Quality Diversity: A New Frontier for Evolutionary Computation

While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization. Yet evolution in nature can be interpreted as more nuanced than a process of simple optimization. In particular, natural evolution is a diverg...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in robotics and AI Vol. 3
Main Authors: Pugh, Justin K., Soros, Lisa B., Stanley, Kenneth O.
Format: Journal Article
Language:English
Published: Frontiers Media S.A 12.07.2016
Subjects:
ISSN:2296-9144, 2296-9144
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization. Yet evolution in nature can be interpreted as more nuanced than a process of simple optimization. In particular, natural evolution is a divergent search that optimizes locally within each niche as it simultaneously diversifies. This tendency to discover both quality and diversity at the same time differs from many of the conventional algorithms of machine learning, and also thereby suggests a different foundation for inferring the approach of greatest potential for evolutionary algorithms. In fact, several recent evolutionary algorithms called quality diversity (QD) algorithms(e.g. novelty search with local competition and MAP-Elites) have drawn inspiration from this more nuanced view, aiming to fill a space of possibilities with the best possible example of each type of achievable behavior. The result is a new class of algorithms that return an archive of diverse, high-quality behaviors in a single run. The aim in this paper is to study the application of QD algorithms in challenging environments (in particular complex mazes) to establish their best practices for ambitious domains in the future. In addition to providing insight into cases when QD succeeds and fails, a new approach is investigated that hybridizes multiple views of behaviors (called behavior characterizations) in the same run, which succeeds in overcoming some of the challenges associated with searching for QD with respect to a behavior characterization that is not necessarily sufficient for generating both quality and diversity at the same time.
AbstractList While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization. Yet evolution in nature can be interpreted as more nuanced than a process of simple optimization. In particular, natural evolution is a divergent search that optimizes locally within each niche as it simultaneously diversifies. This tendency to discover both quality and diversity at the same time differs from many of the conventional algorithms of machine learning, and also thereby suggests a different foundation for inferring the approach of greatest potential for evolutionary algorithms. In fact, several recent evolutionary algorithms called quality diversity (QD) algorithms(e.g. novelty search with local competition and MAP-Elites) have drawn inspiration from this more nuanced view, aiming to fill a space of possibilities with the best possible example of each type of achievable behavior. The result is a new class of algorithms that return an archive of diverse, high-quality behaviors in a single run. The aim in this paper is to study the application of QD algorithms in challenging environments (in particular complex mazes) to establish their best practices for ambitious domains in the future. In addition to providing insight into cases when QD succeeds and fails, a new approach is investigated that hybridizes multiple views of behaviors (called behavior characterizations) in the same run, which succeeds in overcoming some of the challenges associated with searching for QD with respect to a behavior characterization that is not necessarily sufficient for generating both quality and diversity at the same time.
Author Pugh, Justin K.
Soros, Lisa B.
Stanley, Kenneth O.
Author_xml – sequence: 1
  givenname: Justin K.
  surname: Pugh
  fullname: Pugh, Justin K.
– sequence: 2
  givenname: Lisa B.
  surname: Soros
  fullname: Soros, Lisa B.
– sequence: 3
  givenname: Kenneth O.
  surname: Stanley
  fullname: Stanley, Kenneth O.
BookMark eNp1kE9LAzEQxYNUsNbePe4X2JpkZ7OJB6HUVguiCHoO-beSst2UbFrpt3fbKojgad4M8x4zv0s0aEPrELomeFIUXNzUMeg0oZiwCcYY8BkaUipYLgjA4Je-QOOuW_UrpORQVNUQ3b1uVePTPrv3Oxe7Xt1m0-zZfWaLGNrkXczqELP5LjTb5EOr4j6bhfVmm9ShvULntWo6N_6uI_S-mL_NHvOnl4flbPqUGyBVyh1gI6ymhhqjrdO2opqVlNVWCCCggDreC02tNcYyVVa8FNwJBbYqaqeLEVqecm1QK7mJft0fIoPy8jgI8UOqmLxpnORUUCDMshIDcLCa44I6TA1Qzo0VfRY7ZZkYui66Whp_-iZF5RtJsDxAlUeo8gBVHqH2RvzH-HPIv5Yv1Xh9FA
CitedBy_id crossref_primary_10_1021_jacs_5c05916
crossref_primary_10_1162_artl_a_00330
crossref_primary_10_1016_j_neunet_2022_04_009
crossref_primary_10_1109_TEVC_2018_2877215
crossref_primary_10_3389_frobt_2019_00151
crossref_primary_10_1145_3561974
crossref_primary_10_1109_TEVC_2024_3506731
crossref_primary_10_1016_j_aei_2022_101704
crossref_primary_10_1016_j_cosrev_2025_100764
crossref_primary_10_1016_j_swevo_2018_06_009
crossref_primary_10_1007_s11047_020_09823_1
crossref_primary_10_1155_ijcg_3609613
crossref_primary_10_1016_j_bbe_2019_10_001
crossref_primary_10_1145_3750053
crossref_primary_10_3390_drones8110619
crossref_primary_10_1109_TRO_2022_3181004
crossref_primary_10_1109_TNNLS_2023_3264540
crossref_primary_10_1109_TPAMI_2024_3455257
crossref_primary_10_1017_S0269888922000042
crossref_primary_10_1007_s10710_023_09456_0
crossref_primary_10_1007_s10614_025_10985_2
crossref_primary_10_1109_ACCESS_2020_3008735
crossref_primary_10_1109_TEVC_2022_3159855
crossref_primary_10_1177_10597123231198497
crossref_primary_10_1145_3476576_3476650
crossref_primary_10_1016_j_robot_2020_103710
crossref_primary_10_1038_s42256_025_00981_4
crossref_primary_10_1017_pds_2021_603
crossref_primary_10_1016_j_neunet_2019_04_013
crossref_primary_10_1109_TEVC_2024_3376733
crossref_primary_10_1145_3696426
crossref_primary_10_7554_eLife_92683
crossref_primary_10_1007_s10710_022_09442_y
crossref_primary_10_1109_ACCESS_2023_3238872
crossref_primary_10_3390_info15120744
crossref_primary_10_1007_s10710_023_09459_x
crossref_primary_10_1145_3450626_3459817
crossref_primary_10_2514_1_G008112
crossref_primary_10_1038_s42256_018_0009_9
crossref_primary_10_1016_j_swevo_2023_101395
crossref_primary_10_1038_s42256_018_0006_z
crossref_primary_10_1109_TG_2020_3046133
crossref_primary_10_1109_TG_2022_3223527
crossref_primary_10_1016_j_knosys_2020_106685
crossref_primary_10_1007_s10710_025_09520_x
crossref_primary_10_1109_TEVC_2023_3273560
crossref_primary_10_1109_ACCESS_2022_3179589
crossref_primary_10_1109_TCYB_2025_3572153
crossref_primary_10_1109_TG_2025_3543135
crossref_primary_10_1088_1361_665X_addf98
crossref_primary_10_1109_TG_2024_3376429
crossref_primary_10_3389_frobt_2020_579403
crossref_primary_10_1109_TEVC_2022_3191698
crossref_primary_10_3390_stats6010004
crossref_primary_10_1007_s11047_021_09853_3
crossref_primary_10_1109_TCDS_2020_3008574
crossref_primary_10_3389_frobt_2023_1134841
crossref_primary_10_1109_TAFFC_2024_3406726
crossref_primary_10_1007_s00521_022_07357_4
crossref_primary_10_1145_3577203
crossref_primary_10_3389_frobt_2023_1232708
crossref_primary_10_1109_TG_2022_3208324
crossref_primary_10_1016_j_robot_2017_11_010
crossref_primary_10_1016_j_asoc_2023_110758
crossref_primary_10_1109_TEVC_2017_2735550
crossref_primary_10_1007_s00354_020_00089_w
crossref_primary_10_1145_3569096
crossref_primary_10_1145_3628158
crossref_primary_10_1145_3664656
crossref_primary_10_3390_app15052815
crossref_primary_10_1016_j_swevo_2025_102140
crossref_primary_10_1007_s10710_022_09433_z
crossref_primary_10_1162_artl_a_00263
crossref_primary_10_1016_j_biosystems_2022_104686
crossref_primary_10_1109_TEVC_2017_2722101
crossref_primary_10_1145_3596912
crossref_primary_10_1016_j_swevo_2025_101849
crossref_primary_10_1109_LRA_2023_3313012
crossref_primary_10_1515_auto_2019_0107
crossref_primary_10_1007_s10514_019_09842_7
crossref_primary_10_1109_TEVC_2020_3032090
crossref_primary_10_1177_0278364919839137
crossref_primary_10_3389_frobt_2021_674823
crossref_primary_10_1109_TRO_2019_2958211
crossref_primary_10_1038_s41586_023_06924_6
crossref_primary_10_1162_evco_a_00343
crossref_primary_10_7554_eLife_92683_4
crossref_primary_10_1109_LRA_2022_3148438
crossref_primary_10_1109_TEVC_2020_3036578
crossref_primary_10_3390_a15120478
crossref_primary_10_3389_frobt_2021_639173
crossref_primary_10_1016_j_engappai_2024_108118
crossref_primary_10_21468_SciPostChem_4_1_001
crossref_primary_10_1109_TG_2023_3264457
crossref_primary_10_1109_TG_2022_3169168
crossref_primary_10_1162_evco_a_00231
crossref_primary_10_1109_TEVC_2017_2704781
crossref_primary_10_1145_3703453
crossref_primary_10_3389_fpls_2023_1299208
Cites_doi 10.1007/s10846-011-9542-z
10.1109/4235.585888
10.1109/CEC.2013.6557548
10.1162/106454603322221487
10.3389/frobt.2015.00004
10.1142/S1469026803000914
10.1145/2739480.2754703
10.1109/CEC.2002.1004528
10.1007/978-3-642-16145-2_22
10.1109/4235.996017
10.1162/EVCO_a_00025
10.1007/978-3-642-18272-3_3
10.1007/978-3-540-78761-7_17
10.1145/2739480.2754664
10.1162/EVCO_a_00048
10.1109/CEC.2009.4983077
10.1109/CVPR.2015.7298640
10.1007/BF00994018
10.1177/1059712310379923
10.1038/nature14422
10.1177/105971239300200104
10.1109/CEC.2001.934446
10.1145/2463372.2463397
10.1371/journal.pone.0062186
10.1162/106454602320991837
10.1162/106365602320169811
10.7551/mitpress/2889.001.0001
10.1145/1569901.1569923
10.1609/aaai.v29i1.9601
10.1007/978-3-642-18272-3_10
10.1073/pnas.95.15.8420
10.1007/s11721-013-0081-z
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/frobt.2016.00040
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-9144
ExternalDocumentID oai_doaj_org_article_8292416d6504484db8032e02c4288cd9
10_3389_frobt_2016_00040
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
M~E
OK1
PGMZT
RIG
ID FETCH-LOGICAL-c417t-e40c9db2c2ccbdebd72b6526fd99414a42e8941b2ddccd6a578598e9a4d73feb3
IEDL.DBID DOA
ISICitedReferencesCount 341
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384346100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-9144
IngestDate Fri Oct 03 12:43:24 EDT 2025
Sat Nov 29 07:54:12 EST 2025
Tue Nov 18 22:07:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-e40c9db2c2ccbdebd72b6526fd99414a42e8941b2ddccd6a578598e9a4d73feb3
OpenAccessLink https://doaj.org/article/8292416d6504484db8032e02c4288cd9
ParticipantIDs doaj_primary_oai_doaj_org_article_8292416d6504484db8032e02c4288cd9
crossref_citationtrail_10_3389_frobt_2016_00040
crossref_primary_10_3389_frobt_2016_00040
PublicationCentury 2000
PublicationDate 2016-07-12
PublicationDateYYYYMMDD 2016-07-12
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-12
  day: 12
PublicationDecade 2010
PublicationTitle Frontiers in robotics and AI
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Goldberg (B16) 1987
Morse (B40) 2013
Simon (B55) 1957
Doncieux (B12) 2015; 2
Trujillo (B64) 2008
Graening (B21) 2010
Kirschner (B26) 1998; 95
Mouret (B44) 2012; 20
Lehman (B32) 2011a; 19
Lehman (B29) 2016
Stanley (B60) 2002; 10
Trujillo (B65) 2011; 64
Cliff (B6) 1993; 2
Liapis (B36) 2013b
Nguyen (B47) 2015b
Pugh (B49) 2015
Goldberg (B15) 1989
Holland (B23) 1975
Bongard (B5) 2002
Hornby (B24) 2001
Bäck (B1) 1997; 1
Goldsby (B17) 2010
Lehman (B33) 2011b
Mouret (B41) 2011
Cully (B8) 2015; 521
Standish (B57) 2003; 3
Green (B22) 2003–2006
Stanley (B61) 2003; 9
Cully (B9) 2013
Kistemaker (B27) 2011
Doucette (B13) 2010
Hornby (B25) 2002
Stanley (B58) 2007
Gomes (B19) 2015
Boden (B4) 2006
Velez (B66) 2014
Stanley (B59) 2011
Deb (B11) 2002; 6
Krcah (B28) 2010
Bishop (B3) 2006
Lehman (B31) 2010
Lehman (B30) 2008
Risi (B50) 2011; 18
Szerlip (B63) 2015
Naredo (B45) 2013
Liapis (B35) 2013a
Bedau (B2) 2008
Martinez (B38) 2013
Mitchell (B39) 1997
Gomes (B18) 2013
Woolley (B67) 2011
Lehman (B34) 2013; 8
Szerlip (B62) 2013
Risi (B51) 2013
Mouret (B42) 2015
Rumelhart (B53) 1986
Soltoggio (B56) 2009
Nolfi (B48) 2000
Cortes (B7) 1995; 20
Schwefel (B54) 1993
Mouret (B43) 2009
De Jong (B10) 2002
Risi (B52) 2009
Nguyen (B46) 2015a
Gomes (B20) 2013; 7
Fogel (B14) 1966
References_xml – year: 2015
  ident: B42
  article-title: Illuminating search spaces by mapping elites
– volume-title: Machine Learning
  year: 1997
  ident: B39
– volume: 64
  start-page: 323
  year: 2011
  ident: B65
  article-title: Speciation in behavioral space for evolutionary robotics
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-011-9542-z
– volume: 1
  start-page: 3
  year: 1997
  ident: B1
  article-title: Evolutionary computation: comments on the history and current state
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585888
– start-page: 16
  volume-title: 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun
  year: 2013
  ident: B38
  article-title: “Searching for novel regression functions,”
  doi: 10.1109/CEC.2013.6557548
– volume-title: Artificial Intelligence Through Simulated Evolution
  year: 1966
  ident: B14
– volume-title: Evolution and Optimum Seeking: The Sixth Generation
  year: 1993
  ident: B54
– volume: 9
  start-page: 93
  year: 2003
  ident: B61
  article-title: A taxonomy for artificial embryogeny
  publication-title: Artif. Life
  doi: 10.1162/106454603322221487
– start-page: 343
  year: 2013b
  ident: B36
  article-title: “Enhancements to constrained novelty search: two-population novelty search for generating game content,”
– year: 2013a
  ident: B35
  article-title: “Transforming exploratory creativity with delenox,”
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: B15
– volume: 2
  start-page: 4
  year: 2015
  ident: B12
  article-title: Evolutionary robotics: what, why, and where to
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2015.00004
– volume: 3
  start-page: 167
  year: 2003
  ident: B57
  article-title: Open-ended artificial evolution
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026803000914
– start-page: 750
  year: 2008
  ident: B2
  article-title: “The arrow of complexity hypothesis (abstract),”
– year: 2015b
  ident: B47
  article-title: “Innovation engines: automated creativity and improved stochastic optimization via deep learning,”
  doi: 10.1145/2739480.2754703
– volume-title: Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu
  year: 2002
  ident: B5
  article-title: “Evolving modular genetic regulatory networks,”
  doi: 10.1109/CEC.2002.1004528
– year: 2016
  ident: B29
  article-title: “Creative generation of 3D objects with deep learning and innovation engines,”
– start-page: 316
  volume-title: Model Driven Engineering Languages and Systems
  year: 2010
  ident: B17
  article-title: “Automatically discovering properties that specify the latent behavior of UML models,”
  doi: 10.1007/978-3-642-16145-2_22
– start-page: 175
  year: 2013
  ident: B9
  article-title: “Behavioral repertoire learning in robotics,”
– volume: 6
  start-page: 182
  year: 2002
  ident: B11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
  year: 1975
  ident: B23
– year: 2008
  ident: B30
  article-title: “Exploiting open-endedness to solve problems through the search for novelty,”
– start-page: 719
  year: 2013
  ident: B40
  article-title: “Single-unit pattern generators for quadruped locomotion,”
– year: 2003–2006
  ident: B22
  publication-title: SharpNEAT Homepage
– start-page: 71
  volume-title: Parallel Problem Solving from Nature – PPSN XI. Vol. 6239 of Lecture Notes in Computer Science, Krakow
  year: 2010
  ident: B21
  article-title: “Towards directed open-ended search by a novelty guided evolution strategy,”
– volume: 19
  start-page: 189
  year: 2011a
  ident: B32
  article-title: Abandoning objectives: evolution through the search for novelty alone
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00025
– start-page: 37
  volume-title: New Horizons in Evolutionary Robotics
  year: 2011
  ident: B59
  article-title: “Why evolutionary robotics will matter,”
  doi: 10.1007/978-3-642-18272-3_3
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: B3
– start-page: 131
  volume-title: Genetic Programming and Evolvable Machines Special Issue on Developmental Systems
  year: 2007
  ident: B58
  article-title: “Compositional pattern producing networks: a novel abstraction of development,”
– start-page: 164
  volume-title: Applications of Evolutionary Computing
  year: 2008
  ident: B64
  article-title: “Discovering several robot behaviors through speciation,”
  doi: 10.1007/978-3-540-78761-7_17
– year: 2015
  ident: B49
  article-title: “Confronting the challenge of quality diversity,”
  doi: 10.1145/2739480.2754664
– start-page: 103
  year: 2010
  ident: B31
  article-title: “Revising the evolutionary computation abstraction: minimal criteria novelty search,”
– volume: 20
  start-page: 91
  year: 2012
  ident: B44
  article-title: Encouraging behavioral diversity in evolutionary robotics: an empirical study
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00048
– start-page: 943
  year: 2015
  ident: B19
  article-title: “Devising effective novelty search algorithms: a comprehensive empirical study,”
– start-page: 211
  year: 2011b
  ident: B33
  article-title: “Evolving a diversity of virtual creatures through novelty search and local competition,”
– start-page: 957
  year: 2011
  ident: B67
  article-title: “On the deleterious effects of a priori objectives on evolution and representation,”
– start-page: 284
  year: 2010
  ident: B28
  article-title: “Solving deceptive tasks in robot body-brain co-evolution by searching for behavioral novelty,”
– start-page: 318
  year: 1986
  ident: B53
  article-title: “Learning internal representations by error propagation,”
– start-page: 199
  year: 2013
  ident: B18
  article-title: “Generic behaviour similarity measures for evolutionary swarm robotics,”
– start-page: 1161
  volume-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC-2009), Trondheim
  year: 2009
  ident: B43
  article-title: “Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity,”
  doi: 10.1109/CEC.2009.4983077
– year: 2015a
  ident: B46
  article-title: “Deep neural networks are easily fooled: high confidence predictions for unrecognizable images,”
  doi: 10.1109/CVPR.2015.7298640
– volume: 20
  start-page: 273
  year: 1995
  ident: B7
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 18
  start-page: 470
  year: 2011
  ident: B50
  article-title: Evolving plastic neural networks with novelty search
  publication-title: Adapt. Behav.
  doi: 10.1177/1059712310379923
– volume: 521
  start-page: 503
  year: 2015
  ident: B8
  article-title: Robots that can adapt like animals
  publication-title: Nature
  doi: 10.1038/nature14422
– start-page: 41
  year: 1987
  ident: B16
  article-title: ‘‘Genetic algorithms with sharing for multimodal function optimization,’’
– volume: 2
  start-page: 73
  year: 1993
  ident: B6
  article-title: Explorations in evolutionary robotics
  publication-title: Adapt. Behav.
  doi: 10.1177/105971239300200104
– volume-title: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul
  year: 2001
  ident: B24
  article-title: “The advantages of generative grammatical encodings for physical design,”
  doi: 10.1109/CEC.2001.934446
– start-page: 1093
  year: 2013
  ident: B45
  article-title: “Searching for novel clustering programs,”
– start-page: 965
  year: 2011
  ident: B27
  article-title: “Critical factors in the performance of novelty search,”
– volume-title: Mind as Machine: A History of Cognitive Science
  year: 2006
  ident: B4
– start-page: 50
  year: 2010
  ident: B13
  article-title: “Novelty-based fitness: an evaluation under the santa fe trail,”
– volume-title: Models of Man: Social and Rational – Mathematical Essays on Rational Human Behavior in a Social Setting
  year: 1957
  ident: B55
– year: 2013
  ident: B51
  article-title: “Confronting the challenge of learning a flexible neural controller for a diversity of morphologies,”
  doi: 10.1145/2463372.2463397
– start-page: 169
  year: 2009
  ident: B56
  article-title: “Novelty of behaviour as a basis for the neuro-evolution of operant reward learning,”
– volume: 8
  start-page: e62186
  year: 2013
  ident: B34
  article-title: Evolvability is inevitable: increasing evolvability without the pressure to adapt
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0062186
– start-page: 8
  year: 2002
  ident: B25
  article-title: Creating high-level components with a generative representation for body-brain evolution
  publication-title: Artif. Life
  doi: 10.1162/106454602320991837
– volume-title: Evolutionary Computation: A Unified Perspective
  year: 2002
  ident: B10
– volume: 10
  start-page: 99
  year: 2002
  ident: B60
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evol. Comput.
  doi: 10.1162/106365602320169811
– volume-title: Evolutionary Robotics
  year: 2000
  ident: B48
  doi: 10.7551/mitpress/2889.001.0001
– year: 2009
  ident: B52
  article-title: “How novelty search escapes the deceptive trap of learning to learn,”
  doi: 10.1145/1569901.1569923
– year: 2015
  ident: B63
  article-title: “Unsupervised feature learning through divergent discriminative feature accumulation,”
  doi: 10.1609/aaai.v29i1.9601
– start-page: 218
  year: 2013
  ident: B62
  article-title: “Indirectly encoded sodarace for artificial life,”
– start-page: 139
  volume-title: New Horizons in Evolutionary Robotics
  year: 2011
  ident: B41
  article-title: “Novelty-based multiobjectivization,”
  doi: 10.1007/978-3-642-18272-3_10
– volume: 95
  start-page: 8420
  year: 1998
  ident: B26
  article-title: Evolvability
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.15.8420
– start-page: 737
  year: 2014
  ident: B66
  article-title: “Novelty search creates robots with general skills for exploration,”
– volume: 7
  start-page: 115
  year: 2013
  ident: B20
  article-title: Evolution of swarm robotics systems with novelty search
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-013-0081-z
SSID ssj0001584377
Score 2.553691
Snippet While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms behavior characterization
Behavioral diversity
Evolutionary computation
neuroevolution
non-objective search
novelty search
Title Quality Diversity: A New Frontier for Evolutionary Computation
URI https://doaj.org/article/8292416d6504484db8032e02c4288cd9
Volume 3
WOSCitedRecordID wos000384346100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB_InzFzl48VDWpmmTeBCmbnhxeFDYrTQvKQiySa2DXfzbfUm6US968VJKSUv4Xuj7vvble4RclkxVhqE6yWUJEc9SEWmwPMJgVyzJY1ZlodmEmEzkdKqeOq2-XE1YsAcOwA0kQ4WQ5AaZBCoJbrSMU2ZjBsibJRi_dQ9ZT0dMhf3BkqdChP-SqMLUoKrn2tVOJrk36Ix_5KGOXb_PK-NdstMSQjoME9kjG3a2T7Y7NoEH5CYYXSzp_aqI4poOKb6e6NjZD2Bio0g96WjRLqOyXtLQrcHDfkhexqPnu4eo7XsQAU9EE1kegzKaAQPQxmojmM4zlldGKZ7wkjMr8UQzYwBMXjq_GiWtKrkRaYXq-Ij0ZvOZPSbUmcNrgaokqRAwTM8xB5BKcxBZZlTcJ4MVCgW0puCuN8VbgeLA4VZ43AqHW-Fx65Or9R3vwRDjl7G3Dtj1OGdl7S9ggIs2wMVfAT75j4ecki03LfdRNmFnpNfUn_acbMKief2oL_zawePj1-gbgE3Hfg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Diversity%3A+A+New+Frontier+for+Evolutionary+Computation&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Justin+K+Pugh&rft.au=Lisa+B.+Soros&rft.au=Kenneth+O.+Stanley&rft.date=2016-07-12&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-9144&rft.volume=3&rft_id=info:doi/10.3389%2Ffrobt.2016.00040&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8292416d6504484db8032e02c4288cd9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon