVhYUnznxLFHVPFRCQTiY7acYIOhsYudIsGvJ9DCwMB0y3t3pzck6z54Q8gu0DEAlUd318eX0zFSEGMUFStFtUYGCJzmEiWukwEFjrkQKLbIMKVnSqEoKdskW4yiLDnAgOCN9i_ZpfOudR-6c8FnNsTs1ut5egpdNgntPJqU3JvJpq1-dP5xm2xYPUtmZzVH5P705G5ynl9cnU0nxxd5U0DV5dZyYaVuuG1oI6WpmObG1hVnFu2D7N-utcC6RsG4EYWVAAKkrmsoONPMsBE5XO6dx_C6MKlTrUuNmc20N2GRFAJUUBaArEcP_qDPYRF9_51CBv2psugDjcj-ilrUrXlQ8-haHd_VT40eEEugiSGlaKxqXPcdpYvazRRQ9RVefYdXX-HVKnyv4h_1Z_u_0t5ScsaYX0EUAkqJ7BOR_Yyy |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3398299 crossref_primary_10_1109_TIP_2021_3086049 crossref_primary_10_3390_rs16234601 crossref_primary_10_1016_j_knosys_2025_114060 crossref_primary_10_1007_s11263_023_01777_y crossref_primary_10_1016_j_sigpro_2022_108464 crossref_primary_10_1063_5_0195203 crossref_primary_10_1109_TCI_2023_3244396 crossref_primary_10_1109_TPAMI_2020_3027563 crossref_primary_10_1109_TGRS_2024_3410272 crossref_primary_10_3390_s22030822 crossref_primary_10_1109_TCI_2023_3237175 crossref_primary_10_1109_TCI_2023_3241551 crossref_primary_10_1109_TNNLS_2024_3400809 crossref_primary_10_3390_rs16244759 crossref_primary_10_1109_JSTSP_2022_3179806 crossref_primary_10_1002_anie_202209378 crossref_primary_10_1007_s12596_022_00893_1 crossref_primary_10_1016_j_optcom_2023_129618 crossref_primary_10_1016_j_sigpro_2024_109660 crossref_primary_10_1145_3608479 crossref_primary_10_1109_TIP_2025_3597775 crossref_primary_10_1109_TIP_2025_3579208 crossref_primary_10_1109_ACCESS_2025_3538499 crossref_primary_10_1109_TCI_2020_2979373 crossref_primary_10_1109_TPAMI_2021_3059911 crossref_primary_10_1109_TIP_2020_3023629 crossref_primary_10_1007_s11263_021_01481_9 crossref_primary_10_1016_j_cviu_2024_104204 crossref_primary_10_1371_journal_pone_0271441 crossref_primary_10_1109_TNNLS_2023_3294262 crossref_primary_10_1109_TIP_2025_3583951 crossref_primary_10_1515_nanoph_2021_0636 crossref_primary_10_1109_JSTARS_2021_3076793 crossref_primary_10_1364_PRJ_422179 crossref_primary_10_1109_TCI_2025_3564776 crossref_primary_10_1364_PRJ_461064 crossref_primary_10_3390_rs14174184 crossref_primary_10_1109_TCI_2024_3477262 crossref_primary_10_1364_PRJ_435256 crossref_primary_10_1016_j_cviu_2024_104214 crossref_primary_10_1109_JSTARS_2022_3229761 crossref_primary_10_1109_TNNLS_2022_3217198 crossref_primary_10_1073_pnas_2004176118 crossref_primary_10_1007_s10489_023_04668_4 crossref_primary_10_1109_TPAMI_2023_3265749 crossref_primary_10_1049_ipr2_70024 crossref_primary_10_1364_OE_553135 crossref_primary_10_1364_PRJ_458231 crossref_primary_10_3390_s22249793 crossref_primary_10_1007_s11042_023_16636_8 crossref_primary_10_1016_j_optlastec_2025_113268 crossref_primary_10_1007_s00371_024_03700_z crossref_primary_10_1186_s43074_022_00065_1 crossref_primary_10_1016_j_jfranklin_2025_107635 crossref_primary_10_1109_TCI_2024_3359914 crossref_primary_10_1109_JSTARS_2022_3192484 crossref_primary_10_1109_MSP_2020_3023869 crossref_primary_10_1109_TIP_2025_3556520 crossref_primary_10_1109_LGRS_2022_3164085 crossref_primary_10_1109_TCI_2023_3346301 crossref_primary_10_1109_TIP_2020_2994411 crossref_primary_10_1016_j_sigpro_2022_108707 crossref_primary_10_1109_JSTARS_2025_3580668 crossref_primary_10_1016_j_optlastec_2022_108467 crossref_primary_10_1515_nanoph_2023_0867 crossref_primary_10_1016_j_optcom_2024_131114 crossref_primary_10_1109_JSTARS_2024_3398201 crossref_primary_10_1109_TGRS_2023_3257125 crossref_primary_10_1016_j_optlastec_2025_113254 crossref_primary_10_1016_j_optlaseng_2022_107274 crossref_primary_10_1109_TCSVT_2022_3164241 crossref_primary_10_1109_TCI_2024_3463478 crossref_primary_10_1109_JSTARS_2025_3576179 crossref_primary_10_1109_TIP_2024_3354127 crossref_primary_10_1016_j_neucom_2025_130250 crossref_primary_10_1109_ACCESS_2024_3522978 crossref_primary_10_3390_s25051334 crossref_primary_10_1016_j_optcom_2025_131642 crossref_primary_10_1109_TCI_2024_3458421 crossref_primary_10_1088_1361_6463_acc7b4 crossref_primary_10_1109_TMM_2020_2967646 crossref_primary_10_1109_TPAMI_2024_3464875 crossref_primary_10_1109_TIP_2022_3176220 crossref_primary_10_1109_JPROC_2023_3338272 crossref_primary_10_1109_TCI_2023_3314969 crossref_primary_10_1016_j_optlaseng_2023_107541 crossref_primary_10_1109_TPAMI_2025_3543842 crossref_primary_10_1364_AO_510414 crossref_primary_10_1109_TGRS_2023_3347220 crossref_primary_10_1016_j_asoc_2024_111420 crossref_primary_10_1109_TIM_2025_3551465 crossref_primary_10_3390_rs13040741 crossref_primary_10_1109_OJSP_2025_3571675 crossref_primary_10_1016_j_jfranklin_2025_107545 crossref_primary_10_1109_TCI_2024_3446230 crossref_primary_10_1049_ipr2_12545 crossref_primary_10_3390_s25113286 crossref_primary_10_1016_j_knosys_2024_111659 crossref_primary_10_1016_j_optlaseng_2024_108030 crossref_primary_10_1109_TIP_2024_3374093 crossref_primary_10_1109_TCSVT_2024_3388461 crossref_primary_10_1109_JAS_2024_124362 crossref_primary_10_1109_TPAMI_2024_3395804 crossref_primary_10_1109_TGRS_2023_3335228 crossref_primary_10_3390_info15120773 crossref_primary_10_1109_JSTARS_2021_3136217 crossref_primary_10_1364_OPTCON_566842 crossref_primary_10_1109_TPAMI_2024_3496788 crossref_primary_10_1007_s00371_022_02585_0 crossref_primary_10_1109_TGRS_2020_2993541 crossref_primary_10_1080_01431161_2023_2295836 crossref_primary_10_1109_TCSVT_2024_3399764 crossref_primary_10_1016_j_neunet_2024_106250 crossref_primary_10_1016_j_optlastec_2025_113338 crossref_primary_10_3390_s24196184 crossref_primary_10_1016_j_optlastec_2025_113219 crossref_primary_10_3788_gzxb20255406_0630001 crossref_primary_10_1038_s41598_023_39117_2 crossref_primary_10_1088_1361_6560_ad8c98 crossref_primary_10_1016_j_neucom_2025_131422 crossref_primary_10_1109_TIP_2021_3101916 crossref_primary_10_3390_e25040649 crossref_primary_10_1109_TGRS_2023_3281543 crossref_primary_10_1109_TIP_2024_3360902 crossref_primary_10_1002_lpor_202400646 crossref_primary_10_1016_j_patcog_2025_111734 crossref_primary_10_1109_JSTARS_2024_3447729 crossref_primary_10_1016_j_neunet_2025_108020 crossref_primary_10_1109_TCI_2024_3430478 crossref_primary_10_1002_ange_202209378 crossref_primary_10_1109_TGRS_2024_3406711 crossref_primary_10_1007_s11263_021_01532_1 crossref_primary_10_1109_TCSVT_2024_3409421 crossref_primary_10_1364_OL_555245 crossref_primary_10_1109_TCI_2024_3468615 crossref_primary_10_1016_j_patcog_2025_112022 crossref_primary_10_1016_j_jfranklin_2023_01_041 crossref_primary_10_1109_TGRS_2023_3254505 crossref_primary_10_1016_j_chip_2023_100045 crossref_primary_10_1109_TII_2023_3329674 crossref_primary_10_3390_rs16122071 crossref_primary_10_1109_TIP_2023_3242589 crossref_primary_10_1109_TGRS_2024_3370107 crossref_primary_10_3390_app12052734 crossref_primary_10_1109_TMM_2023_3304450 crossref_primary_10_1364_PRJ_411745 crossref_primary_10_1038_s41467_021_26701_1 crossref_primary_10_3390_s24227362 crossref_primary_10_1109_TPAMI_2023_3265103 crossref_primary_10_1109_JSTARS_2024_3359321 crossref_primary_10_1109_TIP_2020_2989550 crossref_primary_10_1007_s11263_024_02236_y crossref_primary_10_1109_TGRS_2021_3068405 crossref_primary_10_1109_TCSVT_2025_3543569 crossref_primary_10_1016_j_optcom_2023_130010 crossref_primary_10_3390_app13105922 crossref_primary_10_1016_j_engappai_2024_109099 crossref_primary_10_1109_TPAMI_2022_3225382 crossref_primary_10_1109_TIP_2020_3021291 crossref_primary_10_1109_TCI_2023_3304472 crossref_primary_10_1007_s11433_021_1789_6 crossref_primary_10_1364_AO_555186 crossref_primary_10_1364_AO_531671 crossref_primary_10_1016_j_optlaseng_2024_108754 crossref_primary_10_1016_j_inffus_2025_103366 crossref_primary_10_1016_j_optlastec_2023_110424 crossref_primary_10_1038_s41467_023_40739_3 crossref_primary_10_1016_j_neucom_2022_01_057 crossref_primary_10_1016_j_sigpro_2023_109358 crossref_primary_10_1016_j_sigpro_2023_109236 crossref_primary_10_1109_TIP_2021_3108913 crossref_primary_10_1364_OL_555833 crossref_primary_10_1016_j_sigpro_2024_109513 crossref_primary_10_1109_TIP_2023_3315141 crossref_primary_10_1016_j_compag_2025_110562 crossref_primary_10_1109_ACCESS_2018_2879849 crossref_primary_10_1109_TIP_2025_3533198 crossref_primary_10_1109_TPAMI_2021_3099035 crossref_primary_10_1016_j_nima_2021_165023 crossref_primary_10_1109_TCI_2023_3248943 crossref_primary_10_1109_TPAMI_2022_3161934 crossref_primary_10_1016_j_optlaseng_2022_107443 crossref_primary_10_1002_adma_202313357 crossref_primary_10_1109_TGRS_2021_3100393 crossref_primary_10_3390_a15060176 crossref_primary_10_1016_j_imavis_2023_104794 crossref_primary_10_1109_TIT_2019_2940666 crossref_primary_10_1364_AO_483993 crossref_primary_10_1016_j_optlastec_2025_113757 crossref_primary_10_1109_TIP_2025_3560430 crossref_primary_10_3389_fpls_2022_849606 crossref_primary_10_1109_TNNLS_2023_3266998 crossref_primary_10_1016_j_optlastec_2025_113639 crossref_primary_10_1007_s11263_023_01844_4 crossref_primary_10_1109_TCI_2022_3153227 crossref_primary_10_1109_TGRS_2023_3330196 crossref_primary_10_3390_app132312795 crossref_primary_10_1007_s11263_024_02101_y crossref_primary_10_1016_j_inffus_2024_102408 crossref_primary_10_1016_j_optlaseng_2024_108544 crossref_primary_10_1016_j_inffus_2024_102528 crossref_primary_10_1016_j_optlaseng_2022_107413 crossref_primary_10_1016_j_apm_2024_115645 crossref_primary_10_1109_TCI_2020_2980159 crossref_primary_10_1364_PRJ_555010 crossref_primary_10_1109_TIM_2025_3593593 crossref_primary_10_1063_5_0127056 |
| Cites_doi | 10.1109/TIP.2014.2344294 10.1109/MSP.2017.2717489 10.1109/ICCV.2013.34 10.1109/TPAMI.2016.2621050 10.1137/090771806 10.1561/2200000016 10.1109/TIT.2005.862083 10.1109/TIP.2012.2222899 10.1109/CVPR.2010.5539849 10.1002/cpa.20124 10.1364/OE.23.011912 10.1364/OPTICA.2.000822 10.1109/MSP.2016.2582378 10.1109/ICASSP.2015.7178578 10.1016/j.dsp.2017.09.010 10.1364/OE.15.014013 10.1109/TIP.2014.2329449 10.1109/TIT.2016.2556683 10.1364/AOP.7.000756 10.1038/nature14005 10.1109/CVPR.2014.424 10.1109/TPAMI.2011.282 10.1109/TIP.2003.819861 10.1073/pnas.0909892106 10.1007/s10208-009-9045-5 10.1137/070703983 10.1109/CVPR.2016.55 10.1109/TIT.2006.871582 10.1137/130936658 10.1109/CVPR.2011.5995542 10.1364/OE.26.001962 10.1137/140998779 10.1364/OPTICA.5.000127 10.1109/MSP.2007.914730 10.1109/TPAMI.2018.2817496 10.1109/ICASSP.2015.7178244 10.1109/TIP.2014.2323127 10.1364/OE.21.010526 10.1109/TIP.2014.2365720 10.1364/AO.47.000B44 10.1109/ICCV.2011.6126254 10.1145/1970392.1970395 10.1007/s11263-016-0930-5 10.1364/OE.24.022836 10.1109/TIP.2017.2662206 10.1145/2661229.2661262 10.1007/s11263-007-0052-1 10.1109/JSTSP.2015.2411575 10.1364/OL.40.004054 10.1364/OE.17.006368 10.1145/2461912.2461914 10.1016/j.acha.2015.03.003 10.1364/OE.25.018182 10.1109/ICIP.2016.7532817 10.1007/s00041-008-9045-x 10.1137/080738970 10.1109/TIP.2016.2599290 10.1109/ICME.2017.8019334 10.1109/CVPR.2014.366 10.1109/TIP.2012.2199324 10.1109/ISIT.2018.8437878 10.1109/JSEN.2016.2609201 10.1364/AO.49.006824 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2018.2873587 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 3006 |
| ExternalDocumentID | 30295611 10_1109_TPAMI_2018_2873587 8481592 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61327902; 61722110; 61627804; 61631009 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c417t-ff68f9ac6fc0c99e73a6efb763f2fd9201ba82bb2836e84f911819abb1463a3e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 350 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498677600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Wed Oct 01 12:31:28 EDT 2025 Mon Jun 30 05:57:59 EDT 2025 Wed Feb 19 02:31:27 EST 2025 Tue Nov 18 22:12:50 EST 2025 Sat Nov 29 05:15:58 EST 2025 Wed Aug 27 02:43:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-ff68f9ac6fc0c99e73a6efb763f2fd9201ba82bb2836e84f911819abb1463a3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5787-0934 0000-0002-8311-7524 0000-0002-3426-1634 0000-0001-7043-3061 0000-0001-5655-2478 |
| PMID | 30295611 |
| PQID | 2312015487 |
| PQPubID | 85458 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2312015487 ieee_primary_8481592 pubmed_primary_30295611 crossref_citationtrail_10_1109_TPAMI_2018_2873587 crossref_primary_10_1109_TPAMI_2018_2873587 proquest_miscellaneous_2117154123 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 goodfellow (ref61) 2014; 27 ref59 ref15 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 lin (ref33) 2014; 33 ref46 ref48 buades (ref45) 2006 ref47 ref42 ref44 ref43 xu (ref31) 2016 ref49 ref8 ref7 adelson (ref41) 1991 ref9 ref4 ref3 ref6 marwah (ref32) 2013; 32 donoho (ref56) 2009; 106 gao (ref14) 2014; 516 ref5 ref40 (ref57) 2015 ref35 ref34 ref37 ref36 ref30 ref2 ref1 ref39 ref38 liu (ref26) 2010 ref71 ref70 ref72 ref68 ref24 ref67 ref23 yang (ref64) 2016; 29 ref69 ref25 ref20 ref63 ref66 ref22 ref65 ref21 (ref58) 2017 ref28 ref27 ref29 ref60 ref62 |
| References_xml | – start-page: 663 year: 2010 ident: ref26 article-title: Robust subspace segmentation by low-rank representation publication-title: Proc 27th Int Conf Mach Learn – ident: ref19 doi: 10.1109/TIP.2014.2344294 – ident: ref67 doi: 10.1109/MSP.2017.2717489 – ident: ref54 doi: 10.1109/ICCV.2013.34 – ident: ref39 doi: 10.1109/TPAMI.2016.2621050 – ident: ref62 doi: 10.1137/090771806 – ident: ref27 doi: 10.1561/2200000016 – year: 2016 ident: ref31 article-title: CSVideoNet: A recurrent convolutional neural network for compressive sensing video reconstruction publication-title: arXiv 1612 05203 [cs CV] – ident: ref2 doi: 10.1109/TIT.2005.862083 – ident: ref38 doi: 10.1109/TIT.2005.862083 – ident: ref43 doi: 10.1109/TIP.2012.2222899 – ident: ref22 doi: 10.1109/CVPR.2010.5539849 – ident: ref37 doi: 10.1002/cpa.20124 – ident: ref69 doi: 10.1364/OE.23.011912 – ident: ref68 doi: 10.1364/OPTICA.2.000822 – ident: ref13 doi: 10.1109/MSP.2016.2582378 – ident: ref71 doi: 10.1109/ICASSP.2015.7178578 – volume: 29 start-page: 10 year: 2016 ident: ref64 article-title: Deep ADMM-Net for compressive sensing MRI publication-title: Proc Advances Neural Inf Process Syst – ident: ref30 doi: 10.1016/j.dsp.2017.09.010 – ident: ref9 doi: 10.1364/OE.15.014013 – ident: ref29 doi: 10.1109/TIP.2014.2329449 – ident: ref21 doi: 10.1109/TIT.2016.2556683 – ident: ref34 doi: 10.1364/AOP.7.000756 – year: 2015 ident: ref57 article-title: Runner data – volume: 516 start-page: 74 year: 2014 ident: ref14 article-title: Single-shot compressed ultrafast photography at one hundred billion frames per second publication-title: Nature doi: 10.1038/nature14005 – ident: ref6 doi: 10.1109/CVPR.2014.424 – volume: 27 start-page: 2672 year: 2014 ident: ref61 article-title: Generative adversarial nets publication-title: Proc Advances Neural Inf Process Syst – ident: ref47 doi: 10.1109/TPAMI.2011.282 – ident: ref59 doi: 10.1109/TIP.2003.819861 – volume: 106 start-page: 18 914 year: 2009 ident: ref56 article-title: Message-passing algorithms for compressed sensing publication-title: Proc Natl Acad Sci United States America doi: 10.1073/pnas.0909892106 – ident: ref49 doi: 10.1007/s10208-009-9045-5 – ident: ref60 doi: 10.1137/070703983 – ident: ref63 doi: 10.1109/CVPR.2016.55 – ident: ref1 doi: 10.1109/TIT.2006.871582 – ident: ref55 doi: 10.1137/130936658 – ident: ref4 doi: 10.1109/CVPR.2011.5995542 – ident: ref65 doi: 10.1364/OE.26.001962 – ident: ref70 doi: 10.1137/140998779 – ident: ref36 doi: 10.1364/OPTICA.5.000127 – ident: ref15 doi: 10.1109/MSP.2007.914730 – ident: ref40 doi: 10.1109/TPAMI.2018.2817496 – ident: ref72 doi: 10.1109/ICASSP.2015.7178244 – ident: ref53 doi: 10.1109/TIP.2014.2323127 – ident: ref5 doi: 10.1364/OE.21.010526 – ident: ref20 doi: 10.1109/TIP.2014.2365720 – ident: ref10 doi: 10.1364/AO.47.000B44 – start-page: 3 year: 1991 ident: ref41 publication-title: The plenoptic function and the elements of early vision – ident: ref3 doi: 10.1109/ICCV.2011.6126254 – ident: ref48 doi: 10.1145/1970392.1970395 – ident: ref25 doi: 10.1007/s11263-016-0930-5 – ident: ref7 doi: 10.1364/OE.24.022836 – start-page: 60 year: 2006 ident: ref45 article-title: A non-local algorithm for image denoising publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref66 doi: 10.1109/TIP.2017.2662206 – volume: 33 year: 2014 ident: ref33 article-title: Spatial-spectral encoded compressive hyperspectral imaging publication-title: ACM Trans Graph doi: 10.1145/2661229.2661262 – ident: ref46 doi: 10.1007/s11263-007-0052-1 – ident: ref12 doi: 10.1109/JSTSP.2015.2411575 – ident: ref35 doi: 10.1364/OL.40.004054 – ident: ref11 doi: 10.1364/OE.17.006368 – volume: 32 year: 2013 ident: ref32 article-title: Compressive light field photography using overcomplete dictionaries and optimized projections publication-title: ACM Trans Graph doi: 10.1145/2461912.2461914 – ident: ref44 doi: 10.1016/j.acha.2015.03.003 – ident: ref8 doi: 10.1364/OE.25.018182 – ident: ref17 doi: 10.1109/ICIP.2016.7532817 – ident: ref51 doi: 10.1007/s00041-008-9045-x – ident: ref23 doi: 10.1137/080738970 – ident: ref50 doi: 10.1109/TIP.2016.2599290 – ident: ref52 doi: 10.1109/ICME.2017.8019334 – ident: ref24 doi: 10.1109/CVPR.2014.366 – ident: ref28 doi: 10.1109/TIP.2012.2199324 – year: 2017 ident: ref58 article-title: Drop data – ident: ref16 doi: 10.1109/ISIT.2018.8437878 – ident: ref18 doi: 10.1109/JSEN.2016.2609201 – ident: ref42 doi: 10.1364/AO.49.006824 |
| SSID | ssj0014503 |
| Score | 2.7069113 |
| Snippet | Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2990 |
| SubjectTerms | Algorithms coded aperture coded aperture compressive temporal imaging (CACTI) coded aperture snapshot spectral imaging (CASSI) Compressive sensing computational imaging Computer simulation hyperspectral images Hyperspectral imaging Image coding image processing Image reconstruction low rank Minimization nuclear norm Optimization rank minimization Self-similarity Sensors Video compression video processing Workload |
| Title | Rank Minimization for Snapshot Compressive Imaging |
| URI | https://ieeexplore.ieee.org/document/8481592 https://www.ncbi.nlm.nih.gov/pubmed/30295611 https://www.proquest.com/docview/2312015487 https://www.proquest.com/docview/2117154123 |
| Volume | 41 |
| WOSCitedRecordID | wos000498677600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WxYMeXN_WFxW8abVN2jQ5iijuYRfxAXsrSZvgonbF3fX3O0kfKKjgrdBJW-aRzHQeH8CxKUgRhdoELCnCIFaUBJInJFCKF0lopEp5BTaRDod8NBK3HThte2G01q74TJ_ZS5fLLyb53P4qO7ej3xOBG-5CmrKqV6vNGMSJQ0FGDwYtHMOIpkEmFOcPtxeDvq3i4mcYH9CEW-Q9GhLb0xl9O48cwMrvvqY7c657__vaVVipfUv_olKGNejoch16DW6DX5vxOix_GUK4AeROls_-YFyOX-ueTB8dWf--lG_Tp8nMt-tdseyH9vuvDtRoEx6vrx4ub4IaSSHI4yidBcYwboTMmcnDXAidUsm0Ubi3GGIKgaxRkhOl0NdgmsdG2HZUIZXCfZRKqukWdMtJqXfAp8SC-iU5Y8Zg6CIUI8SwmHEZhVwk1IOo4WeW12PGLdrFS-bCjVBkThyZFUdWi8ODk3bNWzVk40_qDcvslrLmswf7jdiy2g6nGXqvpIrKPDhqb6MF2bSILPVkjjRRlCIJHuEebFfibp_daMnuz-_cgyVi8YBteUu8D93Z-1wfwGL-MRtP3w9RTUf80KnpJ8qB3xg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hWqnl0OVRSii0QeqtDTh27NhHhIpYlV0hupW4RXZiixUli9jH72fsPESlUqm3SBnH0YzHnvE8PoAvrqJVSqxLBK9IkhlGEy05TYyRFSdOm1w2YBP5eCxvbtTVGnzra2GstSH5zB77xxDLr2bl0l-VnfjW71zhhvuKZxklTbVWHzPIeMBBRhsGdRwdia5EhqiTydXpaOjzuOQxegiMS4-9xwj1VZ3pHydSgFh52doMp8754P_-dxPetdZlfNoshy1Ys_U2DDrkhrhV5G3YeNaGcAfota7v4tG0nt63VZkxmrLxz1o_zG9ni9iPD-myKxsP7wOs0Xv4df59cnaRtFgKSZml-SJxTkindClcSUqlbM60sM7g7uKoqxSyxmhJjUFrQ1iZOeULUpU2BndSppllu7Bez2q7BzGjHtaPl0I4h86LMoJSJzIhdUqk4iyCtONnUbaNxj3exe8iOBxEFUEchRdH0Yojgq_9mIemzcY_qXc8s3vKls8RHHRiK1pNnBdov9LGL4vgqH-NOuQDI7q2syXSpGmOJHiIR_ChEXf_7W6V7P99zs_w5mIyuiwuh-MfH-EtTqWaZJcDWF88Lu0hvC5Xi-n88VNYrE9NreF3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank+Minimization+for+Snapshot+Compressive+Imaging&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Yang&rft.au=Yuan%2C+Xin&rft.au=Suo%2C+Jinli&rft.au=Brady%2C+David+J&rft.date=2019-12-01&rft.eissn=1939-3539&rft.volume=41&rft.issue=12&rft.spage=2990&rft_id=info:doi/10.1109%2FTPAMI.2018.2873587&rft_id=info%3Apmid%2F30295611&rft.externalDocID=30295611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |