A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis

[Display omitted] •Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters. Hydrogenolysis of biomass-deri...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Vol. 205; pp. 469 - 480
Main Authors: Rajkhowa, Tapas, Marin, Guy B., Thybaut, Joris W.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.05.2017
Elsevier BV
Subjects:
ISSN:0926-3373, 1873-3883
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters. Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513K, hydrogen pressures from 6.5 to 8MPa and space times (W/FG0) from 25 to 340kgsmol−1 resulting in glycerol/PG conversions from 1 to 75mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84kJmol−1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25kJmol−1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions.
AbstractList [Display omitted] •Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters. Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513K, hydrogen pressures from 6.5 to 8MPa and space times (W/FG0) from 25 to 340kgsmol−1 resulting in glycerol/PG conversions from 1 to 75mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84kJmol−1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25kJmol−1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions.
Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513 K, hydrogen pressures from 6.5 to 8 MPa and space times (W/F0G) from 25 to 340 kg s mol-1 resulting in glycerol/PG conversions from 1 to 75 mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84 kJ mol-1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25 kJ mol-1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions.
Author Thybaut, Joris W.
Marin, Guy B.
Rajkhowa, Tapas
Author_xml – sequence: 1
  givenname: Tapas
  surname: Rajkhowa
  fullname: Rajkhowa, Tapas
– sequence: 2
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
– sequence: 3
  givenname: Joris W.
  surname: Thybaut
  fullname: Thybaut, Joris W.
  email: Joris.Thybaut@UGent.be
BookMark eNqFkE1Lw0AQhhepYFv9Bx4WPCfuR5pkPQil-AUFD-p52exO2o1pNt1NC_HXmxJPHvQ0DMzzzswzQ5PGNYDQNSUxJTS9rWLVatUVMRu6mLKYJOwMTWme8YjnOZ-gKREsjTjP-AWahVARQhhn-RS9LbF2u9bDFppgj4A_bQOd1XjnDNS4dB6vDngIV3X_BQbXdn-wBrdbFQBv6l6DdzXe9sa7DTSu7oMNl-i8VHWAq586Rx-PD--r52j9-vSyWq4jndCsiyA3LElybgTjizIXaa5KzlIoiCam4KDLDMCwIk0zVZpCJSmli4UowWgwAILP0c2Y23q3P0DoZOUOvhlWSio4oyLlgg9TyTilvQvBQylbb3fK95ISedInKznqkyd9kjI56Buwu1-Ytp3qrGs6r2z9H3w_wjC8f7TgZdAWmuFu60F30jj7d8A3iLSR7g
CitedBy_id crossref_primary_10_1016_j_mcat_2025_115209
crossref_primary_10_1016_j_jtice_2020_07_011
crossref_primary_10_1016_j_ces_2020_115697
crossref_primary_10_1016_j_jiec_2017_05_040
crossref_primary_10_1039_D1SE00098E
crossref_primary_10_1016_j_eti_2022_102367
crossref_primary_10_1016_j_jtice_2021_03_034
crossref_primary_10_1016_j_mcat_2021_111969
crossref_primary_10_1134_S096554412009008X
crossref_primary_10_1039_D4SE00229F
crossref_primary_10_1016_j_clay_2017_12_005
crossref_primary_10_1007_s11144_017_1267_y
crossref_primary_10_1016_j_jechem_2024_05_032
crossref_primary_10_1002_adsc_201700535
crossref_primary_10_1016_j_apcata_2017_12_006
crossref_primary_10_1002_cjce_24587
crossref_primary_10_3390_reactions3030032
crossref_primary_10_1016_j_renene_2020_05_126
crossref_primary_10_1016_j_apcata_2022_118849
crossref_primary_10_3390_catal13010023
crossref_primary_10_3390_catal8100474
crossref_primary_10_1002_slct_202104257
crossref_primary_10_1016_j_apcatb_2018_03_062
crossref_primary_10_3390_biomass2010003
crossref_primary_10_1016_j_cattod_2019_03_011
crossref_primary_10_1139_cjc_2024_0265
crossref_primary_10_1016_j_cej_2023_141759
crossref_primary_10_1002_cphc_201701202
crossref_primary_10_1016_j_catcom_2020_106134
crossref_primary_10_1016_j_jcat_2021_08_051
crossref_primary_10_1039_C8RE00138C
crossref_primary_10_1002_aic_16724
crossref_primary_10_1016_j_ijhydene_2018_09_119
crossref_primary_10_1016_j_apcata_2018_06_022
crossref_primary_10_1016_j_apcatb_2017_08_030
crossref_primary_10_3390_ma16093551
crossref_primary_10_1016_j_cattod_2025_115383
crossref_primary_10_1007_s11144_017_1163_5
Cites_doi 10.1007/s11144-009-0032-2
10.1023/A:1011928218694
10.1126/science.1159210
10.1016/j.apcata.2011.02.014
10.1016/j.apcatb.2010.04.008
10.1039/c0gc00839g
10.1021/ie030468l
10.1016/0926-860X(95)00002-X
10.2516/ogst:1991024
10.1021/ie100553b
10.1016/j.apcatb.2012.12.044
10.1021/cm8006233
10.1016/j.cattod.2014.02.048
10.1016/S1385-8947(02)00073-6
10.1016/0378-3812(83)80115-0
10.1016/j.apcatb.2009.07.018
10.1093/comjnl/3.3.175
10.1016/j.apcata.2010.08.047
10.1002/aic.690420920
10.1039/c0cy00054j
10.1016/j.catcom.2009.12.009
10.1016/j.tibtech.2015.10.002
10.1016/j.apcata.2008.11.010
10.1016/j.enpol.2005.09.024
10.1016/S0166-9834(00)82732-3
10.1021/ie00098a025
10.1002/anie.200604694
10.1016/j.rser.2012.01.003
10.1016/0304-5102(91)85006-N
10.1126/science.1114736
10.1016/j.jcat.2006.03.023
10.1016/j.jcat.2007.05.008
10.1016/j.cej.2013.06.096
10.1016/S1004-9541(10)60235-2
10.3390/catal5041948
10.1021/ie200541q
10.1016/j.apcata.2004.11.033
10.1016/S1381-1169(00)00386-1
10.1016/0378-3812(91)85038-V
10.1021/cs400486z
10.1016/0021-9517(71)90073-X
10.1002/aic.690210607
10.1016/j.apcata.2008.06.013
10.1137/0915088
10.1016/j.apcata.2009.07.040
10.1002/aic.690320113
10.1137/0111030
10.1016/S0378-3812(97)00204-5
10.1016/j.apcata.2013.10.019
ContentType Journal Article
Copyright 2016 The Author(s)
Copyright Elsevier BV May 15, 2017
Copyright_xml – notice: 2016 The Author(s)
– notice: Copyright Elsevier BV May 15, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2016.12.042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 480
ExternalDocumentID 10_1016_j_apcatb_2016_12_042
S092633731630978X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
XPP
~HD
7SR
7ST
7U5
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c417t-e8d24483d9235f8968af326eb0c0db3ecf7eed2b667afdba4611559fedcedee93
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393931000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-3373
IngestDate Wed Aug 13 06:36:45 EDT 2025
Sat Nov 29 07:12:51 EST 2025
Tue Nov 18 20:29:11 EST 2025
Sat Mar 02 16:00:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Glycerol
Propylene glycol
Kinetics
Copper
Hydrogenolysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-e8d24483d9235f8968af326eb0c0db3ecf7eed2b667afdba4611559fedcedee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1016/j.apcatb.2016.12.042
PQID 1932196393
PQPubID 2045281
PageCount 12
ParticipantIDs proquest_journals_1932196393
crossref_primary_10_1016_j_apcatb_2016_12_042
crossref_citationtrail_10_1016_j_apcatb_2016_12_042
elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_12_042
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Linstrom, Mallard (bib0285) 2001
Gmehling, Li, Fischer (bib0220) 1997; 141
Nakagawa, Tomishige (bib0045) 2011; 1
Mears (bib0200) 1971; 20
Vasiliadou, Eggenhuisen, Munnik, de Jongh, de Jong, Lemonidou (bib0060) 2014; 145
Ng (bib0175) 1986; 32
Vasiliadou, Lemonidou (bib0080) 2013; 231
Thybaut, Saeys, Marin (bib0260) 2002; 90
Fredenslund, Jones, Prausnitz (bib0210) 1975; 21
Berger, Stitt, Marin, Kapteijn, Moulijn (bib0170) 2001; 5
Reboredo, Lidon, Pessoa, Ramalho (bib0030) 2016; 34
Miyazawa, Kusunoki, Kunimori, Tomishige (bib0075) 2006; 240
Brown, Hindmarsh, Petzold (bib0230) 1994; 15
Perry, Green (bib0290) 1998
Kunkes, Simonetti, West, Serrano-Ruiz, Gärtner, Dumesic (bib0010) 2008; 322
Huang, Cui, Kang, Chen, Zhang, Xia (bib0120) 2008; 20
Carberry (bib0190) 1976
Dasari, Kiatsimkul, Sutterlin, Suppes (bib0090) 2005; 281
Marquardt (bib0240) 1963; 11
Atkins, de Paula (bib0270) 2010
Guo, Zhou, Mao, Guo, Zhang (bib0125) 2009; 367
Marin, Yablonsky (bib0265) 2011
Marinoiu, Ionita, Gáspár, Cobzaru, Oprea (bib0105) 2009; 97
Gierman (bib0180) 1988; 43
Navidi, Thybaut, Marin (bib0150) 2014; 469
der Borght, Toch, Galvita, Thybaut, Marin (bib0155) 2015; 5
Sie, Krishna (bib0160) 1998; 14
Yu, Xu, Ma, Chen, Zhao, Miao, Song (bib0100) 2010; 11
Sie (bib0185) 1991; 46
Wassell, Dittmer, CSW, Dittmer (bib0015) 2006; 34
Ragauskas, Williams, Davison, Britovsek, Cairney, Eckert, Frederick, Hallett, Leak, Liotta, Mielenz, Murphy, Templer, Tschaplinski (bib0005) 2006; 311
Sato, Akiyama, Takahashi, Hara, Inui, Yokota (bib0085) 2008; 347
Balaraju, Rekha, Prasad, Devi, Prasad, Lingaiah (bib0110) 2009; 354
Al-Dahhan, Dudukovii, Duduković (bib0165) 1996; 42
Pagliaro, Ciriminna, Kimura, Rossi, Della Pina (bib0035) 2007; 46
Marinas, Bruijnincx, Ftouni, Urbano, Pinel (bib0040) 2015; 239
Lahr, Shanks (bib0135) 2003; 42
van Ryneveld, Mahomed, van Heerden, Green, Friedrich (bib0095) 2011; 13
Bhore, Klein, Bischoff (bib0245) 1990; 29
Atabani, Silitonga, Badruddin, Mahlia, Masjuki, Mekhilef (bib0020) 2012; 16
Dumesic (bib0280) 1993
Wang, Yin, Zhang, Liu (bib0055) 2013; 3
Zhou, Li, Zeng, Hong, Cheng, Yuan (bib0140) 2010; 18
Bera, Thybaut, Marin (bib0275) 2011; 50
Maris, Davis (bib0050) 2007; 249
Vasiliadou, Lemonidou (bib0130) 2011; 396
Madon, Iglesia (bib0205) 2000; 163
Weisz, Prater (bib0195) 1954; 6
Bienholz, Hofmann, Claus (bib0250) 2011; 391
Montassier, Ménézo, Moukolo, Naja, Hoang, Barbier, Boitiaux (bib0070) 1991; 70
Biddy, Scarlata, Kinchin (bib0025) 2016
Torres, Roy, Subramaniam, Chaudhari (bib0145) 2010; 49
Rosenbrock (bib0235) 1960; 3
Holderbaum, Gmehling (bib0215) 1991; 70
Smeds, Murzin, Salmi (bib0255) 1995; 125
Vasiliadou, Heracleous, Vasalos, Lemonidou (bib0065) 2009; 92
Gandarias, Arias, Requies, Güemez, Fierro (bib0115) 2010; 97
Heidemann (bib0225) 1983; 14
Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0060) 2014; 145
Sato (10.1016/j.apcatb.2016.12.042_bib0085) 2008; 347
Nakagawa (10.1016/j.apcatb.2016.12.042_bib0045) 2011; 1
Marinoiu (10.1016/j.apcatb.2016.12.042_bib0105) 2009; 97
Madon (10.1016/j.apcatb.2016.12.042_bib0205) 2000; 163
Marin (10.1016/j.apcatb.2016.12.042_bib0265) 2011
Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0065) 2009; 92
Dumesic (10.1016/j.apcatb.2016.12.042_bib0280) 1993
Holderbaum (10.1016/j.apcatb.2016.12.042_bib0215) 1991; 70
Pagliaro (10.1016/j.apcatb.2016.12.042_bib0035) 2007; 46
Brown (10.1016/j.apcatb.2016.12.042_bib0230) 1994; 15
Ragauskas (10.1016/j.apcatb.2016.12.042_bib0005) 2006; 311
Ng (10.1016/j.apcatb.2016.12.042_bib0175) 1986; 32
Bera (10.1016/j.apcatb.2016.12.042_bib0275) 2011; 50
Atabani (10.1016/j.apcatb.2016.12.042_bib0020) 2012; 16
Yu (10.1016/j.apcatb.2016.12.042_bib0100) 2010; 11
Gandarias (10.1016/j.apcatb.2016.12.042_bib0115) 2010; 97
Rosenbrock (10.1016/j.apcatb.2016.12.042_bib0235) 1960; 3
Biddy (10.1016/j.apcatb.2016.12.042_bib0025) 2016
Gierman (10.1016/j.apcatb.2016.12.042_bib0180) 1988; 43
Weisz (10.1016/j.apcatb.2016.12.042_bib0195) 1954; 6
Gmehling (10.1016/j.apcatb.2016.12.042_bib0220) 1997; 141
Reboredo (10.1016/j.apcatb.2016.12.042_bib0030) 2016; 34
Torres (10.1016/j.apcatb.2016.12.042_bib0145) 2010; 49
Zhou (10.1016/j.apcatb.2016.12.042_bib0140) 2010; 18
Balaraju (10.1016/j.apcatb.2016.12.042_bib0110) 2009; 354
Fredenslund (10.1016/j.apcatb.2016.12.042_bib0210) 1975; 21
Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0080) 2013; 231
der Borght (10.1016/j.apcatb.2016.12.042_bib0155) 2015; 5
Smeds (10.1016/j.apcatb.2016.12.042_bib0255) 1995; 125
Atkins (10.1016/j.apcatb.2016.12.042_bib0270) 2010
Navidi (10.1016/j.apcatb.2016.12.042_bib0150) 2014; 469
Mears (10.1016/j.apcatb.2016.12.042_bib0200) 1971; 20
Lahr (10.1016/j.apcatb.2016.12.042_bib0135) 2003; 42
Sie (10.1016/j.apcatb.2016.12.042_bib0185) 1991; 46
Montassier (10.1016/j.apcatb.2016.12.042_bib0070) 1991; 70
Wang (10.1016/j.apcatb.2016.12.042_bib0055) 2013; 3
Maris (10.1016/j.apcatb.2016.12.042_bib0050) 2007; 249
Kunkes (10.1016/j.apcatb.2016.12.042_bib0010) 2008; 322
Guo (10.1016/j.apcatb.2016.12.042_bib0125) 2009; 367
Bienholz (10.1016/j.apcatb.2016.12.042_bib0250) 2011; 391
Huang (10.1016/j.apcatb.2016.12.042_bib0120) 2008; 20
Al-Dahhan (10.1016/j.apcatb.2016.12.042_bib0165) 1996; 42
Berger (10.1016/j.apcatb.2016.12.042_bib0170) 2001; 5
Bhore (10.1016/j.apcatb.2016.12.042_bib0245) 1990; 29
Wassell (10.1016/j.apcatb.2016.12.042_bib0015) 2006; 34
Sie (10.1016/j.apcatb.2016.12.042_bib0160) 1998; 14
Heidemann (10.1016/j.apcatb.2016.12.042_bib0225) 1983; 14
Thybaut (10.1016/j.apcatb.2016.12.042_bib0260) 2002; 90
Dasari (10.1016/j.apcatb.2016.12.042_bib0090) 2005; 281
Marquardt (10.1016/j.apcatb.2016.12.042_bib0240) 1963; 11
Marinas (10.1016/j.apcatb.2016.12.042_bib0040) 2015; 239
van Ryneveld (10.1016/j.apcatb.2016.12.042_bib0095) 2011; 13
Miyazawa (10.1016/j.apcatb.2016.12.042_bib0075) 2006; 240
Carberry (10.1016/j.apcatb.2016.12.042_bib0190) 1976
Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0130) 2011; 396
Linstrom (10.1016/j.apcatb.2016.12.042_bib0285) 2001
Perry (10.1016/j.apcatb.2016.12.042_bib0290) 1998
References_xml – volume: 145
  start-page: 108
  year: 2014
  end-page: 119
  ident: bib0060
  publication-title: Appl. Catal. B
– volume: 16
  start-page: 2070
  year: 2012
  end-page: 2093
  ident: bib0020
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 1467
  year: 1994
  end-page: 1488
  ident: bib0230
  publication-title: SIAM J. Sci. Comput.
– volume: 18
  start-page: 384
  year: 2010
  end-page: 390
  ident: bib0140
  publication-title: Chin. J. Chem. Eng.
– volume: 13
  start-page: 1819
  year: 2011
  ident: bib0095
  publication-title: Green Chem.
– volume: 125
  start-page: 271
  year: 1995
  end-page: 291
  ident: bib0255
  publication-title: Appl. Catal. A
– volume: 43
  start-page: 277
  year: 1988
  end-page: 286
  ident: bib0180
  publication-title: Appl. Catal.
– volume: 97
  start-page: 315
  year: 2009
  end-page: 320
  ident: bib0105
  publication-title: React. Kinet. Catal. Lett.
– volume: 29
  start-page: 313
  year: 1990
  end-page: 316
  ident: bib0245
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 2112
  year: 2013
  end-page: 2121
  ident: bib0055
  publication-title: ACS Catal.
– volume: 6
  start-page: 60390
  year: 1954
  end-page: 60399
  ident: bib0195
  publication-title: Adv. Catal.
– year: 2016
  ident: bib0025
  article-title: Chemicals from biomass: a market assessment of bioproducts with near-term potential, Technical Report March
– volume: 163
  start-page: 189
  year: 2000
  end-page: 204
  ident: bib0205
  publication-title: J. Mol. Catal. A: Chem.
– volume: 141
  start-page: 113
  year: 1997
  end-page: 127
  ident: bib0220
  publication-title: Fluid Phase Equilib.
– volume: 396
  start-page: 177
  year: 2011
  end-page: 185
  ident: bib0130
  publication-title: Appl. Catal. A
– volume: 5
  start-page: 1948
  year: 2015
  end-page: 1968
  ident: bib0155
  publication-title: Catalysts
– year: 1976
  ident: bib0190
  article-title: Chemical and Catalytic Reaction Engineering
– volume: 20
  start-page: 5090
  year: 2008
  end-page: 5099
  ident: bib0120
  publication-title: Chem. Mater.
– volume: 231
  start-page: 103
  year: 2013
  end-page: 112
  ident: bib0080
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 36
  year: 2001
  end-page: 60
  ident: bib0170
  publication-title: CATTECH
– volume: 347
  start-page: 186
  year: 2008
  end-page: 191
  ident: bib0085
  publication-title: Appl. Catal. A
– volume: 90
  start-page: 117
  year: 2002
  end-page: 129
  ident: bib0260
  publication-title: Chem. Eng. J.
– volume: 469
  start-page: 357
  year: 2014
  end-page: 366
  ident: bib0150
  publication-title: Appl. Catal. A
– volume: 34
  start-page: 3
  year: 2016
  end-page: 6
  ident: bib0030
  publication-title: Trends Biotechnol.
– year: 2001
  ident: bib0285
  article-title: NIST Chemistry WebBook
– year: 2010
  ident: bib0270
  article-title: Atkins’ Physical Chemistry
– volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  ident: bib0235
  publication-title: Comput. J.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib0240
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 32
  start-page: 115
  year: 1986
  end-page: 122
  ident: bib0175
  publication-title: AIChE J.
– volume: 354
  start-page: 82
  year: 2009
  end-page: 87
  ident: bib0110
  publication-title: Appl. Catal. A
– volume: 21
  start-page: 1086
  year: 1975
  end-page: 1099
  ident: bib0210
  publication-title: AIChE J.
– volume: 311
  start-page: 484
  year: 2006
  end-page: 489
  ident: bib0005
  publication-title: Science
– volume: 42
  start-page: 5467
  year: 2003
  end-page: 5472
  ident: bib0135
  publication-title: Ind. Eng. Chem. Res.
– volume: 281
  start-page: 225
  year: 2005
  end-page: 231
  ident: bib0090
  publication-title: Appl. Catal. A
– volume: 97
  start-page: 248
  year: 2010
  end-page: 256
  ident: bib0115
  publication-title: Appl. Catal. B
– volume: 322
  start-page: 417
  year: 2008
  end-page: 421
  ident: bib0010
  publication-title: Science
– year: 2011
  ident: bib0265
  article-title: Kinetics of Chemical Reactions: Decoding Complexity
– volume: 367
  start-page: 93
  year: 2009
  end-page: 98
  ident: bib0125
  publication-title: Appl. Catal. A
– volume: 20
  start-page: 127
  year: 1971
  end-page: 131
  ident: bib0200
  publication-title: J. Catal.
– volume: 14
  start-page: 55
  year: 1983
  end-page: 78
  ident: bib0225
  publication-title: Fluid Phase Equilib.
– volume: 70
  start-page: 65
  year: 1991
  end-page: 84
  ident: bib0070
  publication-title: J. Mol. Catal.
– volume: 14
  year: 1998
  ident: bib0160
  publication-title: Rev. Chem. Eng.
– volume: 239
  start-page: 31
  year: 2015
  end-page: 37
  ident: bib0040
  publication-title: Catal. Today
– volume: 391
  start-page: 153
  year: 2011
  end-page: 157
  ident: bib0250
  publication-title: Appl. Catal. A
– year: 1998
  ident: bib0290
  article-title: Perry's Chemical Engineers’ Handbook
– volume: 46
  start-page: 501
  year: 1991
  end-page: 515
  ident: bib0185
  publication-title: Rev. Inst. Fr. Pt.
– volume: 42
  start-page: 2594
  year: 1996
  end-page: 2606
  ident: bib0165
  publication-title: AIChE J.
– volume: 240
  start-page: 213
  year: 2006
  end-page: 221
  ident: bib0075
  publication-title: J. Catal.
– volume: 70
  start-page: 251
  year: 1991
  end-page: 265
  ident: bib0215
  publication-title: Fluid Phase Equilib.
– volume: 1
  start-page: 179
  year: 2011
  end-page: 190
  ident: bib0045
  publication-title: Catal. Sci. Technol.
– volume: 249
  start-page: 328
  year: 2007
  end-page: 337
  ident: bib0050
  publication-title: J. Catal.
– volume: 92
  start-page: 90
  year: 2009
  end-page: 99
  ident: bib0065
  publication-title: Appl. Catal. B
– volume: 49
  start-page: 10826
  year: 2010
  end-page: 10835
  ident: bib0145
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 493
  year: 2010
  end-page: 497
  ident: bib0100
  publication-title: Catal. Commun.
– year: 1993
  ident: bib0280
  article-title: The Microkinetics of Heterogeneous Catalysis
– volume: 50
  start-page: 12933
  year: 2011
  end-page: 12945
  ident: bib0275
  publication-title: Ind. Eng. Chem. Res.
– volume: 46
  start-page: 4434
  year: 2007
  end-page: 4440
  ident: bib0035
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 3993
  year: 2006
  end-page: 4001
  ident: bib0015
  publication-title: Energy Policy
– volume: 97
  start-page: 315
  year: 2009
  ident: 10.1016/j.apcatb.2016.12.042_bib0105
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1007/s11144-009-0032-2
– volume: 14
  year: 1998
  ident: 10.1016/j.apcatb.2016.12.042_bib0160
  publication-title: Rev. Chem. Eng.
– volume: 5
  start-page: 36
  year: 2001
  ident: 10.1016/j.apcatb.2016.12.042_bib0170
  publication-title: CATTECH
  doi: 10.1023/A:1011928218694
– volume: 322
  start-page: 417
  year: 2008
  ident: 10.1016/j.apcatb.2016.12.042_bib0010
  publication-title: Science
  doi: 10.1126/science.1159210
– volume: 396
  start-page: 177
  year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0130
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2011.02.014
– volume: 97
  start-page: 248
  year: 2010
  ident: 10.1016/j.apcatb.2016.12.042_bib0115
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.04.008
– volume: 13
  start-page: 1819
  year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0095
  publication-title: Green Chem.
  doi: 10.1039/c0gc00839g
– volume: 42
  start-page: 5467
  year: 2003
  ident: 10.1016/j.apcatb.2016.12.042_bib0135
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030468l
– year: 1993
  ident: 10.1016/j.apcatb.2016.12.042_bib0280
– year: 2016
  ident: 10.1016/j.apcatb.2016.12.042_bib0025
– volume: 125
  start-page: 271
  year: 1995
  ident: 10.1016/j.apcatb.2016.12.042_bib0255
  publication-title: Appl. Catal. A
  doi: 10.1016/0926-860X(95)00002-X
– volume: 46
  start-page: 501
  year: 1991
  ident: 10.1016/j.apcatb.2016.12.042_bib0185
  publication-title: Rev. Inst. Fr. Pt.
  doi: 10.2516/ogst:1991024
– volume: 49
  start-page: 10826
  year: 2010
  ident: 10.1016/j.apcatb.2016.12.042_bib0145
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100553b
– volume: 145
  start-page: 108
  year: 2014
  ident: 10.1016/j.apcatb.2016.12.042_bib0060
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.12.044
– volume: 20
  start-page: 5090
  year: 2008
  ident: 10.1016/j.apcatb.2016.12.042_bib0120
  publication-title: Chem. Mater.
  doi: 10.1021/cm8006233
– volume: 239
  start-page: 31
  year: 2015
  ident: 10.1016/j.apcatb.2016.12.042_bib0040
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.02.048
– volume: 90
  start-page: 117
  year: 2002
  ident: 10.1016/j.apcatb.2016.12.042_bib0260
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(02)00073-6
– volume: 14
  start-page: 55
  year: 1983
  ident: 10.1016/j.apcatb.2016.12.042_bib0225
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(83)80115-0
– volume: 92
  start-page: 90
  year: 2009
  ident: 10.1016/j.apcatb.2016.12.042_bib0065
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.07.018
– volume: 3
  start-page: 175
  year: 1960
  ident: 10.1016/j.apcatb.2016.12.042_bib0235
  publication-title: Comput. J.
  doi: 10.1093/comjnl/3.3.175
– volume: 391
  start-page: 153
  year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0250
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2010.08.047
– volume: 42
  start-page: 2594
  year: 1996
  ident: 10.1016/j.apcatb.2016.12.042_bib0165
  publication-title: AIChE J.
  doi: 10.1002/aic.690420920
– volume: 1
  start-page: 179
  year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0045
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c0cy00054j
– volume: 11
  start-page: 493
  year: 2010
  ident: 10.1016/j.apcatb.2016.12.042_bib0100
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2009.12.009
– volume: 34
  start-page: 3
  year: 2016
  ident: 10.1016/j.apcatb.2016.12.042_bib0030
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2015.10.002
– volume: 354
  start-page: 82
  year: 2009
  ident: 10.1016/j.apcatb.2016.12.042_bib0110
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.11.010
– volume: 34
  start-page: 3993
  year: 2006
  ident: 10.1016/j.apcatb.2016.12.042_bib0015
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2005.09.024
– volume: 43
  start-page: 277
  year: 1988
  ident: 10.1016/j.apcatb.2016.12.042_bib0180
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)82732-3
– volume: 6
  start-page: 60390
  year: 1954
  ident: 10.1016/j.apcatb.2016.12.042_bib0195
  publication-title: Adv. Catal.
– volume: 29
  start-page: 313
  year: 1990
  ident: 10.1016/j.apcatb.2016.12.042_bib0245
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00098a025
– volume: 46
  start-page: 4434
  year: 2007
  ident: 10.1016/j.apcatb.2016.12.042_bib0035
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604694
– volume: 16
  start-page: 2070
  year: 2012
  ident: 10.1016/j.apcatb.2016.12.042_bib0020
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.003
– year: 1976
  ident: 10.1016/j.apcatb.2016.12.042_bib0190
– volume: 70
  start-page: 65
  year: 1991
  ident: 10.1016/j.apcatb.2016.12.042_bib0070
  publication-title: J. Mol. Catal.
  doi: 10.1016/0304-5102(91)85006-N
– volume: 311
  start-page: 484
  year: 2006
  ident: 10.1016/j.apcatb.2016.12.042_bib0005
  publication-title: Science
  doi: 10.1126/science.1114736
– volume: 240
  start-page: 213
  year: 2006
  ident: 10.1016/j.apcatb.2016.12.042_bib0075
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.03.023
– volume: 249
  start-page: 328
  year: 2007
  ident: 10.1016/j.apcatb.2016.12.042_bib0050
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.05.008
– volume: 231
  start-page: 103
  year: 2013
  ident: 10.1016/j.apcatb.2016.12.042_bib0080
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.06.096
– volume: 18
  start-page: 384
  year: 2010
  ident: 10.1016/j.apcatb.2016.12.042_bib0140
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(10)60235-2
– year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0265
– volume: 5
  start-page: 1948
  year: 2015
  ident: 10.1016/j.apcatb.2016.12.042_bib0155
  publication-title: Catalysts
  doi: 10.3390/catal5041948
– volume: 50
  start-page: 12933
  year: 2011
  ident: 10.1016/j.apcatb.2016.12.042_bib0275
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200541q
– year: 2010
  ident: 10.1016/j.apcatb.2016.12.042_bib0270
– volume: 281
  start-page: 225
  year: 2005
  ident: 10.1016/j.apcatb.2016.12.042_bib0090
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2004.11.033
– year: 1998
  ident: 10.1016/j.apcatb.2016.12.042_bib0290
– volume: 163
  start-page: 189
  year: 2000
  ident: 10.1016/j.apcatb.2016.12.042_bib0205
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00386-1
– volume: 70
  start-page: 251
  year: 1991
  ident: 10.1016/j.apcatb.2016.12.042_bib0215
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(91)85038-V
– volume: 3
  start-page: 2112
  year: 2013
  ident: 10.1016/j.apcatb.2016.12.042_bib0055
  publication-title: ACS Catal.
  doi: 10.1021/cs400486z
– volume: 20
  start-page: 127
  year: 1971
  ident: 10.1016/j.apcatb.2016.12.042_bib0200
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(71)90073-X
– volume: 21
  start-page: 1086
  year: 1975
  ident: 10.1016/j.apcatb.2016.12.042_bib0210
  publication-title: AIChE J.
  doi: 10.1002/aic.690210607
– volume: 347
  start-page: 186
  year: 2008
  ident: 10.1016/j.apcatb.2016.12.042_bib0085
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.06.013
– volume: 15
  start-page: 1467
  year: 1994
  ident: 10.1016/j.apcatb.2016.12.042_bib0230
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915088
– volume: 367
  start-page: 93
  year: 2009
  ident: 10.1016/j.apcatb.2016.12.042_bib0125
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2009.07.040
– volume: 32
  start-page: 115
  year: 1986
  ident: 10.1016/j.apcatb.2016.12.042_bib0175
  publication-title: AIChE J.
  doi: 10.1002/aic.690320113
– volume: 11
  start-page: 431
  year: 1963
  ident: 10.1016/j.apcatb.2016.12.042_bib0240
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– year: 2001
  ident: 10.1016/j.apcatb.2016.12.042_bib0285
– volume: 141
  start-page: 113
  year: 1997
  ident: 10.1016/j.apcatb.2016.12.042_bib0220
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(97)00204-5
– volume: 469
  start-page: 357
  year: 2014
  ident: 10.1016/j.apcatb.2016.12.042_bib0150
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2013.10.019
SSID ssj0002328
Score 2.4556167
Snippet [Display omitted] •Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model...
Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms 1,3-Propanediol
Activation energy
Adsorption
Biomass
Catalysts
Conversion
Copper
Dehydration
Ethanol
Ethylene
Ethylene glycol
Feeding
Glycerol
Hydrogen storage
Hydrogenation
Hydrogenolysis
Kinetics
Methanol
Propanol
Propylene
Propylene glycol
Reaction kinetics
Reaction products
Selectivity
Side reactions
Surface chemistry
Temperature effects
Title A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis
URI https://dx.doi.org/10.1016/j.apcatb.2016.12.042
https://www.proquest.com/docview/1932196393
Volume 205
WOSCitedRecordID wos000393931000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002328
  issn: 0926-3373
  databaseCode: AIEXJ
  dateStart: 19950211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgl6QBCoaCloD9wsW3HWj_UxjcpLokI0iNxWXnvdJI2ckMSl5sY_Z_blJI1QAYmLFTnxeuXvy8y349kZhF4LzsFpx8QtwPe6ASe-S4uUujTlqciSSCRcN5uIz8_pcJh8arV-2r0w19O4LOnNTTL_r1DDOQBbbp39C7ibQeEEfAbQ4Qiww_GPgO-pNPGFGJnU9CvQkbIqq-p5o7IK-5Wjojb1D1Cb0_G3apw78xG4M-dyWmdCZq6P6nwxk_VbVcWSTQVrZaseAb70nFNlUNc75tIma-NzOrkazb4rgToAt9wI-I-wRFf27m1VO6feOj2l5mmlX4_MwPw4X73NsAS4OlnRNFzHynb2y-igYzdyCdHNSzyhTS4FphCq29lYm9zthBtWNdDdXIyDDnTrpx3br8MQEy-dwxPgMmsvUpFeXb3rVlXtCzkVORPQo3Iry_Ae2u_GYQKGcb_3_mz4oXHnIDmVO7dTt_svVZLg7r1-p29ueXolXwaP0SOz7sA9zZcnqCXKNnrQt-3-2uhgozJlGx1uwYmNB1g-RRc9vEUvbOiFFb0w0Av3K9zQC2t6YUUvbOmFt-n1DH15czbov3NNYw43C_x45QqagyqkJIfVQVjQJKJpAcsAwTtZJ-dEZEUM0qvLoyhOi5ynQeTLt9-FzDjOhUjIIdorZ6V4jrDvg-QlpMiSPA-ymHBOsgI0akQDGDTMjxCxj5Nlpmq9bJ4yZTY9ccI0CEyCwPwuAxCOkNtcNddVW-74fWyRYkZ5akXJgFx3XHligWXGCCyZXBRJz5aQ438e-AV6uP5bnaC91aISL9H97Ho1Xi5eGZL-AkRctzg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+kinetic+model+for+Cu+catalyzed+liquid+phase+glycerol+hydrogenolysis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Rajkhowa%2C+Tapas&rft.au=Marin%2C+Guy+B.&rft.au=Thybaut%2C+Joris+W.&rft.date=2017-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=205&rft.spage=469&rft.epage=480&rft_id=info:doi/10.1016%2Fj.apcatb.2016.12.042&rft.externalDocID=S092633731630978X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon