A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis
[Display omitted] •Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters. Hydrogenolysis of biomass-deri...
Saved in:
| Published in: | Applied catalysis. B, Environmental Vol. 205; pp. 469 - 480 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.05.2017
Elsevier BV |
| Subjects: | |
| ISSN: | 0926-3373, 1873-3883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters.
Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513K, hydrogen pressures from 6.5 to 8MPa and space times (W/FG0) from 25 to 340kgsmol−1 resulting in glycerol/PG conversions from 1 to 75mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84kJmol−1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25kJmol−1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions. |
|---|---|
| AbstractList | [Display omitted]
•Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model construction for glycerol hydrogenolysis.•Experimental observations explained through physically significant parameters.
Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513K, hydrogen pressures from 6.5 to 8MPa and space times (W/FG0) from 25 to 340kgsmol−1 resulting in glycerol/PG conversions from 1 to 75mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84kJmol−1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25kJmol−1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions. Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol, also commonly denoted as propylene glycol (PG). Intrinsic glycerol hydrogenolysis kinetics have been acquired experimentally on a stable, commercial copper-based catalyst in an isothermal trickle-bed reactor at 463–513 K, hydrogen pressures from 6.5 to 8 MPa and space times (W/F0G) from 25 to 340 kg s mol-1 resulting in glycerol/PG conversions from 1 to 75 mol%. The selectivity to PG amounts to at least 90%. For a given conversion, the lowest selectivity is observed at the highest temperature. Glycerol is predominantly dehydrated to acetol which is subsequently converted to PG. Co-feeding reaction products, i.e., PG and water, does not affect the rate of glycerol conversion. Additionally, glycerol can lead to minor side reactions forming products such as 1,3-propanediol, ethylene glycol while PG can degrade to ethanol, methanol and propanol. A comprehensive kinetic model accounting not only for the formation of main reaction products but also of side products was constructed. The activation energy of the rate-determining step for glycerol dehydration towards acetol was estimated at 84 kJ mol-1, exceeding that of the rate-determining step of the consecutive hydrogenation into PG by about 25 kJ mol-1. The high selectivity towards PG is attributed to (1) the relatively lower surface reaction rates for the parallel and the consecutive side reactions and (2) its low affinity for adsorption on the catalyst surface compared to glycerol at the investigated experimental conditions. |
| Author | Thybaut, Joris W. Marin, Guy B. Rajkhowa, Tapas |
| Author_xml | – sequence: 1 givenname: Tapas surname: Rajkhowa fullname: Rajkhowa, Tapas – sequence: 2 givenname: Guy B. surname: Marin fullname: Marin, Guy B. – sequence: 3 givenname: Joris W. surname: Thybaut fullname: Thybaut, Joris W. email: Joris.Thybaut@UGent.be |
| BookMark | eNqFkE1Lw0AQhhepYFv9Bx4WPCfuR5pkPQil-AUFD-p52exO2o1pNt1NC_HXmxJPHvQ0DMzzzswzQ5PGNYDQNSUxJTS9rWLVatUVMRu6mLKYJOwMTWme8YjnOZ-gKREsjTjP-AWahVARQhhn-RS9LbF2u9bDFppgj4A_bQOd1XjnDNS4dB6vDngIV3X_BQbXdn-wBrdbFQBv6l6DdzXe9sa7DTSu7oMNl-i8VHWAq586Rx-PD--r52j9-vSyWq4jndCsiyA3LElybgTjizIXaa5KzlIoiCam4KDLDMCwIk0zVZpCJSmli4UowWgwAILP0c2Y23q3P0DoZOUOvhlWSio4oyLlgg9TyTilvQvBQylbb3fK95ISedInKznqkyd9kjI56Buwu1-Ytp3qrGs6r2z9H3w_wjC8f7TgZdAWmuFu60F30jj7d8A3iLSR7g |
| CitedBy_id | crossref_primary_10_1016_j_mcat_2025_115209 crossref_primary_10_1016_j_jtice_2020_07_011 crossref_primary_10_1016_j_ces_2020_115697 crossref_primary_10_1016_j_jiec_2017_05_040 crossref_primary_10_1039_D1SE00098E crossref_primary_10_1016_j_eti_2022_102367 crossref_primary_10_1016_j_jtice_2021_03_034 crossref_primary_10_1016_j_mcat_2021_111969 crossref_primary_10_1134_S096554412009008X crossref_primary_10_1039_D4SE00229F crossref_primary_10_1016_j_clay_2017_12_005 crossref_primary_10_1007_s11144_017_1267_y crossref_primary_10_1016_j_jechem_2024_05_032 crossref_primary_10_1002_adsc_201700535 crossref_primary_10_1016_j_apcata_2017_12_006 crossref_primary_10_1002_cjce_24587 crossref_primary_10_3390_reactions3030032 crossref_primary_10_1016_j_renene_2020_05_126 crossref_primary_10_1016_j_apcata_2022_118849 crossref_primary_10_3390_catal13010023 crossref_primary_10_3390_catal8100474 crossref_primary_10_1002_slct_202104257 crossref_primary_10_1016_j_apcatb_2018_03_062 crossref_primary_10_3390_biomass2010003 crossref_primary_10_1016_j_cattod_2019_03_011 crossref_primary_10_1139_cjc_2024_0265 crossref_primary_10_1016_j_cej_2023_141759 crossref_primary_10_1002_cphc_201701202 crossref_primary_10_1016_j_catcom_2020_106134 crossref_primary_10_1016_j_jcat_2021_08_051 crossref_primary_10_1039_C8RE00138C crossref_primary_10_1002_aic_16724 crossref_primary_10_1016_j_ijhydene_2018_09_119 crossref_primary_10_1016_j_apcata_2018_06_022 crossref_primary_10_1016_j_apcatb_2017_08_030 crossref_primary_10_3390_ma16093551 crossref_primary_10_1016_j_cattod_2025_115383 crossref_primary_10_1007_s11144_017_1163_5 |
| Cites_doi | 10.1007/s11144-009-0032-2 10.1023/A:1011928218694 10.1126/science.1159210 10.1016/j.apcata.2011.02.014 10.1016/j.apcatb.2010.04.008 10.1039/c0gc00839g 10.1021/ie030468l 10.1016/0926-860X(95)00002-X 10.2516/ogst:1991024 10.1021/ie100553b 10.1016/j.apcatb.2012.12.044 10.1021/cm8006233 10.1016/j.cattod.2014.02.048 10.1016/S1385-8947(02)00073-6 10.1016/0378-3812(83)80115-0 10.1016/j.apcatb.2009.07.018 10.1093/comjnl/3.3.175 10.1016/j.apcata.2010.08.047 10.1002/aic.690420920 10.1039/c0cy00054j 10.1016/j.catcom.2009.12.009 10.1016/j.tibtech.2015.10.002 10.1016/j.apcata.2008.11.010 10.1016/j.enpol.2005.09.024 10.1016/S0166-9834(00)82732-3 10.1021/ie00098a025 10.1002/anie.200604694 10.1016/j.rser.2012.01.003 10.1016/0304-5102(91)85006-N 10.1126/science.1114736 10.1016/j.jcat.2006.03.023 10.1016/j.jcat.2007.05.008 10.1016/j.cej.2013.06.096 10.1016/S1004-9541(10)60235-2 10.3390/catal5041948 10.1021/ie200541q 10.1016/j.apcata.2004.11.033 10.1016/S1381-1169(00)00386-1 10.1016/0378-3812(91)85038-V 10.1021/cs400486z 10.1016/0021-9517(71)90073-X 10.1002/aic.690210607 10.1016/j.apcata.2008.06.013 10.1137/0915088 10.1016/j.apcata.2009.07.040 10.1002/aic.690320113 10.1137/0111030 10.1016/S0378-3812(97)00204-5 10.1016/j.apcata.2013.10.019 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Copyright Elsevier BV May 15, 2017 |
| Copyright_xml | – notice: 2016 The Author(s) – notice: Copyright Elsevier BV May 15, 2017 |
| DBID | 6I. AAFTH AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
| DOI | 10.1016/j.apcatb.2016.12.042 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| EISSN | 1873-3883 |
| EndPage | 480 |
| ExternalDocumentID | 10_1016_j_apcatb_2016_12_042 S092633731630978X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ XPP ~HD 7SR 7ST 7U5 8BQ 8FD AGCQF C1K FR3 JG9 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c417t-e8d24483d9235f8968af326eb0c0db3ecf7eed2b667afdba4611559fedcedee93 |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393931000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Wed Aug 13 06:36:45 EDT 2025 Sat Nov 29 07:12:51 EST 2025 Tue Nov 18 20:29:11 EST 2025 Sat Mar 02 16:00:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Glycerol Propylene glycol Kinetics Copper Hydrogenolysis |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c417t-e8d24483d9235f8968af326eb0c0db3ecf7eed2b667afdba4611559fedcedee93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apcatb.2016.12.042 |
| PQID | 1932196393 |
| PQPubID | 2045281 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1932196393 crossref_primary_10_1016_j_apcatb_2016_12_042 crossref_citationtrail_10_1016_j_apcatb_2016_12_042 elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_12_042 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-15 |
| PublicationDateYYYYMMDD | 2017-05-15 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Linstrom, Mallard (bib0285) 2001 Gmehling, Li, Fischer (bib0220) 1997; 141 Nakagawa, Tomishige (bib0045) 2011; 1 Mears (bib0200) 1971; 20 Vasiliadou, Eggenhuisen, Munnik, de Jongh, de Jong, Lemonidou (bib0060) 2014; 145 Ng (bib0175) 1986; 32 Vasiliadou, Lemonidou (bib0080) 2013; 231 Thybaut, Saeys, Marin (bib0260) 2002; 90 Fredenslund, Jones, Prausnitz (bib0210) 1975; 21 Berger, Stitt, Marin, Kapteijn, Moulijn (bib0170) 2001; 5 Reboredo, Lidon, Pessoa, Ramalho (bib0030) 2016; 34 Miyazawa, Kusunoki, Kunimori, Tomishige (bib0075) 2006; 240 Brown, Hindmarsh, Petzold (bib0230) 1994; 15 Perry, Green (bib0290) 1998 Kunkes, Simonetti, West, Serrano-Ruiz, Gärtner, Dumesic (bib0010) 2008; 322 Huang, Cui, Kang, Chen, Zhang, Xia (bib0120) 2008; 20 Carberry (bib0190) 1976 Dasari, Kiatsimkul, Sutterlin, Suppes (bib0090) 2005; 281 Marquardt (bib0240) 1963; 11 Atkins, de Paula (bib0270) 2010 Guo, Zhou, Mao, Guo, Zhang (bib0125) 2009; 367 Marin, Yablonsky (bib0265) 2011 Marinoiu, Ionita, Gáspár, Cobzaru, Oprea (bib0105) 2009; 97 Gierman (bib0180) 1988; 43 Navidi, Thybaut, Marin (bib0150) 2014; 469 der Borght, Toch, Galvita, Thybaut, Marin (bib0155) 2015; 5 Sie, Krishna (bib0160) 1998; 14 Yu, Xu, Ma, Chen, Zhao, Miao, Song (bib0100) 2010; 11 Sie (bib0185) 1991; 46 Wassell, Dittmer, CSW, Dittmer (bib0015) 2006; 34 Ragauskas, Williams, Davison, Britovsek, Cairney, Eckert, Frederick, Hallett, Leak, Liotta, Mielenz, Murphy, Templer, Tschaplinski (bib0005) 2006; 311 Sato, Akiyama, Takahashi, Hara, Inui, Yokota (bib0085) 2008; 347 Balaraju, Rekha, Prasad, Devi, Prasad, Lingaiah (bib0110) 2009; 354 Al-Dahhan, Dudukovii, Duduković (bib0165) 1996; 42 Pagliaro, Ciriminna, Kimura, Rossi, Della Pina (bib0035) 2007; 46 Marinas, Bruijnincx, Ftouni, Urbano, Pinel (bib0040) 2015; 239 Lahr, Shanks (bib0135) 2003; 42 van Ryneveld, Mahomed, van Heerden, Green, Friedrich (bib0095) 2011; 13 Bhore, Klein, Bischoff (bib0245) 1990; 29 Atabani, Silitonga, Badruddin, Mahlia, Masjuki, Mekhilef (bib0020) 2012; 16 Dumesic (bib0280) 1993 Wang, Yin, Zhang, Liu (bib0055) 2013; 3 Zhou, Li, Zeng, Hong, Cheng, Yuan (bib0140) 2010; 18 Bera, Thybaut, Marin (bib0275) 2011; 50 Maris, Davis (bib0050) 2007; 249 Vasiliadou, Lemonidou (bib0130) 2011; 396 Madon, Iglesia (bib0205) 2000; 163 Weisz, Prater (bib0195) 1954; 6 Bienholz, Hofmann, Claus (bib0250) 2011; 391 Montassier, Ménézo, Moukolo, Naja, Hoang, Barbier, Boitiaux (bib0070) 1991; 70 Biddy, Scarlata, Kinchin (bib0025) 2016 Torres, Roy, Subramaniam, Chaudhari (bib0145) 2010; 49 Rosenbrock (bib0235) 1960; 3 Holderbaum, Gmehling (bib0215) 1991; 70 Smeds, Murzin, Salmi (bib0255) 1995; 125 Vasiliadou, Heracleous, Vasalos, Lemonidou (bib0065) 2009; 92 Gandarias, Arias, Requies, Güemez, Fierro (bib0115) 2010; 97 Heidemann (bib0225) 1983; 14 Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0060) 2014; 145 Sato (10.1016/j.apcatb.2016.12.042_bib0085) 2008; 347 Nakagawa (10.1016/j.apcatb.2016.12.042_bib0045) 2011; 1 Marinoiu (10.1016/j.apcatb.2016.12.042_bib0105) 2009; 97 Madon (10.1016/j.apcatb.2016.12.042_bib0205) 2000; 163 Marin (10.1016/j.apcatb.2016.12.042_bib0265) 2011 Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0065) 2009; 92 Dumesic (10.1016/j.apcatb.2016.12.042_bib0280) 1993 Holderbaum (10.1016/j.apcatb.2016.12.042_bib0215) 1991; 70 Pagliaro (10.1016/j.apcatb.2016.12.042_bib0035) 2007; 46 Brown (10.1016/j.apcatb.2016.12.042_bib0230) 1994; 15 Ragauskas (10.1016/j.apcatb.2016.12.042_bib0005) 2006; 311 Ng (10.1016/j.apcatb.2016.12.042_bib0175) 1986; 32 Bera (10.1016/j.apcatb.2016.12.042_bib0275) 2011; 50 Atabani (10.1016/j.apcatb.2016.12.042_bib0020) 2012; 16 Yu (10.1016/j.apcatb.2016.12.042_bib0100) 2010; 11 Gandarias (10.1016/j.apcatb.2016.12.042_bib0115) 2010; 97 Rosenbrock (10.1016/j.apcatb.2016.12.042_bib0235) 1960; 3 Biddy (10.1016/j.apcatb.2016.12.042_bib0025) 2016 Gierman (10.1016/j.apcatb.2016.12.042_bib0180) 1988; 43 Weisz (10.1016/j.apcatb.2016.12.042_bib0195) 1954; 6 Gmehling (10.1016/j.apcatb.2016.12.042_bib0220) 1997; 141 Reboredo (10.1016/j.apcatb.2016.12.042_bib0030) 2016; 34 Torres (10.1016/j.apcatb.2016.12.042_bib0145) 2010; 49 Zhou (10.1016/j.apcatb.2016.12.042_bib0140) 2010; 18 Balaraju (10.1016/j.apcatb.2016.12.042_bib0110) 2009; 354 Fredenslund (10.1016/j.apcatb.2016.12.042_bib0210) 1975; 21 Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0080) 2013; 231 der Borght (10.1016/j.apcatb.2016.12.042_bib0155) 2015; 5 Smeds (10.1016/j.apcatb.2016.12.042_bib0255) 1995; 125 Atkins (10.1016/j.apcatb.2016.12.042_bib0270) 2010 Navidi (10.1016/j.apcatb.2016.12.042_bib0150) 2014; 469 Mears (10.1016/j.apcatb.2016.12.042_bib0200) 1971; 20 Lahr (10.1016/j.apcatb.2016.12.042_bib0135) 2003; 42 Sie (10.1016/j.apcatb.2016.12.042_bib0185) 1991; 46 Montassier (10.1016/j.apcatb.2016.12.042_bib0070) 1991; 70 Wang (10.1016/j.apcatb.2016.12.042_bib0055) 2013; 3 Maris (10.1016/j.apcatb.2016.12.042_bib0050) 2007; 249 Kunkes (10.1016/j.apcatb.2016.12.042_bib0010) 2008; 322 Guo (10.1016/j.apcatb.2016.12.042_bib0125) 2009; 367 Bienholz (10.1016/j.apcatb.2016.12.042_bib0250) 2011; 391 Huang (10.1016/j.apcatb.2016.12.042_bib0120) 2008; 20 Al-Dahhan (10.1016/j.apcatb.2016.12.042_bib0165) 1996; 42 Berger (10.1016/j.apcatb.2016.12.042_bib0170) 2001; 5 Bhore (10.1016/j.apcatb.2016.12.042_bib0245) 1990; 29 Wassell (10.1016/j.apcatb.2016.12.042_bib0015) 2006; 34 Sie (10.1016/j.apcatb.2016.12.042_bib0160) 1998; 14 Heidemann (10.1016/j.apcatb.2016.12.042_bib0225) 1983; 14 Thybaut (10.1016/j.apcatb.2016.12.042_bib0260) 2002; 90 Dasari (10.1016/j.apcatb.2016.12.042_bib0090) 2005; 281 Marquardt (10.1016/j.apcatb.2016.12.042_bib0240) 1963; 11 Marinas (10.1016/j.apcatb.2016.12.042_bib0040) 2015; 239 van Ryneveld (10.1016/j.apcatb.2016.12.042_bib0095) 2011; 13 Miyazawa (10.1016/j.apcatb.2016.12.042_bib0075) 2006; 240 Carberry (10.1016/j.apcatb.2016.12.042_bib0190) 1976 Vasiliadou (10.1016/j.apcatb.2016.12.042_bib0130) 2011; 396 Linstrom (10.1016/j.apcatb.2016.12.042_bib0285) 2001 Perry (10.1016/j.apcatb.2016.12.042_bib0290) 1998 |
| References_xml | – volume: 145 start-page: 108 year: 2014 end-page: 119 ident: bib0060 publication-title: Appl. Catal. B – volume: 16 start-page: 2070 year: 2012 end-page: 2093 ident: bib0020 publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 1467 year: 1994 end-page: 1488 ident: bib0230 publication-title: SIAM J. Sci. Comput. – volume: 18 start-page: 384 year: 2010 end-page: 390 ident: bib0140 publication-title: Chin. J. Chem. Eng. – volume: 13 start-page: 1819 year: 2011 ident: bib0095 publication-title: Green Chem. – volume: 125 start-page: 271 year: 1995 end-page: 291 ident: bib0255 publication-title: Appl. Catal. A – volume: 43 start-page: 277 year: 1988 end-page: 286 ident: bib0180 publication-title: Appl. Catal. – volume: 97 start-page: 315 year: 2009 end-page: 320 ident: bib0105 publication-title: React. Kinet. Catal. Lett. – volume: 29 start-page: 313 year: 1990 end-page: 316 ident: bib0245 publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 2112 year: 2013 end-page: 2121 ident: bib0055 publication-title: ACS Catal. – volume: 6 start-page: 60390 year: 1954 end-page: 60399 ident: bib0195 publication-title: Adv. Catal. – year: 2016 ident: bib0025 article-title: Chemicals from biomass: a market assessment of bioproducts with near-term potential, Technical Report March – volume: 163 start-page: 189 year: 2000 end-page: 204 ident: bib0205 publication-title: J. Mol. Catal. A: Chem. – volume: 141 start-page: 113 year: 1997 end-page: 127 ident: bib0220 publication-title: Fluid Phase Equilib. – volume: 396 start-page: 177 year: 2011 end-page: 185 ident: bib0130 publication-title: Appl. Catal. A – volume: 5 start-page: 1948 year: 2015 end-page: 1968 ident: bib0155 publication-title: Catalysts – year: 1976 ident: bib0190 article-title: Chemical and Catalytic Reaction Engineering – volume: 20 start-page: 5090 year: 2008 end-page: 5099 ident: bib0120 publication-title: Chem. Mater. – volume: 231 start-page: 103 year: 2013 end-page: 112 ident: bib0080 publication-title: Chem. Eng. J. – volume: 5 start-page: 36 year: 2001 end-page: 60 ident: bib0170 publication-title: CATTECH – volume: 347 start-page: 186 year: 2008 end-page: 191 ident: bib0085 publication-title: Appl. Catal. A – volume: 90 start-page: 117 year: 2002 end-page: 129 ident: bib0260 publication-title: Chem. Eng. J. – volume: 469 start-page: 357 year: 2014 end-page: 366 ident: bib0150 publication-title: Appl. Catal. A – volume: 34 start-page: 3 year: 2016 end-page: 6 ident: bib0030 publication-title: Trends Biotechnol. – year: 2001 ident: bib0285 article-title: NIST Chemistry WebBook – year: 2010 ident: bib0270 article-title: Atkins’ Physical Chemistry – volume: 3 start-page: 175 year: 1960 end-page: 184 ident: bib0235 publication-title: Comput. J. – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib0240 publication-title: J. Soc. Ind. Appl. Math. – volume: 32 start-page: 115 year: 1986 end-page: 122 ident: bib0175 publication-title: AIChE J. – volume: 354 start-page: 82 year: 2009 end-page: 87 ident: bib0110 publication-title: Appl. Catal. A – volume: 21 start-page: 1086 year: 1975 end-page: 1099 ident: bib0210 publication-title: AIChE J. – volume: 311 start-page: 484 year: 2006 end-page: 489 ident: bib0005 publication-title: Science – volume: 42 start-page: 5467 year: 2003 end-page: 5472 ident: bib0135 publication-title: Ind. Eng. Chem. Res. – volume: 281 start-page: 225 year: 2005 end-page: 231 ident: bib0090 publication-title: Appl. Catal. A – volume: 97 start-page: 248 year: 2010 end-page: 256 ident: bib0115 publication-title: Appl. Catal. B – volume: 322 start-page: 417 year: 2008 end-page: 421 ident: bib0010 publication-title: Science – year: 2011 ident: bib0265 article-title: Kinetics of Chemical Reactions: Decoding Complexity – volume: 367 start-page: 93 year: 2009 end-page: 98 ident: bib0125 publication-title: Appl. Catal. A – volume: 20 start-page: 127 year: 1971 end-page: 131 ident: bib0200 publication-title: J. Catal. – volume: 14 start-page: 55 year: 1983 end-page: 78 ident: bib0225 publication-title: Fluid Phase Equilib. – volume: 70 start-page: 65 year: 1991 end-page: 84 ident: bib0070 publication-title: J. Mol. Catal. – volume: 14 year: 1998 ident: bib0160 publication-title: Rev. Chem. Eng. – volume: 239 start-page: 31 year: 2015 end-page: 37 ident: bib0040 publication-title: Catal. Today – volume: 391 start-page: 153 year: 2011 end-page: 157 ident: bib0250 publication-title: Appl. Catal. A – year: 1998 ident: bib0290 article-title: Perry's Chemical Engineers’ Handbook – volume: 46 start-page: 501 year: 1991 end-page: 515 ident: bib0185 publication-title: Rev. Inst. Fr. Pt. – volume: 42 start-page: 2594 year: 1996 end-page: 2606 ident: bib0165 publication-title: AIChE J. – volume: 240 start-page: 213 year: 2006 end-page: 221 ident: bib0075 publication-title: J. Catal. – volume: 70 start-page: 251 year: 1991 end-page: 265 ident: bib0215 publication-title: Fluid Phase Equilib. – volume: 1 start-page: 179 year: 2011 end-page: 190 ident: bib0045 publication-title: Catal. Sci. Technol. – volume: 249 start-page: 328 year: 2007 end-page: 337 ident: bib0050 publication-title: J. Catal. – volume: 92 start-page: 90 year: 2009 end-page: 99 ident: bib0065 publication-title: Appl. Catal. B – volume: 49 start-page: 10826 year: 2010 end-page: 10835 ident: bib0145 publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 493 year: 2010 end-page: 497 ident: bib0100 publication-title: Catal. Commun. – year: 1993 ident: bib0280 article-title: The Microkinetics of Heterogeneous Catalysis – volume: 50 start-page: 12933 year: 2011 end-page: 12945 ident: bib0275 publication-title: Ind. Eng. Chem. Res. – volume: 46 start-page: 4434 year: 2007 end-page: 4440 ident: bib0035 publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 3993 year: 2006 end-page: 4001 ident: bib0015 publication-title: Energy Policy – volume: 97 start-page: 315 year: 2009 ident: 10.1016/j.apcatb.2016.12.042_bib0105 publication-title: React. Kinet. Catal. Lett. doi: 10.1007/s11144-009-0032-2 – volume: 14 year: 1998 ident: 10.1016/j.apcatb.2016.12.042_bib0160 publication-title: Rev. Chem. Eng. – volume: 5 start-page: 36 year: 2001 ident: 10.1016/j.apcatb.2016.12.042_bib0170 publication-title: CATTECH doi: 10.1023/A:1011928218694 – volume: 322 start-page: 417 year: 2008 ident: 10.1016/j.apcatb.2016.12.042_bib0010 publication-title: Science doi: 10.1126/science.1159210 – volume: 396 start-page: 177 year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0130 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2011.02.014 – volume: 97 start-page: 248 year: 2010 ident: 10.1016/j.apcatb.2016.12.042_bib0115 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.04.008 – volume: 13 start-page: 1819 year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0095 publication-title: Green Chem. doi: 10.1039/c0gc00839g – volume: 42 start-page: 5467 year: 2003 ident: 10.1016/j.apcatb.2016.12.042_bib0135 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030468l – year: 1993 ident: 10.1016/j.apcatb.2016.12.042_bib0280 – year: 2016 ident: 10.1016/j.apcatb.2016.12.042_bib0025 – volume: 125 start-page: 271 year: 1995 ident: 10.1016/j.apcatb.2016.12.042_bib0255 publication-title: Appl. Catal. A doi: 10.1016/0926-860X(95)00002-X – volume: 46 start-page: 501 year: 1991 ident: 10.1016/j.apcatb.2016.12.042_bib0185 publication-title: Rev. Inst. Fr. Pt. doi: 10.2516/ogst:1991024 – volume: 49 start-page: 10826 year: 2010 ident: 10.1016/j.apcatb.2016.12.042_bib0145 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100553b – volume: 145 start-page: 108 year: 2014 ident: 10.1016/j.apcatb.2016.12.042_bib0060 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.12.044 – volume: 20 start-page: 5090 year: 2008 ident: 10.1016/j.apcatb.2016.12.042_bib0120 publication-title: Chem. Mater. doi: 10.1021/cm8006233 – volume: 239 start-page: 31 year: 2015 ident: 10.1016/j.apcatb.2016.12.042_bib0040 publication-title: Catal. Today doi: 10.1016/j.cattod.2014.02.048 – volume: 90 start-page: 117 year: 2002 ident: 10.1016/j.apcatb.2016.12.042_bib0260 publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(02)00073-6 – volume: 14 start-page: 55 year: 1983 ident: 10.1016/j.apcatb.2016.12.042_bib0225 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(83)80115-0 – volume: 92 start-page: 90 year: 2009 ident: 10.1016/j.apcatb.2016.12.042_bib0065 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.07.018 – volume: 3 start-page: 175 year: 1960 ident: 10.1016/j.apcatb.2016.12.042_bib0235 publication-title: Comput. J. doi: 10.1093/comjnl/3.3.175 – volume: 391 start-page: 153 year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0250 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2010.08.047 – volume: 42 start-page: 2594 year: 1996 ident: 10.1016/j.apcatb.2016.12.042_bib0165 publication-title: AIChE J. doi: 10.1002/aic.690420920 – volume: 1 start-page: 179 year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0045 publication-title: Catal. Sci. Technol. doi: 10.1039/c0cy00054j – volume: 11 start-page: 493 year: 2010 ident: 10.1016/j.apcatb.2016.12.042_bib0100 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2009.12.009 – volume: 34 start-page: 3 year: 2016 ident: 10.1016/j.apcatb.2016.12.042_bib0030 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.10.002 – volume: 354 start-page: 82 year: 2009 ident: 10.1016/j.apcatb.2016.12.042_bib0110 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.11.010 – volume: 34 start-page: 3993 year: 2006 ident: 10.1016/j.apcatb.2016.12.042_bib0015 publication-title: Energy Policy doi: 10.1016/j.enpol.2005.09.024 – volume: 43 start-page: 277 year: 1988 ident: 10.1016/j.apcatb.2016.12.042_bib0180 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)82732-3 – volume: 6 start-page: 60390 year: 1954 ident: 10.1016/j.apcatb.2016.12.042_bib0195 publication-title: Adv. Catal. – volume: 29 start-page: 313 year: 1990 ident: 10.1016/j.apcatb.2016.12.042_bib0245 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00098a025 – volume: 46 start-page: 4434 year: 2007 ident: 10.1016/j.apcatb.2016.12.042_bib0035 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604694 – volume: 16 start-page: 2070 year: 2012 ident: 10.1016/j.apcatb.2016.12.042_bib0020 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.003 – year: 1976 ident: 10.1016/j.apcatb.2016.12.042_bib0190 – volume: 70 start-page: 65 year: 1991 ident: 10.1016/j.apcatb.2016.12.042_bib0070 publication-title: J. Mol. Catal. doi: 10.1016/0304-5102(91)85006-N – volume: 311 start-page: 484 year: 2006 ident: 10.1016/j.apcatb.2016.12.042_bib0005 publication-title: Science doi: 10.1126/science.1114736 – volume: 240 start-page: 213 year: 2006 ident: 10.1016/j.apcatb.2016.12.042_bib0075 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.03.023 – volume: 249 start-page: 328 year: 2007 ident: 10.1016/j.apcatb.2016.12.042_bib0050 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.05.008 – volume: 231 start-page: 103 year: 2013 ident: 10.1016/j.apcatb.2016.12.042_bib0080 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.06.096 – volume: 18 start-page: 384 year: 2010 ident: 10.1016/j.apcatb.2016.12.042_bib0140 publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(10)60235-2 – year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0265 – volume: 5 start-page: 1948 year: 2015 ident: 10.1016/j.apcatb.2016.12.042_bib0155 publication-title: Catalysts doi: 10.3390/catal5041948 – volume: 50 start-page: 12933 year: 2011 ident: 10.1016/j.apcatb.2016.12.042_bib0275 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200541q – year: 2010 ident: 10.1016/j.apcatb.2016.12.042_bib0270 – volume: 281 start-page: 225 year: 2005 ident: 10.1016/j.apcatb.2016.12.042_bib0090 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2004.11.033 – year: 1998 ident: 10.1016/j.apcatb.2016.12.042_bib0290 – volume: 163 start-page: 189 year: 2000 ident: 10.1016/j.apcatb.2016.12.042_bib0205 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00386-1 – volume: 70 start-page: 251 year: 1991 ident: 10.1016/j.apcatb.2016.12.042_bib0215 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(91)85038-V – volume: 3 start-page: 2112 year: 2013 ident: 10.1016/j.apcatb.2016.12.042_bib0055 publication-title: ACS Catal. doi: 10.1021/cs400486z – volume: 20 start-page: 127 year: 1971 ident: 10.1016/j.apcatb.2016.12.042_bib0200 publication-title: J. Catal. doi: 10.1016/0021-9517(71)90073-X – volume: 21 start-page: 1086 year: 1975 ident: 10.1016/j.apcatb.2016.12.042_bib0210 publication-title: AIChE J. doi: 10.1002/aic.690210607 – volume: 347 start-page: 186 year: 2008 ident: 10.1016/j.apcatb.2016.12.042_bib0085 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.06.013 – volume: 15 start-page: 1467 year: 1994 ident: 10.1016/j.apcatb.2016.12.042_bib0230 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915088 – volume: 367 start-page: 93 year: 2009 ident: 10.1016/j.apcatb.2016.12.042_bib0125 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2009.07.040 – volume: 32 start-page: 115 year: 1986 ident: 10.1016/j.apcatb.2016.12.042_bib0175 publication-title: AIChE J. doi: 10.1002/aic.690320113 – volume: 11 start-page: 431 year: 1963 ident: 10.1016/j.apcatb.2016.12.042_bib0240 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – year: 2001 ident: 10.1016/j.apcatb.2016.12.042_bib0285 – volume: 141 start-page: 113 year: 1997 ident: 10.1016/j.apcatb.2016.12.042_bib0220 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(97)00204-5 – volume: 469 start-page: 357 year: 2014 ident: 10.1016/j.apcatb.2016.12.042_bib0150 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.10.019 |
| SSID | ssj0002328 |
| Score | 2.4556167 |
| Snippet | [Display omitted]
•Extended reaction network including main and by-products was experimentally identified.•A comprehensive, elementary kinetic model... Hydrogenolysis of biomass-derived glycerol has been investigated as an alternative route for the production of value-added chemicals, such as 1,2-propanediol,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 469 |
| SubjectTerms | 1,3-Propanediol Activation energy Adsorption Biomass Catalysts Conversion Copper Dehydration Ethanol Ethylene Ethylene glycol Feeding Glycerol Hydrogen storage Hydrogenation Hydrogenolysis Kinetics Methanol Propanol Propylene Propylene glycol Reaction kinetics Reaction products Selectivity Side reactions Surface chemistry Temperature effects |
| Title | A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis |
| URI | https://dx.doi.org/10.1016/j.apcatb.2016.12.042 https://www.proquest.com/docview/1932196393 |
| Volume | 205 |
| WOSCitedRecordID | wos000393931000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002328 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgl6QBCoaCloD9wsW3HWj_UxjcpLokI0iNxWXnvdJI2ckMSl5sY_Z_blJI1QAYmLFTnxeuXvy8y349kZhF4LzsFpx8QtwPe6ASe-S4uUujTlqciSSCRcN5uIz8_pcJh8arV-2r0w19O4LOnNTTL_r1DDOQBbbp39C7ibQeEEfAbQ4Qiww_GPgO-pNPGFGJnU9CvQkbIqq-p5o7IK-5Wjojb1D1Cb0_G3apw78xG4M-dyWmdCZq6P6nwxk_VbVcWSTQVrZaseAb70nFNlUNc75tIma-NzOrkazb4rgToAt9wI-I-wRFf27m1VO6feOj2l5mmlX4_MwPw4X73NsAS4OlnRNFzHynb2y-igYzdyCdHNSzyhTS4FphCq29lYm9zthBtWNdDdXIyDDnTrpx3br8MQEy-dwxPgMmsvUpFeXb3rVlXtCzkVORPQo3Iry_Ae2u_GYQKGcb_3_mz4oXHnIDmVO7dTt_svVZLg7r1-p29ueXolXwaP0SOz7sA9zZcnqCXKNnrQt-3-2uhgozJlGx1uwYmNB1g-RRc9vEUvbOiFFb0w0Av3K9zQC2t6YUUvbOmFt-n1DH15czbov3NNYw43C_x45QqagyqkJIfVQVjQJKJpAcsAwTtZJ-dEZEUM0qvLoyhOi5ynQeTLt9-FzDjOhUjIIdorZ6V4jrDvg-QlpMiSPA-ymHBOsgI0akQDGDTMjxCxj5Nlpmq9bJ4yZTY9ccI0CEyCwPwuAxCOkNtcNddVW-74fWyRYkZ5akXJgFx3XHligWXGCCyZXBRJz5aQ438e-AV6uP5bnaC91aISL9H97Ho1Xi5eGZL-AkRctzg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+kinetic+model+for+Cu+catalyzed+liquid+phase+glycerol+hydrogenolysis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Rajkhowa%2C+Tapas&rft.au=Marin%2C+Guy+B.&rft.au=Thybaut%2C+Joris+W.&rft.date=2017-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=205&rft.spage=469&rft.epage=480&rft_id=info:doi/10.1016%2Fj.apcatb.2016.12.042&rft.externalDocID=S092633731630978X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |