Learning from Weak and Noisy Labels for Semantic Segmentation

A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites suc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 3; pp. 486 - 500
Main Authors: Lu, Zhiwu, Fu, Zhenyong, Xiang, Tao, Han, Peng, Wang, Liwei, Gao, Xin
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L 1 -optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L 1 -optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy.
AbstractList A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L -optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L -optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy.
A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L1-optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L1-optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy.
A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L 1 -optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L 1 -optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy.
Author Peng Han
Zhiwu Lu
Liwei Wang
Xin Gao
Tao Xiang
Zhenyong Fu
Author_xml – sequence: 1
  givenname: Zhiwu
  surname: Lu
  fullname: Lu, Zhiwu
– sequence: 2
  givenname: Zhenyong
  surname: Fu
  fullname: Fu, Zhenyong
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-2530-1059
  surname: Xiang
  fullname: Xiang, Tao
– sequence: 4
  givenname: Peng
  surname: Han
  fullname: Han, Peng
– sequence: 5
  givenname: Liwei
  surname: Wang
  fullname: Wang, Liwei
– sequence: 6
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28113885$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1EBQvlD4BUReLSSxaPHX_k0MMK0YK0LZW6VY-R44yRIbHBzh749812Fw576Mkj-XlnRs-ckMMQAxJyDnQOQOur1c_F97s5oyDnTAgGih2QGQNJy5rV7JDMph9Was30MTnJ-ZFSqATlR-SYaQCutZiRL0s0KfjwULgUh-IPmqfChK74EX1-LZamxT4XLqbiFw4mjN5OxcOAYTSjj-Ej-eBMn_Fs956S319vVte35fL-2931YlnaCtRYOimZrLoOOXBUympuAa1QrXHC1ZJSzirbdugUyE4jKitqgU5QACucbvkp-bzt-5ziyxrz2Aw-W-x7EzCucwNaggTOmZrQyz30Ma5TmLbbUJKruq7kRH3aUet2wK55Tn4w6bV5EzMBbAvYFHNO6N4RoM3GfvPPfrOx3-zsTyG9F7J-K2pMxvf_j15sox4R32ep6V6gFP8LqPGQHg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_media_2021_102214
crossref_primary_10_1109_ACCESS_2019_2905879
crossref_primary_10_1109_TGRS_2018_2823866
crossref_primary_10_1109_TGRS_2018_2848725
crossref_primary_10_1109_TIP_2018_2881928
crossref_primary_10_1109_TMM_2019_2955240
crossref_primary_10_1016_j_neunet_2021_06_012
crossref_primary_10_1016_j_cageo_2021_104843
crossref_primary_10_1016_j_asoc_2024_112138
crossref_primary_10_1145_3480970
crossref_primary_10_1145_3572916
crossref_primary_10_1007_s10994_021_06008_4
crossref_primary_10_1007_s10278_025_01408_7
crossref_primary_10_1109_TPAMI_2020_3047817
crossref_primary_10_1007_s10462_019_09792_7
crossref_primary_10_1109_TGRS_2021_3068280
crossref_primary_10_1109_TNNLS_2018_2792062
crossref_primary_10_1016_j_cmpb_2019_05_010
crossref_primary_10_1109_TIP_2021_3089943
crossref_primary_10_1007_s10707_021_00459_6
crossref_primary_10_3390_rs14071561
crossref_primary_10_1109_ACCESS_2020_2989200
crossref_primary_10_3390_rs12203421
crossref_primary_10_1016_j_bspc_2023_105473
crossref_primary_10_1109_TPAMI_2018_2852750
crossref_primary_10_1016_j_neuroimage_2021_118568
crossref_primary_10_1080_01431161_2021_1973685
crossref_primary_10_1109_TNNLS_2021_3067107
crossref_primary_10_1109_TIP_2019_2936649
crossref_primary_10_1007_s11554_018_0762_3
crossref_primary_10_3390_app122111226
crossref_primary_10_1007_s11042_023_15983_w
crossref_primary_10_1016_j_knosys_2021_106771
crossref_primary_10_3389_fnins_2021_610122
crossref_primary_10_1016_j_neucom_2018_10_061
crossref_primary_10_1016_j_bdr_2021_100272
crossref_primary_10_1109_JSTARS_2020_2994162
crossref_primary_10_3390_rs11232823
crossref_primary_10_1016_j_eswa_2022_117030
crossref_primary_10_1016_j_swevo_2017_11_003
crossref_primary_10_1109_TIP_2018_2836306
crossref_primary_10_1016_j_isprsjprs_2023_01_021
crossref_primary_10_1007_s11042_020_09730_8
crossref_primary_10_1007_s11263_021_01553_w
crossref_primary_10_1007_s00521_021_06378_9
crossref_primary_10_1109_LGRS_2018_2842792
crossref_primary_10_1109_TIP_2018_2877939
crossref_primary_10_1109_TPAMI_2019_2941684
crossref_primary_10_1109_TGRS_2019_2961141
crossref_primary_10_1190_geo2018_0028_1
crossref_primary_10_1016_j_engappai_2020_103708
crossref_primary_10_1016_j_asoc_2018_10_035
crossref_primary_10_3390_rs16122080
crossref_primary_10_1016_j_patcog_2021_108467
crossref_primary_10_3390_math9192498
crossref_primary_10_1109_TGRS_2023_3264232
crossref_primary_10_3390_app13137966
crossref_primary_10_1109_TGRS_2018_2867444
crossref_primary_10_1155_2019_9180391
crossref_primary_10_1109_TMM_2020_2991592
Cites_doi 10.1109/TIP.2007.911828
10.1109/CVPR.2010.5540060
10.1109/CVPR.2012.6247719
10.1109/CVPR.2014.415
10.1137/090777761
10.1007/s11263-012-0574-z
10.1109/CVPR.2007.383098
10.1109/TNNLS.2013.2292894
10.1109/CVPR.2015.7298888
10.1109/CVPR.2015.7299002
10.1007/978-3-319-10599-4_33
10.1109/CVPR.2015.7298965
10.1109/CVPR.2015.7298780
10.5244/C.29.29
10.1109/CVPR.2008.4587503
10.1109/TPAMI.2012.231
10.1145/1631272.1631305
10.1109/ICIP.2012.6467501
10.1007/s11263-010-0344-8
10.1109/CVPR.2012.6247757
10.1109/CVPR.2013.386
10.1109/TPAMI.2008.79
10.1145/3065386
10.1007/s11263-009-0245-x
10.1109/ICCV.2011.6126299
10.1109/TMM.2013.2285526
10.1109/CVPR.2014.53
10.1109/CVPR.2014.81
10.1109/CVPR.2014.408
10.1007/978-3-319-10584-0_28
10.1109/TPAMI.2011.131
10.1109/CVPR.2014.190
10.1007/s11263-011-0449-8
10.1109/CVPR.2013.270
10.1109/CVPR.2014.310
10.1109/TMM.2011.2174780
10.1109/CVPR.2014.119
10.1109/TIP.2006.881969
10.1145/1631272.1631291
10.1109/ICCV.2011.6126219
10.1007/s11263-008-0202-0
10.1109/TPAMI.2015.2456887
10.1109/CVPR.2014.49
10.1109/ICCV.2009.5459248
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2016.2552172
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 500
ExternalDocumentID 28113885
10_1109_TPAMI_2016_2552172
7450177
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: 973 Program of China
  grantid: 2014CB340403; 2015CB352502
– fundername: KAUST
  funderid: 10.13039/501100004052
– fundername: Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China
  grantid: 15XNLQ01
– fundername: European Research Council FP7 Project SUNNY
  grantid: 313243
  funderid: 10.13039/501100000781
– fundername: National Natural Science Foundation of China
  grantid: 61573363; 61573026
  funderid: 10.13039/501100001809
– fundername: IBM Global SUR Award Program
  funderid: 10.13039/100004316
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-f66264dde313e77c83c1ec57baf5f9600324cbdef716d8ee7c595ef5011c5f8b3
IEDL.DBID RIE
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395555100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Sun Sep 28 16:18:21 EDT 2025
Sun Nov 30 04:07:21 EST 2025
Mon Jul 21 05:42:28 EDT 2025
Sat Nov 29 05:15:57 EST 2025
Tue Nov 18 22:18:34 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f66264dde313e77c83c1ec57baf5f9600324cbdef716d8ee7c595ef5011c5f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2530-1059
PMID 28113885
PQID 1866379946
PQPubID 85458
PageCount 15
ParticipantIDs ieee_primary_7450177
crossref_primary_10_1109_TPAMI_2016_2552172
proquest_miscellaneous_1861613327
pubmed_primary_28113885
crossref_citationtrail_10_1109_TPAMI_2016_2552172
proquest_journals_1866379946
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
hariharan (ref37) 0
ref58
ref14
ref53
ref52
ref11
fergus (ref50) 0
ref10
chen (ref38) 2015
ref17
ref16
ref19
lucchi (ref63) 0
ref18
rubinstein (ref66) 0
ladicky (ref5) 0
ref51
gould (ref8) 0
sermanet (ref55) 0
ref48
ref47
ref42
ref44
li (ref33) 2009
ref43
everingham (ref56) 2007
xie (ref59) 0
shotton (ref57) 0
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref36
ref31
ref30
ref32
ref2
zhu (ref1) 2015
lee (ref25) 0
zhu (ref45) 0
zhou (ref46) 0
ref68
ref24
ref67
ref23
ref20
chen (ref26) 0
ref22
ref65
ref21
liu (ref49) 0
zhang (ref15) 0
ref28
ref27
ref29
pathak (ref39) 0
deng (ref54) 0
yao (ref64) 0
ref60
ref62
ref61
yuan (ref41) 0
References_xml – ident: ref23
  doi: 10.1109/TIP.2007.911828
– ident: ref10
  doi: 10.1109/CVPR.2010.5540060
– ident: ref40
  doi: 10.1109/CVPR.2012.6247719
– ident: ref6
  doi: 10.1109/CVPR.2014.415
– ident: ref48
  doi: 10.1137/090777761
– year: 2015
  ident: ref38
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: ICLRE
– ident: ref67
  doi: 10.1007/s11263-012-0574-z
– start-page: 105
  year: 0
  ident: ref26
  article-title: Smoothing proximal gradient method for general structured sparse learning
  publication-title: Proc Conf Annu Conf Uncertainty Artif Intell
– ident: ref9
  doi: 10.1109/CVPR.2007.383098
– year: 0
  ident: ref55
  article-title: OverFeat: Integrated recognition, localization and detection using convolutional networks
  publication-title: ICLRE
– ident: ref44
  doi: 10.1109/TNNLS.2013.2292894
– ident: ref19
  doi: 10.1109/CVPR.2015.7298888
– start-page: 2853
  year: 0
  ident: ref59
  article-title: Semantic graph construction for weakly-supervised image parsing
  publication-title: Proc 28th Nat Conf Artif Intell
– ident: ref18
  doi: 10.1109/CVPR.2015.7299002
– ident: ref7
  doi: 10.1007/978-3-319-10599-4_33
– start-page: 912
  year: 0
  ident: ref45
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc Int Conf Mach Learn
– start-page: 663
  year: 0
  ident: ref49
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc Int Conf Mach Learn
– start-page: 297
  year: 0
  ident: ref37
  article-title: Simultaneous detection and segmentation
  publication-title: Proc 13th Eur Conf Comput Vis
– ident: ref31
  doi: 10.1109/CVPR.2015.7298965
– ident: ref32
  doi: 10.1109/CVPR.2015.7298780
– ident: ref65
  doi: 10.5244/C.29.29
– ident: ref2
  doi: 10.1109/CVPR.2008.4587503
– start-page: 1
  year: 0
  ident: ref57
  article-title: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
  publication-title: Proc 9th Eur Conf Comput Vis
– ident: ref36
  doi: 10.1109/TPAMI.2012.231
– year: 0
  ident: ref39
  article-title: Fully convolutional multi-class multiple instance learning
  publication-title: ICLRE
– ident: ref20
  doi: 10.1145/1631272.1631305
– start-page: 695
  year: 0
  ident: ref41
  article-title: A novel topic-level random walk framework for scene image co-segmentation
  publication-title: Proc 13th Eur Conf Comput Vis
– start-page: 702
  year: 0
  ident: ref64
  article-title: Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref43
  doi: 10.1109/ICIP.2012.6467501
– ident: ref27
  doi: 10.1007/s11263-010-0344-8
– start-page: 400
  year: 0
  ident: ref63
  article-title: Structured image segmentation using kernelized features
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref12
  doi: 10.1109/CVPR.2012.6247757
– ident: ref68
  doi: 10.1109/CVPR.2013.386
– ident: ref24
  doi: 10.1109/TPAMI.2008.79
– ident: ref35
  doi: 10.1145/3065386
– start-page: 1889
  year: 0
  ident: ref15
  article-title: Sparse reconstruction for weakly supervised semantic segmentation
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref61
  doi: 10.1007/s11263-009-0245-x
– start-page: 2036
  year: 2009
  ident: ref33
  article-title: Towards total scene understanding: Classification, annotation and segmentation in an automatic framework.
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref11
  doi: 10.1109/ICCV.2011.6126299
– ident: ref16
  doi: 10.1109/TMM.2013.2285526
– start-page: 632
  year: 0
  ident: ref8
  article-title: Superpixel graph label transfer with learned distance metric
  publication-title: Proc 13th Eur Conf Comput Vis
– ident: ref30
  doi: 10.1109/CVPR.2014.53
– ident: ref53
  doi: 10.1109/CVPR.2014.81
– ident: ref17
  doi: 10.1109/CVPR.2014.408
– ident: ref21
  doi: 10.1007/978-3-319-10584-0_28
– year: 2007
  ident: ref56
  article-title: The PASCAL visual object classes challenge 2007 (VOC2007) Results
– ident: ref58
  doi: 10.1109/TPAMI.2011.131
– start-page: 321
  year: 0
  ident: ref46
  article-title: Learning with local and global consistency
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/CVPR.2014.190
– ident: ref62
  doi: 10.1007/s11263-011-0449-8
– ident: ref29
  doi: 10.1007/s11263-012-0574-z
– ident: ref14
  doi: 10.1109/CVPR.2013.270
– ident: ref52
  doi: 10.1109/CVPR.2014.310
– ident: ref13
  doi: 10.1109/TMM.2011.2174780
– ident: ref34
  doi: 10.1109/CVPR.2014.119
– ident: ref22
  doi: 10.1109/TIP.2006.881969
– ident: ref60
  doi: 10.1145/1631272.1631291
– start-page: 85
  year: 0
  ident: ref66
  article-title: Annotation propagation in large image databases via dense image correspondence
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref28
  doi: 10.1109/ICCV.2011.6126219
– start-page: 248
  year: 0
  ident: ref54
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref3
  doi: 10.1007/s11263-008-0202-0
– year: 2015
  ident: ref1
  article-title: Beyond pixels: A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation
  publication-title: CoRR
– ident: ref47
  doi: 10.1109/TPAMI.2015.2456887
– ident: ref51
  doi: 10.1109/CVPR.2014.49
– start-page: 522
  year: 0
  ident: ref50
  article-title: Semi-supervised learning in gigantic image collections
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 801
  year: 0
  ident: ref25
  article-title: Efficient sparse coding algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/ICCV.2009.5459248
– start-page: 239
  year: 0
  ident: ref5
  article-title: Graph cut based inference with co-occurrence statistics
  publication-title: Proc 11th Eur Conf Comput Vis
SSID ssj0014503
Score 2.5544004
Snippet A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 486
SubjectTerms Algorithms
Computational modeling
Image annotation
Image segmentation
label noise reduction
Labeling
Labels
Machine learning
Noise measurement
Noise reduction
Optimization
Pixels
Semantic segmentation
Semantics
sparse learning
Training
weakly supervised learning
Title Learning from Weak and Noisy Labels for Semantic Segmentation
URI https://ieeexplore.ieee.org/document/7450177
https://www.ncbi.nlm.nih.gov/pubmed/28113885
https://www.proquest.com/docview/1866379946
https://www.proquest.com/docview/1861613327
Volume 39
WOSCitedRecordID wos000395555100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3Bqgc4dFs-2m0pcqXeaCBeO3F86AFVRa3UrpAKYm-RY09WK0oWsbtI_fcdO07EoSBxi2THTjwzmZnY8x7AJ8clcmN4gm6sE-nyKqHMVieVQnIQng5JVoFsQk0mxXSqzzfgc18Lg4jh8Bke-8uwl-8Wdu1_lZ0omZECqU3YVCpva7X6HQNqEi2ON1k4TdIVyKT65OL89NcPf4orP6YA2jMyeQjggnNReArlB_4oEKw8HmsGn3M2fN7TvoKXMbZkp60yvIYNbHZg2PE2sGjGO7D9AIRwF75EiNUZ86Um7ArNNTONY5PFfPmX_TQVeU9GoS37jTckhrmli9lNLFlq9uDy7NvF1-9JJFVIrORqldQ5pTCSPmqCC1TKFsJytJmqTJ3VlM6kFGHZymFNiZQrEJXNdIY1vQq3WV1UYh8GzaLBt8BqYZxVunCUs8ixscZRbpRalLVNHXfVCHi3tKWNiOOe-OJPGTKPVJdBMqWXTBklM4Kj_p7bFm_jyd67ft37nnHJR3DQSbCMJrksPbKfUFrLfAQf-2YyJr9DYhpcrEMfioCFGNMQb1rJ92N3CvPu_3O-h62x9_jheNoBDFZ3a_wAL-z9ar68OySNnRaHQWP_AQcK47k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB1RWqn0UFqgdFtoXam3NhDHzjo-9IAqEKjLCqlblVvk2BO0KmQRu4vE33fsOBGHFolbJDt24pnJzIs98wA-Oy6RG8MTdJlOpBtWCSFbnVQKyUF4OiRZBbIJNR4X5-f6bAW-9rkwiBgOn-Gevwx7-W5ml_5X2b6SOSmQegJPcymztM3W6vcMqFG0lbzJxmmaLkUm1fuTs4PTE3-Oa7hHIbTnZPJFgAvOReFJlO95pECx8v9oM3ido_XHPe8reBmjS3bQqsNrWMFmA9Y75gYWDXkDXtwrQ7gJ32KR1Qvmk03YbzR_mGkcG8-m8zs2MhX5T0bBLfuJVySIqaWLi6uYtNRswa-jw8n34yTSKiRWcrVI6iGBGEmfNcEFKmULYTnaXFWmzmsCNCnFWLZyWBOUcgWisrnOsaZX4Tavi0q8gdVm1uBbYLUwzipdOEItMjPWOEJHqUVZ29RxVw2Ad0tb2lhz3FNfXJYBe6S6DJIpvWTKKJkBfOnvuW4rbjzYe9Ove98zLvkAdjoJltEo56Wv7SeU1nI4gE99M5mT3yMxDc6WoQ_FwEJkNMR2K_l-7E5h3v17zo_w_HhyOipHJ-Mf72Et8_4_HFbbgdXFzRJ34Zm9XUznNx-C3v4FqOnmGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+Weak+and+Noisy+Labels+for+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lu%2C+Zhiwu&rft.au=Fu%2C+Zhenyong&rft.au=Xiang%2C+Tao&rft.au=Han%2C+Peng&rft.date=2017-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=39&rft.issue=3&rft.spage=486&rft_id=info:doi/10.1109%2FTPAMI.2016.2552172&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon