Dynamic radius jet clustering algorithm

A bstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2023; číslo 4; s. 19 - 32
Hlavní autoři: Mukhopadhyaya, Biswarup, Samui, Tousik, Singh, Ritesh K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 04.04.2023
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A bstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of an event, may be inadequate to capture the differing radius features. In this work, we develop an alternative jet clustering algorithm that allows the radius to vary dynamically based on local kinematics and distribution in the η - ϕ plane inside each evolving jet. We present the usefulness of this dynamic radius clustering algorithm through two Standard Model processes, and thereafter illustrate it for a scenario beyond the Standard Model at the 13 TeV LHC.
AbstractList Abstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of an event, may be inadequate to capture the differing radius features. In this work, we develop an alternative jet clustering algorithm that allows the radius to vary dynamically based on local kinematics and distribution in the η-ϕ plane inside each evolving jet. We present the usefulness of this dynamic radius clustering algorithm through two Standard Model processes, and thereafter illustrate it for a scenario beyond the Standard Model at the 13 TeV LHC.
The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of an event, may be inadequate to capture the differing radius features. In this work, we develop an alternative jet clustering algorithm that allows the radius to vary dynamically based on local kinematics and distribution in the η - ϕ plane inside each evolving jet. We present the usefulness of this dynamic radius clustering algorithm through two Standard Model processes, and thereafter illustrate it for a scenario beyond the Standard Model at the 13 TeV LHC.
A bstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of an event, may be inadequate to capture the differing radius features. In this work, we develop an alternative jet clustering algorithm that allows the radius to vary dynamically based on local kinematics and distribution in the η - ϕ plane inside each evolving jet. We present the usefulness of this dynamic radius clustering algorithm through two Standard Model processes, and thereafter illustrate it for a scenario beyond the Standard Model at the 13 TeV LHC.
The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of collider studies. Current jet clustering algorithms, which use a fixed radius parameter for the formation of jets from the hadrons of an event, may be inadequate to capture the differing radius features. In this work, we develop an alternative jet clustering algorithm that allows the radius to vary dynamically based on local kinematics and distribution in the η-ϕ plane inside each evolving jet. We present the usefulness of this dynamic radius clustering algorithm through two Standard Model processes, and thereafter illustrate it for a scenario beyond the Standard Model at the 13 TeV LHC.
ArticleNumber 19
Author Samui, Tousik
Singh, Ritesh K.
Mukhopadhyaya, Biswarup
Author_xml – sequence: 1
  givenname: Biswarup
  surname: Mukhopadhyaya
  fullname: Mukhopadhyaya, Biswarup
  organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata
– sequence: 2
  givenname: Tousik
  orcidid: 0000-0002-1485-6155
  surname: Samui
  fullname: Samui, Tousik
  email: tousiksamui@gmail.com
  organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata
– sequence: 3
  givenname: Ritesh K.
  surname: Singh
  fullname: Singh, Ritesh K.
  organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata
BookMark eNp1kE1LAzEQhoNUsK2evS54UA9rk_3OUbTaSkEPeg75mNQs201Nsof-e7euogg9zTDM8_LyTNCotS0gdE7wDcG4nD0t5i84u0pwkl5jQo_QmOCExlVW0tGf_QRNvK8xJjmheIwu73ct3xgZOa5M56MaQiSbzgdwpl1HvFlbZ8L75hQda954OPueU_T2MH-9W8Sr58fl3e0qlhkpQwxpzmWqFAFdaCqEFCXNNVcgZJaqDEtapImkWqtUF4QmElQuElAyxwCQk3SKlkOusrxmW2c23O2Y5YZ9HaxbM-6CkQ0w0fOEFImAtMo4F1TqjIg8g4LLqgTeZ10MWVtnPzrwgdW2c21fnyUlLYqCVmXVf-XDl3TWeweaSRN4MLYNjpuGEcz2ftngl-39st5vz83-cT9tDxN4IPx2Lxfcb59DyCcgco4o
CitedBy_id crossref_primary_10_1140_epjc_s10052_025_13943_2
crossref_primary_10_3390_universe10040154
crossref_primary_10_1007_JHEP07_2025_145
crossref_primary_10_1007_JHEP06_2024_176
crossref_primary_10_1007_JHEP09_2024_128
crossref_primary_10_1007_JHEP06_2023_195
crossref_primary_10_1140_epjs_s11734_024_01234_y
Cites_doi 10.1007/JHEP03(2011)015
10.1103/PhysRevD.69.035009
10.1016/j.cpc.2012.01.022
10.1007/JHEP01(2015)022
10.1140/epjc/s10052-017-5495-0
10.1103/PhysRevD.102.114013
10.1007/JHEP05(2016)117
10.1007/JHEP11(2018)027
10.1007/JHEP10(2020)083
10.1103/PhysRevD.46.5098
10.1140/epjc/s10052-020-8082-8
10.1016/S0010-4655(03)00222-4
10.1007/JHEP10(2019)014
10.1016/j.cpc.2015.01.024
10.21468/SciPostPhys.8.1.011
10.1007/JHEP07(2014)079
10.1007/JHEP02(2010)084
10.1140/epjc/s10052-014-3024-y
10.1088/1742-6596/404/1/012054
10.1103/PhysRevD.33.1912
10.1007/JHEP06(2018)093
10.1103/PhysRevD.104.035004
10.1088/1126-6708/1997/08/001
10.1088/1126-6708/2009/06/059
10.21468/SciPostPhys.7.3.036
10.1103/PhysRevLett.66.285
10.1103/PhysRevD.101.034004
10.1007/JHEP05(2014)146
10.1007/JHEP11(2018)059
10.1007/JHEP03(2017)022
10.1007/JHEP12(2016)153
10.1140/epjc/s10052-010-1314-6
10.1007/JHEP09(2022)120
10.1007/JHEP11(2015)072
10.1088/0034-4885/70/1/R02
10.1103/PhysRevLett.107.172001
10.1007/JHEP08(2022)046
10.1007/JHEP09(2013)029
10.1103/PhysRevLett.108.182003
10.1103/PhysRevD.48.3160
10.1103/PhysRevLett.100.242001
10.1103/PhysRevD.34.1438
10.1007/JHEP03(2018)133
10.1007/JHEP02(2012)093
10.1007/JHEP12(2018)031
10.1016/j.cpc.2012.05.021
10.1007/978-3-030-15709-8
10.1103/PhysRevD.52.1663
10.1103/PhysRevD.91.055015
10.1103/PhysRevD.40.833
10.1007/JHEP10(2021)092
10.1007/JHEP01(2017)044
10.1016/0370-2693(87)91654-6
10.1016/j.ppnp.2007.12.002
10.1016/0550-3213(93)90166-M
10.1088/0954-3899/39/8/083001
10.1103/PhysRevD.84.055001
10.1007/JHEP12(2022)021
10.1007/JHEP03(2014)037
10.1007/JHEP04(2013)090
10.1007/JHEP06(2015)203
10.1007/JHEP06(2013)108
10.1016/j.physletb.2006.08.037
10.1140/epjc/s10052-015-3587-2
10.1007/JHEP07(2017)091
10.1088/1126-6708/2008/04/063
10.1007/JHEP09(2014)130
10.1007/JHEP03(2022)131
10.1007/JHEP12(2014)009
10.1007/JHEP07(2017)132
10.1140/epjc/s10052-018-5579-5
10.1007/JHEP06(2016)010
10.1103/PhysRevLett.39.1436
10.1007/JHEP11(2017)163
10.1088/1126-6708/2006/05/026
10.1007/JHEP02(2018)083
10.1007/JHEP03(2019)098
10.1007/JHEP11(2014)129
10.1140/epjc/s10052-021-08856-9
10.1140/epjc/s10052-012-1896-2
10.1016/0370-2693(91)90196-W
10.1016/j.cpc.2014.02.018
10.1103/PhysRevD.59.075003
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP04(2023)019
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 32
ExternalDocumentID oai_doaj_org_article_b1921162be384aab9cf41b54e6ac87ea
10_1007_JHEP04_2023_019
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-e35ac3dd1ef6f9bbcb795fadebc43d40c9632c9ffd3f6192ced5b2edc50eee513
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964930200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:53:55 EDT 2025
Sat Oct 18 23:07:58 EDT 2025
Tue Nov 18 22:52:03 EST 2025
Sat Nov 29 02:13:28 EST 2025
Fri Feb 21 02:42:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Vector-Like Fermions
Jets and Jet Substructure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-e35ac3dd1ef6f9bbcb795fadebc43d40c9632c9ffd3f6192ced5b2edc50eee513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1485-6155
OpenAccessLink https://doaj.org/article/b1921162be384aab9cf41b54e6ac87ea
PQID 2796669878
PQPubID 2034718
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_b1921162be384aab9cf41b54e6ac87ea
proquest_journals_2796669878
crossref_citationtrail_10_1007_JHEP04_2023_019
crossref_primary_10_1007_JHEP04_2023_019
springer_journals_10_1007_JHEP04_2023_019
PublicationCentury 2000
PublicationDate 2023-04-04
PublicationDateYYYYMMDD 2023-04-04
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-04
  day: 04
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References MoultINecibLThalerJNew Angles on Energy Correlation FunctionsJHEP2016121532016JHEP...12..153M[arXiv:1609.07483] [INSPIRE]
KomiskePTMetodievEMThalerJAn operational definition of quark and gluon jetsJHEP2018110592018JHEP...11..059K[arXiv:1809.01140] [INSPIRE]
CMS collaboration, Study of quark and gluon jet substructure in Z + jet and dijet events from pp collisions, JHEP01 (2022) 188 [arXiv:2109.03340] [INSPIRE].
T.G. Rizzo, Phenomenology of Exotic Particles in E6Theories, Phys. Rev. D34 (1986) 1438 [INSPIRE].
B. Bhattacherjee, C. Bose, A. Chakraborty and R. Sengupta, Boosted top tagging and its interpretation using Shapley values, arXiv:2212.11606 [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP08 (1997) 001 [hep-ph/9707323] [INSPIRE].
Bright-ThonneySMoultINachmanBPrestelSSystematic quark/gluon identification with ratios of likelihoodsJHEP2022120212022JHEP...12..021B[arXiv:2207.12411] [INSPIRE]
KrohnDThalerJWangL-TJet TrimmingJHEP2010020842010JHEP...02..084K[arXiv:0912.1342] [INSPIRE]
GilliozMGröberRKapuvariAMühlleitnerMVector-like Bottom Quarks in Composite Higgs ModelsJHEP2014030372014JHEP...03..037G[arXiv:1311.4453] [INSPIRE]
DreyerFANecibLSoyezGThalerJRecursive Soft DropJHEP2018060932018JHEP...06..093D[arXiv:1804.03657] [INSPIRE]
GallicchioJSchwartzMDQuark and Gluon Tagging at the LHCPhys. Rev. Lett.20111072011PhRvL.107q2001G[arXiv:1106.3076] [INSPIRE]
G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett.39 (1977) 1436 [INSPIRE].
Bright-ThonneySNachmanBInvestigating the Topology Dependence of Quark and Gluon JetsJHEP2019030982019JHEP...03..098B[arXiv:1810.05653] [INSPIRE]
V.D. Barger, N. Deshpande, R.J.N. Phillips and K. Whisnant, Extra Fermions in E6 Superstring Theories, Phys. Rev. D33 (1986) 1912 [Erratum ibid.35 (1987) 1741] [INSPIRE].
ChoudhuryDDekaKKumarNLooking for a vectorlike B quark at the LHC using jet substructurePhys. Rev. D20211042021PhRvD.104c5004C[arXiv:2103.10655] [INSPIRE]
ButterworthJMDavisonARRubinMSalamGPJet substructure as a new Higgs search channel at the LHCPhys. Rev. Lett.20081002008PhRvL.100x2001B[arXiv:0802.2470] [INSPIRE]
Aguilar-SaavedraJABenbrikRHeinemeyerSPérez-VictoriaMHandbook of vectorlike quarks: Mixing and single productionPhys. Rev. D2013882013PhRvD..88i4010A[arXiv:1306.0572] [INSPIRE]
S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys. B406 (1993) 187 [INSPIRE].
NayakAKRaiSKSamuiTImproving Heavy Dijet Resonance Searches Using Jet Substructure at the LHCEur. Phys. J. C2021811302021EPJC...81..130N[arXiv:1912.03511] [INSPIRE]
ThalerJVan TilburgKIdentifying Boosted Objects with N-subjettinessJHEP2011030152011JHEP...03..015T[arXiv:1011.2268] [INSPIRE]
MooreLNordströmKVarmaSFairbairnMReports of My Demise Are Greatly Exaggerated: N -subjettiness Taggers Take On Jet ImagesSciPost Phys.201970362019ScPP....7...36M[arXiv:1807.04769] [INSPIRE]
LuYResolving extreme jet substructureJHEP2022080462022JHEP...08..046L[arXiv:2202.00723] [INSPIRE]
BhattacherjeeBQuark-gluon discrimination in the search for gluino pair production at the LHCJHEP2017010442017JHEP...01..044B[arXiv:1609.08781] [INSPIRE]
LarkoskiAJMarzaniSSoyezGThalerJSoft DropJHEP2014051462014JHEP...05..146L[arXiv:1402.2657] [INSPIRE]
J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977 [INSPIRE].
SalamGPTowards JetographyEur. Phys. J. C2010676372010EPJC...67..637S[arXiv:0906.1833] [INSPIRE]
StewartIWXCone: N-jettiness as an Exclusive Cone Jet AlgorithmJHEP2015110722015JHEP...11..072S[arXiv:1508.01516] [INSPIRE]
B. Mukhopadhyaya and S. Nandi, Collider implications of singlet fermions, Phys. Rev. D46 (1992) 5098 [INSPIRE].
HanZSonMTweedieBTop-Tagging at the Energy FrontierPhys. Rev. D2018972018PhRvD..97c6023H[arXiv:1707.06741] [INSPIRE]
EllisSDQjets: A Non-Deterministic Approach to Tree-Based Jet SubstructurePhys. Rev. Lett.20121082012PhRvL.108r2003E[arXiv:1201.1914] [INSPIRE]
DasguptaMHelliwellJInvestigating top tagging with Ym-Splitter and N-subjettinessJHEP2021100922021JHEP...10..092D[arXiv:2108.09317] [INSPIRE]
CMS collaboration, Measurement of jet substructure observables intt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events from proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. D98 (2018) 092014 [arXiv:1808.07340] [INSPIRE].
EllisSDVermilionCKWalshJRTechniques for improved heavy particle searches with jet substructurePhys. Rev. D2009802009PhRvD..80e1501E[arXiv:0903.5081] [INSPIRE]
V.D. Barger, M.S. Berger and R.J.N. Phillips, Quark singlets: Implications and constraints, Phys. Rev. D52 (1995) 1663 [hep-ph/9503204] [INSPIRE].
F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
J.E. Huth et al., Toward a standardization of jet definitions, in the proceedings of 1990 DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), Snowmass, U.S.A., June 28–July 16 1990, pp. 0134–136 [INSPIRE].
CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP2008040632008JHEP...04..063C1369.81100[arXiv:0802.1189] [INSPIRE]
ReicheltDPhenomenology of jet angularities at the LHCJHEP2022031312022JHEP...03..131R[arXiv:2112.09545] [INSPIRE]
B. Mukhopadhyaya, T. Samui and R.K. Singh, Eliciting signals of vectorlike quarks at the LHC: the role of dynamic radius jet algorithm, in preparation.
C.S. Cowden and I. Volobouev, Detection of clustering instabilities for sequential recombination algorithms, J. Phys. Conf. Ser.404 (2012) 012054 [INSPIRE].
KrohnDThalerJWangL-TJets with Variable RJHEP2009060592009JHEP...06..059K[arXiv:0903.0392] [INSPIRE]
ATLAS collaboration, Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector, arXiv:2212.05263 [CERN-EP-2022-201] [INSPIRE].
LarkoskiAJMoultINeillDAnalytic Boosted Boson DiscriminationJHEP2016051172016JHEP...05..117L[arXiv:1507.03018] [INSPIRE]
M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett. B641 (2006) 57 [hep-ph/0512210] [INSPIRE].
LarkoskiAJMoultINeillDBuilding a Better Boosted Top TaggerPhys. Rev. D2015912015PhRvD..91c4035L[arXiv:1411.0665] [INSPIRE]
DegrandeCUFO — The Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D[arXiv:1108.2040] [INSPIRE]
F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
BradshawLMishraRKMitridateAOstdiekBMass Agnostic Jet TaggersSciPost Phys.202080112020ScPP....8...11B[arXiv:1908.08959] [INSPIRE]
GrasPSystematics of quark/gluon taggingJHEP2017070912017JHEP...07..091G[arXiv:1704.03878] [INSPIRE]
W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e−colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].
EllisSDJets in hadron-hadron collisionsProg. Part. Nucl. Phys.2008604842008PrPNP..60..484E[arXiv:0712.2447] [INSPIRE]
StewartIWYaoXPure quark and gluon observables in collinear dropJHEP2022091202022JHEP...09..120S[arXiv:2203.14980] [INSPIRE]
AgasheKDetecting a Boosted Diboson ResonanceJHEP2018110272018JHEP...11..027A[arXiv:1809.07334] [INSPIRE]
S. De, V. Rentala and W. Shepherd, Measuring the polarization of boosted, hadronic W bosons with jet substructure observables, arXiv:2008.04318 [INSPIRE].
S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
A. Dey and T. Samui, Jet Substructure and Multivariate Analysis Aid in Polarization Study of Boosted, Hadronic W Fatjet at the LHC, arXiv:2110.02773 [HRI-RECAPP-2021-011] [INSPIRE].
B. Mukhopadhyaya and S. Nandi, Evading the top mass bound at the Tevatron: New signals for the top, Phys. Rev. Lett.66 (1991) 285 [INSPIRE].
A. Raychaudhuri, Is the b Quark Mixed with a Vector Like Quark, Phys. Rev. D40 (1989) 833 [INSPIRE].
J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in the proceedings of 9th Les Houches Workshop on Physics at TeV Colliders, Les Houches France, June 1–19 2015 [arXiv:1605.04692] [INSPIRE].
W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
DasguptaMFregosoAMarzaniSSalamGPTowards an understanding of jet substructureJHEP2013090292013JHEP...09..029D[arXiv:1307.0007] [INSPIRE]
DasKLiTNandiSRaiSKNew signals for vector-like down-type quark in U(1) of E6Eur. Phys. J. C201878352018EPJC...78...35D[arXiv:1708.00328] [INSPIRE]
ThalerJVan TilburgKMaximizing Boosted Top Identification by Minimizing N-subjettinessJHEP2012020932012JHEP...02..093T[arXiv:1108.2701] [INSPIRE]
HanZTracking the Identities of Boosted ParticlesPhys. Rev. D2012862012PhRvD..86a4026H[arXiv:1112.3378] [INSPIRE]
GirdharAMukhopadhyayaBPatraMDistinguishing Signatures of top-and bottom-type heavy vectorlike quarks at the LHCPhys. Rev. D2015912015PhRvD..91e5015G[arXiv:1404.3374] [INSPIRE]
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
GopalakrishnaSMandalTMitraSTibrewalaRLHC Signatures of a Vector-like b’Phys. Rev. D2011842011PhRvD..84e5001G[arXiv:1107.4306] [INSPIRE]
Mehtar-TaniYSoto-OntosoATywoniukKTagging boosted hadronic objects with dynamical groomingPhys. Rev. D20201022020PhRvD.102k4013M[arXiv:2005.07584] [INSPIRE]
CacciariMSalamG
J Alwall (20624_CR74) 2014; 07
20624_CR75
20624_CR73
F Staub (20624_CR110) 2015; 2015
20624_CR77
AJ Larkoski (20624_CR34) 2014; 12
C Degrande (20624_CR111) 2012; 183
J Gallicchio (20624_CR17) 2011; 107
JM Butterworth (20624_CR78) 2008; 100
20624_CR64
20624_CR65
20624_CR68
20624_CR69
20624_CR66
20624_CR112
20624_CR67
20624_CR113
IW Stewart (20624_CR26) 2022; 09
20624_CR103
20624_CR104
JA Aguilar-Saavedra (20624_CR55) 2020; 80
20624_CR105
20624_CR106
20624_CR107
20624_CR108
S Gopalakrishna (20624_CR98) 2011; 84
20624_CR109
Y Lu (20624_CR62) 2022; 08
AJ Larkoski (20624_CR35) 2015; 91
SD Ellis (20624_CR87) 2010; 81
M Dasgupta (20624_CR61) 2021; 10
20624_CR19
20624_CR97
20624_CR10
S Marzani (20624_CR82) 2018; 78
20624_CR95
20624_CR96
20624_CR14
20624_CR11
20624_CR12
SD Ellis (20624_CR29) 2015; 01
20624_CR90
L Moore (20624_CR51) 2019; 7
M Dasgupta (20624_CR79) 2013; 09
20624_CR94
20624_CR91
20624_CR92
S Bright-Thonney (20624_CR22) 2019; 03
IW Stewart (20624_CR40) 2015; 11
L Bradshaw (20624_CR54) 2020; 8
20624_CR1
Y Mehtar-Tani (20624_CR84) 2020; 101
20624_CR3
20624_CR2
AJ Larkoski (20624_CR32) 2013; 06
20624_CR5
20624_CR4
20624_CR9
20624_CR8
A Girdhar (20624_CR100) 2015; 91
AK Nayak (20624_CR24) 2021; 81
Y Mehtar-Tani (20624_CR56) 2020; 102
M Gillioz (20624_CR93) 2014; 03
20624_CR88
Z Han (20624_CR43) 2012; 86
20624_CR89
D Napoletano (20624_CR52) 2018; 12
JA Aguilar-Saavedra (20624_CR49) 2017; 11
D Krohn (20624_CR85) 2010; 02
A Das (20624_CR50) 2018; 02
D Choudhury (20624_CR60) 2021; 104
GP Salam (20624_CR47) 2017; 03
SD Ellis (20624_CR86) 2009; 80
M Cacciari (20624_CR13) 2008; 04
20624_CR31
20624_CR30
JA Aguilar-Saavedra (20624_CR99) 2013; 88
AJ Larkoski (20624_CR15) 2014; 11
P Gras (20624_CR16) 2017; 07
PT Komiske (20624_CR21) 2018; 11
J Gallicchio (20624_CR18) 2013; 04
B Bhattacherjee (20624_CR20) 2017; 01
S Bright-Thonney (20624_CR27) 2022; 12
I Moult (20624_CR37) 2016; 12
J Thaler (20624_CR42) 2012; 02
S Marzani (20624_CR81) 2017; 07
M Dasgupta (20624_CR46) 2016; 04
20624_CR23
L Mackey (20624_CR71) 2016; 06
J Thaler (20624_CR39) 2011; 03
G Kasieczka (20624_CR45) 2015; 06
K Das (20624_CR102) 2018; 78
A Bhardwaj (20624_CR63) 2022; 106
AJ Larkoski (20624_CR80) 2014; 05
SD Ellis (20624_CR6) 2008; 60
T Plehn (20624_CR44) 2012; 39
T Sjöstrand (20624_CR76) 2015; 191
K Agashe (20624_CR53) 2018; 11
20624_CR58
D Krohn (20624_CR70) 2009; 06
Z Han (20624_CR48) 2018; 97
M Cacciari (20624_CR72) 2012; 72
D Adams (20624_CR36) 2015; 75
D Reichelt (20624_CR25) 2022; 03
GP Salam (20624_CR7) 2010; 67
RS Chivukula (20624_CR38) 2018; 03
20624_CR41
AJ Larkoski (20624_CR33) 2016; 05
SD Ellis (20624_CR28) 2012; 108
S Bhattacharya (20624_CR59) 2022; 105
FA Dreyer (20624_CR83) 2018; 06
A Bhardwaj (20624_CR57) 2020; 10
SAR Ellis (20624_CR101) 2014; 09
References_xml – reference: LarkoskiAJMoultINeillDBuilding a Better Boosted Top TaggerPhys. Rev. D2015912015PhRvD..91c4035L[arXiv:1411.0665] [INSPIRE]
– reference: BhattacharyaSGuchaitMVijayAHBoosted top quark tagging and polarization measurement using machine learningPhys. Rev. D20221052022PhRvD.105d2005B[arXiv:2010.11778] [INSPIRE]
– reference: S. De, V. Rentala and W. Shepherd, Measuring the polarization of boosted, hadronic W bosons with jet substructure observables, arXiv:2008.04318 [INSPIRE].
– reference: CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C1393.81007[arXiv:1111.6097] [INSPIRE]
– reference: LarkoskiAJSalamGPThalerJEnergy Correlation Functions for Jet SubstructureJHEP2013061082013JHEP...06..108L30833021342.81689[arXiv:1305.0007] [INSPIRE]
– reference: GopalakrishnaSMandalTMitraSTibrewalaRLHC Signatures of a Vector-like b’Phys. Rev. D2011842011PhRvD..84e5001G[arXiv:1107.4306] [INSPIRE]
– reference: A. Dey, R. Rahaman and S.K. Rai, Fatjet signatures of heavy neutrinos and heavy leptons in a left-right model with universal seesaw at the HL-LHC, arXiv:2207.06857 [HRI-RECAPP-2022-010] [INSPIRE].
– reference: Bright-ThonneySMoultINachmanBPrestelSSystematic quark/gluon identification with ratios of likelihoodsJHEP2022120212022JHEP...12..021B[arXiv:2207.12411] [INSPIRE]
– reference: Bright-ThonneySNachmanBInvestigating the Topology Dependence of Quark and Gluon JetsJHEP2019030982019JHEP...03..098B[arXiv:1810.05653] [INSPIRE]
– reference: ChoudhuryDDekaKKumarNLooking for a vectorlike B quark at the LHC using jet substructurePhys. Rev. D20211042021PhRvD.104c5004C[arXiv:2103.10655] [INSPIRE]
– reference: BhattacherjeeBQuark-gluon discrimination in the search for gluino pair production at the LHCJHEP2017010442017JHEP...01..044B[arXiv:1609.08781] [INSPIRE]
– reference: LarkoskiAJMarzaniSSoyezGThalerJSoft DropJHEP2014051462014JHEP...05..146L[arXiv:1402.2657] [INSPIRE]
– reference: S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys. B406 (1993) 187 [INSPIRE].
– reference: M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), Hamburg Germany, 1998–1999, p. 270–279 [hep-ph/9907280] [INSPIRE].
– reference: F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
– reference: StewartIWYaoXPure quark and gluon observables in collinear dropJHEP2022091202022JHEP...09..120S[arXiv:2203.14980] [INSPIRE]
– reference: S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, Springer (2019) [https://doi.org/10.1007/978-3-030-15709-8] [arXiv:1901.10342] [INSPIRE].
– reference: SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S1344.81029[arXiv:1410.3012] [INSPIRE]
– reference: GrasPSystematics of quark/gluon taggingJHEP2017070912017JHEP...07..091G[arXiv:1704.03878] [INSPIRE]
– reference: Mehtar-TaniYSoto-OntosoATywoniukKDynamical grooming of QCD jetsPhys. Rev. D20201012020PhRvD.101c4004M4072134[arXiv:1911.00375] [INSPIRE]
– reference: T.C. Andre and J.L. Rosner, Exotic Q = –1/3 quark signatures at high-energy hadron colliders, Phys. Rev. D69 (2004) 035009 [hep-ph/0309254] [INSPIRE].
– reference: W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
– reference: F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
– reference: Aguilar-SaavedraJAZaldívarBJet tagging made easyEur. Phys. J. C2020805302020EPJC...80..530A[arXiv:2002.12320] [INSPIRE]
– reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A[arXiv:1405.0301] [INSPIRE]
– reference: DasguptaMFregosoAMarzaniSSalamGPTowards an understanding of jet substructureJHEP2013090292013JHEP...09..029D[arXiv:1307.0007] [INSPIRE]
– reference: B. Mukhopadhyaya and S. Nandi, Evading the top mass bound at the Tevatron: New signals for the top, Phys. Rev. Lett.66 (1991) 285 [INSPIRE].
– reference: V.D. Barger, M.S. Berger and R.J.N. Phillips, Quark singlets: Implications and constraints, Phys. Rev. D52 (1995) 1663 [hep-ph/9503204] [INSPIRE].
– reference: ChivukulaRSMohanKASenguptaDSimmonsEHCharacterizing boosted dijet resonances with energy correlation functionsJHEP2018031332018JHEP...03..133C[arXiv:1710.04661] [INSPIRE]
– reference: CMS collaboration, Measurement of jet substructure observables intt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events from proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. D98 (2018) 092014 [arXiv:1808.07340] [INSPIRE].
– reference: GallicchioJSchwartzMDQuark and Gluon Jet SubstructureJHEP2013040902013JHEP...04..090G[arXiv:1211.7038] [INSPIRE]
– reference: DegrandeCUFO — The Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D[arXiv:1108.2040] [INSPIRE]
– reference: MarzaniSSchunkLSoyezGA study of jet mass distributions with groomingJHEP2017071322017JHEP...07..132M[arXiv:1704.02210] [INSPIRE]
– reference: NapoletanoDSoyezGComputing N -subjettiness for boosted jetsJHEP2018120312018JHEP...12..031N[arXiv:1809.04602] [INSPIRE]
– reference: EllisSDVermilionCKWalshJRRecombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle SearchesPhys. Rev. D2010812010PhRvD..81i4023E[arXiv:0912.0033] [INSPIRE]
– reference: W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e−colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].
– reference: StaubFExploring new models in all detail with SARAHAdv. High Energy Phys.2015201534130051366.83027[arXiv:1503.04200] [INSPIRE]
– reference: KasieczkaGResonance Searches with an Updated Top TaggerJHEP2015062032015JHEP...06..203K[arXiv:1503.05921] [INSPIRE]
– reference: NayakAKRaiSKSamuiTImproving Heavy Dijet Resonance Searches Using Jet Substructure at the LHCEur. Phys. J. C2021811302021EPJC...81..130N[arXiv:1912.03511] [INSPIRE]
– reference: PlehnTSpannowskyMTop TaggingJ. Phys. G2012392012JPhG...39h3001P[arXiv:1112.4441] [INSPIRE]
– reference: MarzaniSSchunkLSoyezGThe jet mass distribution after Soft DropEur. Phys. J. C201878962018EPJC...78...96M[arXiv:1712.05105] [INSPIRE]
– reference: DreyerFANecibLSoyezGThalerJRecursive Soft DropJHEP2018060932018JHEP...06..093D[arXiv:1804.03657] [INSPIRE]
– reference: EllisSDHornigAKrohnDRoyTSOn Statistical Aspects of QjetsJHEP2015010222015JHEP...01..022E[arXiv:1409.6785] [INSPIRE]
– reference: AdamsDTowards an Understanding of the Correlations in Jet SubstructureEur. Phys. J. C2015754092015EPJC...75..409A[arXiv:1504.00679] [INSPIRE]
– reference: KomiskePTMetodievEMThalerJAn operational definition of quark and gluon jetsJHEP2018110592018JHEP...11..059K[arXiv:1809.01140] [INSPIRE]
– reference: DasAKonarPThalapillilAJet substructure shedding light on heavy Majorana neutrinos at the LHCJHEP2018020832018JHEP...02..083D[arXiv:1709.09712] [INSPIRE]
– reference: Aguilar-SaavedraJACollinsJHMishraRKA generic anti-QCD jet taggerJHEP2017111632017JHEP...11..163A[arXiv:1709.01087] [INSPIRE]
– reference: EllisSDVermilionCKWalshJRTechniques for improved heavy particle searches with jet substructurePhys. Rev. D2009802009PhRvD..80e1501E[arXiv:0903.5081] [INSPIRE]
– reference: G.C. Blazey et al., Run II jet physics, in the proceedings of Physics at Run II: QCD and Weak Boson Physics Workshop: Final General Meeting, Batavia U.S.A., November 4–6 1999 2000, pp. 47–77 [hep-ex/0005012] [INSPIRE].
– reference: J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in the proceedings of 9th Les Houches Workshop on Physics at TeV Colliders, Les Houches France, June 1–19 2015 [arXiv:1605.04692] [INSPIRE].
– reference: ButterworthJMDavisonARRubinMSalamGPJet substructure as a new Higgs search channel at the LHCPhys. Rev. Lett.20081002008PhRvL.100x2001B[arXiv:0802.2470] [INSPIRE]
– reference: BhardwajADiscovery prospects of a vectorlike top partner decaying to a singlet bosonPhys. Rev. D20221062022PhRvD.106g5024B[arXiv:2204.09005] [INSPIRE]
– reference: J. Maalampi and M. Roos, Flavor Mixing in the Presence of a Fourth Down Quark, Phys. Lett. B188 (1987) 487 [INSPIRE].
– reference: S. Catani et al., New clustering algorithm for multijet cross sections in e+e−annihilation, Phys. Lett. B269 (1991) 432 [INSPIRE].
– reference: C.S. Cowden and I. Volobouev, Detection of clustering instabilities for sequential recombination algorithms, J. Phys. Conf. Ser.404 (2012) 012054 [INSPIRE].
– reference: LarkoskiAJThalerJWaalewijnWJGaining (Mutual) Information about Quark/Gluon DiscriminationJHEP2014111292014JHEP...11..129L[arXiv:1408.3122] [INSPIRE]
– reference: AgasheKDetecting a Boosted Diboson ResonanceJHEP2018110272018JHEP...11..027A[arXiv:1809.07334] [INSPIRE]
– reference: ATLAS collaboration, Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector, arXiv:2212.05263 [CERN-EP-2022-201] [INSPIRE].
– reference: KrohnDThalerJWangL-TJets with Variable RJHEP2009060592009JHEP...06..059K[arXiv:0903.0392] [INSPIRE]
– reference: Mehtar-TaniYSoto-OntosoATywoniukKTagging boosted hadronic objects with dynamical groomingPhys. Rev. D20201022020PhRvD.102k4013M[arXiv:2005.07584] [INSPIRE]
– reference: EllisSARGodboleRMGopalakrishnaSWellsJDSurvey of vector-like fermion extensions of the Standard Model and their phenomenological implicationsJHEP2014091302014JHEP...09..130E[arXiv:1404.4398] [INSPIRE]
– reference: LuYResolving extreme jet substructureJHEP2022080462022JHEP...08..046L[arXiv:2202.00723] [INSPIRE]
– reference: A. Raychaudhuri, Is the b Quark Mixed with a Vector Like Quark, Phys. Rev. D40 (1989) 833 [INSPIRE].
– reference: P.K. Das, P. Konar, S. Kundu and S. Show, Jet substructure probe to unfold singlet-doublet dark matter in the presence of non-standard cosmology, arXiv:2301.02514 [INSPIRE].
– reference: ThalerJVan TilburgKIdentifying Boosted Objects with N-subjettinessJHEP2011030152011JHEP...03..015T[arXiv:1011.2268] [INSPIRE]
– reference: MoultINecibLThalerJNew Angles on Energy Correlation FunctionsJHEP2016121532016JHEP...12..153M[arXiv:1609.07483] [INSPIRE]
– reference: ThalerJVan TilburgKMaximizing Boosted Top Identification by Minimizing N-subjettinessJHEP2012020932012JHEP...02..093T[arXiv:1108.2701] [INSPIRE]
– reference: J.M. Campbell, J.W. Huston and W.J. Stirling, Hard Interactions of Quarks and Gluons: A Primer for LHC Physics, Rept. Prog. Phys.70 (2007) 89 [hep-ph/0611148] [INSPIRE].
– reference: ReicheltDPhenomenology of jet angularities at the LHCJHEP2022031312022JHEP...03..131R[arXiv:2112.09545] [INSPIRE]
– reference: G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett.39 (1977) 1436 [INSPIRE].
– reference: A.J. Larkoski and E.M. Metodiev, A Theory of Quark vs. Gluon Discrimination, JHEP10 (2019) 014 [arXiv:1906.01639] [INSPIRE].
– reference: EllisSDQjets: A Non-Deterministic Approach to Tree-Based Jet SubstructurePhys. Rev. Lett.20121082012PhRvL.108r2003E[arXiv:1201.1914] [INSPIRE]
– reference: ATLAS collaboration, Search for pair-production of vector-like quarks in pp collision events at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with at least one leptonically decaying Z boson and a third-generation quark with the ATLAS detector, arXiv:2210.15413 [CERN-EP-2021-207] [INSPIRE].
– reference: SalamGPTowards JetographyEur. Phys. J. C2010676372010EPJC...67..637S[arXiv:0906.1833] [INSPIRE]
– reference: BhardwajABoosted jet techniques for a supersymmetric scenario with gravitino LSPJHEP2020100832020JHEP...10..083B[arXiv:2007.00351] [INSPIRE]
– reference: Aguilar-SaavedraJABenbrikRHeinemeyerSPérez-VictoriaMHandbook of vectorlike quarks: Mixing and single productionPhys. Rev. D2013882013PhRvD..88i4010A[arXiv:1306.0572] [INSPIRE]
– reference: V.D. Barger, N. Deshpande, R.J.N. Phillips and K. Whisnant, Extra Fermions in E6 Superstring Theories, Phys. Rev. D33 (1986) 1912 [Erratum ibid.35 (1987) 1741] [INSPIRE].
– reference: J.E. Huth et al., Toward a standardization of jet definitions, in the proceedings of 1990 DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), Snowmass, U.S.A., June 28–July 16 1990, pp. 0134–136 [INSPIRE].
– reference: HanZTracking the Identities of Boosted ParticlesPhys. Rev. D2012862012PhRvD..86a4026H[arXiv:1112.3378] [INSPIRE]
– reference: DasguptaMHelliwellJInvestigating top tagging with Ym-Splitter and N-subjettinessJHEP2021100922021JHEP...10..092D[arXiv:2108.09317] [INSPIRE]
– reference: GirdharAMukhopadhyayaBPatraMDistinguishing Signatures of top-and bottom-type heavy vectorlike quarks at the LHCPhys. Rev. D2015912015PhRvD..91e5015G[arXiv:1404.3374] [INSPIRE]
– reference: DasKLiTNandiSRaiSKNew signals for vector-like down-type quark in U(1) of E6Eur. Phys. J. C201878352018EPJC...78...35D[arXiv:1708.00328] [INSPIRE]
– reference: MooreLNordströmKVarmaSFairbairnMReports of My Demise Are Greatly Exaggerated: N -subjettiness Taggers Take On Jet ImagesSciPost Phys.201970362019ScPP....7...36M[arXiv:1807.04769] [INSPIRE]
– reference: B. Bhattacherjee, C. Bose, A. Chakraborty and R. Sengupta, Boosted top tagging and its interpretation using Shapley values, arXiv:2212.11606 [INSPIRE].
– reference: M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett. B641 (2006) 57 [hep-ph/0512210] [INSPIRE].
– reference: A. Dey and T. Samui, Jet Substructure and Multivariate Analysis Aid in Polarization Study of Boosted, Hadronic W Fatjet at the LHC, arXiv:2110.02773 [HRI-RECAPP-2021-011] [INSPIRE].
– reference: J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977 [INSPIRE].
– reference: P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
– reference: KrohnDThalerJWangL-TJet TrimmingJHEP2010020842010JHEP...02..084K[arXiv:0912.1342] [INSPIRE]
– reference: StewartIWXCone: N-jettiness as an Exclusive Cone Jet AlgorithmJHEP2015110722015JHEP...11..072S[arXiv:1508.01516] [INSPIRE]
– reference: HanZSonMTweedieBTop-Tagging at the Energy FrontierPhys. Rev. D2018972018PhRvD..97c6023H[arXiv:1707.06741] [INSPIRE]
– reference: BradshawLMishraRKMitridateAOstdiekBMass Agnostic Jet TaggersSciPost Phys.202080112020ScPP....8...11B[arXiv:1908.08959] [INSPIRE]
– reference: SalamGPSchunkLSoyezGDichroic subjettiness ratios to distinguish colour flows in boosted boson taggingJHEP2017030222017JHEP...03..022S[arXiv:1612.03917] [INSPIRE]
– reference: T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
– reference: B. Mukhopadhyaya, T. Samui and R.K. Singh, Eliciting signals of vectorlike quarks at the LHC: the role of dynamic radius jet algorithm, in preparation.
– reference: LarkoskiAJMoultINeillDAnalytic Boosted Boson DiscriminationJHEP2016051172016JHEP...05..117L[arXiv:1507.03018] [INSPIRE]
– reference: R.S. Chivukula, B.A. Dobrescu, H. Georgi and C.T. Hill, Top Quark Seesaw Theory of Electroweak Symmetry Breaking, Phys. Rev. D59 (1999) 075003 [hep-ph/9809470] [INSPIRE].
– reference: S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
– reference: LarkoskiAJMoultINeillDPower Counting to Better Jet ObservablesJHEP2014120092014JHEP...12..009L[arXiv:1409.6298] [INSPIRE]
– reference: R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press (2011) [INSPIRE].
– reference: CMS collaboration, A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. D102 (2020) 112004 [arXiv:2008.09835] [INSPIRE].
– reference: MackeyLNachmanBSchwartzmanAStansburyCFuzzy JetsJHEP2016060102016JHEP...06..010M[arXiv:1509.02216] [INSPIRE]
– reference: Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP08 (1997) 001 [hep-ph/9707323] [INSPIRE].
– reference: CMS collaboration, Study of quark and gluon jet substructure in Z + jet and dijet events from pp collisions, JHEP01 (2022) 188 [arXiv:2109.03340] [INSPIRE].
– reference: T.G. Rizzo, Phenomenology of Exotic Particles in E6Theories, Phys. Rev. D34 (1986) 1438 [INSPIRE].
– reference: DasguptaMSchunkLSoyezGJet shapes for boosted jet two-prong decays from first-principlesJHEP2016041662016JHEP...04..166D[arXiv:1512.00516] [INSPIRE]
– reference: EllisSDJets in hadron-hadron collisionsProg. Part. Nucl. Phys.2008604842008PrPNP..60..484E[arXiv:0712.2447] [INSPIRE]
– reference: GilliozMGröberRKapuvariAMühlleitnerMVector-like Bottom Quarks in Composite Higgs ModelsJHEP2014030372014JHEP...03..037G[arXiv:1311.4453] [INSPIRE]
– reference: B. Mukhopadhyaya and S. Nandi, Collider implications of singlet fermions, Phys. Rev. D46 (1992) 5098 [INSPIRE].
– reference: ATLAS collaboration, Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, JHEP08 (2019) 033 [arXiv:1903.02942] [INSPIRE].
– reference: CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP2008040632008JHEP...04..063C1369.81100[arXiv:0802.1189] [INSPIRE]
– reference: GallicchioJSchwartzMDQuark and Gluon Tagging at the LHCPhys. Rev. Lett.20111072011PhRvL.107q2001G[arXiv:1106.3076] [INSPIRE]
– reference: CMS collaboration, Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, arXiv:2209.07327 [CMS-B2G-20-011] [INSPIRE].
– volume: 03
  start-page: 015
  year: 2011
  ident: 20624_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)015
– ident: 20624_CR97
  doi: 10.1103/PhysRevD.69.035009
– ident: 20624_CR106
– volume: 183
  start-page: 1201
  year: 2012
  ident: 20624_CR111
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.01.022
– volume: 01
  start-page: 022
  year: 2015
  ident: 20624_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP01(2015)022
– ident: 20624_CR64
– volume: 78
  start-page: 35
  year: 2018
  ident: 20624_CR102
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5495-0
– volume: 102
  year: 2020
  ident: 20624_CR56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.114013
– ident: 20624_CR41
– ident: 20624_CR12
– volume: 05
  start-page: 117
  year: 2016
  ident: 20624_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)117
– ident: 20624_CR58
– volume: 11
  start-page: 027
  year: 2018
  ident: 20624_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)027
– volume: 10
  start-page: 083
  year: 2020
  ident: 20624_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)083
– ident: 20624_CR91
  doi: 10.1103/PhysRevD.46.5098
– volume: 80
  start-page: 530
  year: 2020
  ident: 20624_CR55
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8082-8
– ident: 20624_CR112
  doi: 10.1016/S0010-4655(03)00222-4
– ident: 20624_CR67
– ident: 20624_CR23
  doi: 10.1007/JHEP10(2019)014
– volume: 191
  start-page: 159
  year: 2015
  ident: 20624_CR76
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.01.024
– volume: 8
  start-page: 011
  year: 2020
  ident: 20624_CR54
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.1.011
– ident: 20624_CR103
– volume: 07
  start-page: 079
  year: 2014
  ident: 20624_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– volume: 02
  start-page: 084
  year: 2010
  ident: 20624_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP02(2010)084
– ident: 20624_CR77
  doi: 10.1140/epjc/s10052-014-3024-y
– volume: 2015
  year: 2015
  ident: 20624_CR110
  publication-title: Adv. High Energy Phys.
– ident: 20624_CR14
  doi: 10.1088/1742-6596/404/1/012054
– ident: 20624_CR88
  doi: 10.1103/PhysRevD.33.1912
– volume: 06
  start-page: 093
  year: 2018
  ident: 20624_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP06(2018)093
– volume: 104
  year: 2021
  ident: 20624_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.035004
– ident: 20624_CR66
– ident: 20624_CR11
  doi: 10.1088/1126-6708/1997/08/001
– volume: 06
  start-page: 059
  year: 2009
  ident: 20624_CR70
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/06/059
– ident: 20624_CR108
– volume: 7
  start-page: 036
  year: 2019
  ident: 20624_CR51
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.3.036
– ident: 20624_CR90
  doi: 10.1103/PhysRevLett.66.285
– volume: 101
  year: 2020
  ident: 20624_CR84
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.034004
– volume: 05
  start-page: 146
  year: 2014
  ident: 20624_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)146
– volume: 11
  start-page: 059
  year: 2018
  ident: 20624_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)059
– ident: 20624_CR69
– volume: 03
  start-page: 022
  year: 2017
  ident: 20624_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)022
– volume: 12
  start-page: 153
  year: 2016
  ident: 20624_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)153
– volume: 67
  start-page: 637
  year: 2010
  ident: 20624_CR7
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-010-1314-6
– ident: 20624_CR105
– volume: 09
  start-page: 120
  year: 2022
  ident: 20624_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)120
– volume: 11
  start-page: 072
  year: 2015
  ident: 20624_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)072
– ident: 20624_CR1
  doi: 10.1088/0034-4885/70/1/R02
– volume: 107
  year: 2011
  ident: 20624_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.172001
– volume: 08
  start-page: 046
  year: 2022
  ident: 20624_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)046
– volume: 80
  year: 2009
  ident: 20624_CR86
  publication-title: Phys. Rev. D
– volume: 09
  start-page: 029
  year: 2013
  ident: 20624_CR79
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)029
– ident: 20624_CR30
– volume: 97
  year: 2018
  ident: 20624_CR48
  publication-title: Phys. Rev. D
– volume: 81
  year: 2010
  ident: 20624_CR87
  publication-title: Phys. Rev. D
– ident: 20624_CR4
– ident: 20624_CR68
– volume: 86
  year: 2012
  ident: 20624_CR43
  publication-title: Phys. Rev. D
– volume: 108
  year: 2012
  ident: 20624_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.182003
– ident: 20624_CR10
  doi: 10.1103/PhysRevD.48.3160
– volume: 105
  year: 2022
  ident: 20624_CR59
  publication-title: Phys. Rev. D
– volume: 100
  year: 2008
  ident: 20624_CR78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.242001
– ident: 20624_CR89
  doi: 10.1103/PhysRevD.34.1438
– volume: 03
  start-page: 133
  year: 2018
  ident: 20624_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)133
– volume: 02
  start-page: 093
  year: 2012
  ident: 20624_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)093
– volume: 106
  year: 2022
  ident: 20624_CR63
  publication-title: Phys. Rev. D
– volume: 12
  start-page: 031
  year: 2018
  ident: 20624_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP12(2018)031
– ident: 20624_CR113
  doi: 10.1016/j.cpc.2012.05.021
– ident: 20624_CR31
  doi: 10.1007/978-3-030-15709-8
– ident: 20624_CR96
  doi: 10.1103/PhysRevD.52.1663
– volume: 91
  year: 2015
  ident: 20624_CR100
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.055015
– ident: 20624_CR95
  doi: 10.1103/PhysRevD.40.833
– volume: 10
  start-page: 092
  year: 2021
  ident: 20624_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)092
– volume: 01
  start-page: 044
  year: 2017
  ident: 20624_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)044
– ident: 20624_CR94
  doi: 10.1016/0370-2693(87)91654-6
– ident: 20624_CR107
– volume: 60
  start-page: 484
  year: 2008
  ident: 20624_CR6
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2007.12.002
– volume: 04
  start-page: 166
  year: 2016
  ident: 20624_CR46
  publication-title: JHEP
– ident: 20624_CR9
  doi: 10.1016/0550-3213(93)90166-M
– ident: 20624_CR19
– volume: 88
  year: 2013
  ident: 20624_CR99
  publication-title: Phys. Rev. D
– volume: 39
  year: 2012
  ident: 20624_CR44
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/39/8/083001
– volume: 84
  year: 2011
  ident: 20624_CR98
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.055001
– volume: 12
  start-page: 021
  year: 2022
  ident: 20624_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP12(2022)021
– volume: 03
  start-page: 037
  year: 2014
  ident: 20624_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)037
– volume: 04
  start-page: 090
  year: 2013
  ident: 20624_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP04(2013)090
– volume: 06
  start-page: 203
  year: 2015
  ident: 20624_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)203
– ident: 20624_CR2
– volume: 06
  start-page: 108
  year: 2013
  ident: 20624_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP06(2013)108
– ident: 20624_CR73
  doi: 10.1016/j.physletb.2006.08.037
– volume: 75
  start-page: 409
  year: 2015
  ident: 20624_CR36
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3587-2
– ident: 20624_CR104
– volume: 07
  start-page: 091
  year: 2017
  ident: 20624_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)091
– volume: 04
  start-page: 063
  year: 2008
  ident: 20624_CR13
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– volume: 09
  start-page: 130
  year: 2014
  ident: 20624_CR101
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)130
– volume: 03
  start-page: 131
  year: 2022
  ident: 20624_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)131
– volume: 12
  start-page: 009
  year: 2014
  ident: 20624_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)009
– volume: 07
  start-page: 132
  year: 2017
  ident: 20624_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)132
– volume: 78
  start-page: 96
  year: 2018
  ident: 20624_CR82
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-5579-5
– volume: 06
  start-page: 010
  year: 2016
  ident: 20624_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)010
– ident: 20624_CR3
  doi: 10.1103/PhysRevLett.39.1436
– volume: 11
  start-page: 163
  year: 2017
  ident: 20624_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)163
– ident: 20624_CR75
  doi: 10.1088/1126-6708/2006/05/026
– ident: 20624_CR5
– volume: 02
  start-page: 083
  year: 2018
  ident: 20624_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)083
– volume: 03
  start-page: 098
  year: 2019
  ident: 20624_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)098
– ident: 20624_CR65
– volume: 11
  start-page: 129
  year: 2014
  ident: 20624_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)129
– volume: 81
  start-page: 130
  year: 2021
  ident: 20624_CR24
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-08856-9
– volume: 72
  start-page: 1896
  year: 2012
  ident: 20624_CR72
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-1896-2
– volume: 91
  year: 2015
  ident: 20624_CR35
  publication-title: Phys. Rev. D
– ident: 20624_CR8
  doi: 10.1016/0370-2693(91)90196-W
– ident: 20624_CR109
  doi: 10.1016/j.cpc.2014.02.018
– ident: 20624_CR92
  doi: 10.1103/PhysRevD.59.075003
SSID ssj0015190
Score 2.505557
Snippet A bstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential...
The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential part of...
Abstract The study of standard QCD jets produced along with fat jets, which may appear as a result of the decay of a heavy particle, has become an essential...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Algorithms
Classical and Quantum Gravitation
Clustering
Elementary Particles
Hadrons
High energy physics
Jets
Jets and Jet Substructure
Kinematics
Large Hadron Collider
Particle decay
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Vector-Like Fermions
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZ4rbQXYHloh5d6WAk4FPpI2uaEeApxQHMACXGpEscZQMMMO-3s7yfJtMNDYi9cWyey7CS24-j7AP4IV0W4siS30TNkyHUoVYphQbHRghhShp5sIr--Lu7uRLe5cKuaZ5XtmegPaj1Ed0d-mOQ2Mc9shVwcvfwNHWuU6642FBqzMO9QEhx1Q5ffT7sINjuJWjifKD-8ujzvRmzPEYbve2idd5HIA_Z_yDI_NUZ9vLlY-q6my7DYZJrB8WRp_IIZGqzAD__iE6tV2D2bcNEHI6kfx1XwRHWA_bHDTbD6BLLfs3PWD89rcHtxfnN6GTasCSGyOK9DSrnEVOuYTGaEUqhywY3UpJClmkVot1yCwhidGlc9IWmuEtLIIyLicboOc4PhgH5DUHAdY4RMkfWaUTZyZdLINJIoKIlJdOCgtWCJDaS4Y7boly0Y8sTkpTN5aU3egb3pgJcJmsbXoifOJVMxB4PtPwxHvbLZVaVyaG5xlihKCyalEmhYrDijTGKRk-zAVuuistmbVfnmnw7st05--_2FPhv_n2oTfjpJ_6aHbcFcPRrTNizgv_qxGu34ZfkKNWnrJw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmHhIX3ojxUg9IwKGoaZO2OfIU4jBxAIlblTgODI0NdR2_nyZrhwBxgFvVOlVcx7Ut258BDqWLIlxYktXWM-QoTKh0gmFOzBpJHClFP2wi6_Xyx0d51wHW9sL4avc2Jen_1G2z2-3N1V3Ej92475PIAX3OC5ZLV8V34RocmsRB7ZBELYLPz0VfjI_H6P_iWH7LhXoTc73yj82twnLjTwZn0wOwBh0arsOir-vE8QYcXU4nzgelMv3JOHihKsDBxKEj1K8P1OBpVPar59dNeLi-ur-4CZvZCCFyllUhJUJhYgwjm1qpNepMCqsMaeSJ4RHWihWjtNYk1sVISEbomAyKiIgES7Zgbjga0jYEuTAMI-SaatlYXdunVFmVRAolxYxkF07bj1ZgAxzu5lcMihbyeMp94bgvau67cDxb8DbFzPid9NxJYUbmwK79jVH5VDS6U2iH2cbSWFOSc6W0RMuZFpxShXlGqgt7rQyLRgPHRZzVgVwq8yzvwkkrs8_Hv-xn5w-0u7DkLn0ZD9-Duaqc0D4s4HvVH5cH_lh-AP-B3lU
  priority: 102
  providerName: Springer Nature
Title Dynamic radius jet clustering algorithm
URI https://link.springer.com/article/10.1007/JHEP04(2023)019
https://www.proquest.com/docview/2796669878
https://doaj.org/article/b1921162be384aab9cf41b54e6ac87ea
Volume 2023
WOSCitedRecordID wos000964930200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: Open Access资源_SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21tJV6QbQFsQVWOVQqHAL5sOP4CMuutpW6iqpW2nKJ7PG4BW2Xaj_4_dhOQgEJ9dJLDrFjWW9izTx59B7AB-lZhKclwmXPmCE3sdI5xiWl1khiSAUGswkxmZTTqazuWX35nrBGHrgB7kR7wa60yDTlJVNKS7Qs1ZxRobAUFEqjRMiOTLX3B64uSTohn0ScfB4Pq4QdeqvwoyCqcy8HBan-B_XloyvRkGlGW7DZlojRabO1N_CM5m_hVWjVxOU7-HjemMhHC2Uu18voilYRztZe8MAtF6nZz2tH-H_93obvo-G3wThu7Q5iZKlYxZRzhbkxKdnCSq1RC8mtMqSR5YYl6M5KhtJak1tPe5AM1xkZ5AkR8TTfgY359Zx2ISq5STFBpsnBbbVLOYWyKk8USspSkj047gCosdUC95YUs7pTMW4Qqz1itUOsB4d3H_xpZDCennrmEb2b5vWrwwsX1bqNav2vqPZgv4tH3R6qZZ0Jx80KWYqyB0ddjP4OP7Gf9_9jP3vw2q8XWnbYPmysFms6gJd4s7pcLvrw4mw4qb724fkgY_3wJ7pnxS_cSPXpS_XjFvE74o8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iQyvY9I2YlpYsWhUWKXk4Dy-qqi2gGR6jWVCJrlz7-hoGDTN0kmnFT_Uba2eSoUWiOxZsE9uyc0_uI3bOAXjDXRXhypLMRk-fYaJ9qWL0cwqN5sSQUqzEJrJeLz8-5v0F-N38C-OOVTY-sXLUeozuG_lWlNnEPLUVcv7x4ofvVKPc7mojoTGDxT5d_rIlW_Ghu23t-zaKdneOvnT8WlXARxZmpU9xIjHWOiSTGq4UqownRmpSyGLNArSQjJAbo2PjqgsknaiINCYBESVhbMe9B4vMgb0Fi_3uYf_bfN_C5kNBQyAUZFt7nZ1-wDacRPlmRebzV-yrJAL-yWuvbcVWEW730V17No_hYZ1Le59m4H8CCzR6Cg-qM61YPIN325cjeT5AbyL1YFp4Z1R6OJw6Zgi7fk8OT-waytPz5_D1Vma5Aq3ReESr4OWJDjFApsji0igbm1NpZBxI5BSFxNvwvrGYwJo03Wl3DEVD9zwzsXAmFtbEbdiYd7iY8YXc3PSzg8C8mSP6ri6MJyei9htCOb66MI0UxTmTUnE0LFQJo1RinpFsw1oDCVF7n0Jc4aENmw2orm7fMJ8X_x9qHZY6R4cH4qDb238Jy65XdYKJrUGrnEzpFdzHn-WgmLyuXwoPvt821v4AiJ1PeQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhCXlqdYWiAHEO0hbB52Eh8QArarlqLVHkCquLj2eNxutd0tmyyof41fh51NtoBUbj1wTWzL8Xyehz35BuCF8FGED0tyZz1DhtyESqcYFhRbI4ghZVgXm8gHg-LwUAxX4Gf7L4xPq2x1Yq2ozRT9GXk3yZ1jnrkIuejaJi1i2Ou_Pf8W-gpS_qa1LaexgMgBXfxw4Vv5Zr_nZP0ySfq7nz_shU2FgRBZnFchpVxhakxMNrNCa9S54FYZ0shSwyJ08ExQWGtS6yMNJMN1QgZ5REQ8Tt24N2AtdzGmTycc8q_LGwznGUUtlVCUdz_u7Q4jtu2Lle_UtD6_WcG6WMAfHu5fl7K1retv_M-rdBfWGw87eLfYEvdghSb34Vad6YrlA3jVu5iosxEGM2VG8zI4pSrA8dzzRbi1CNT42H1DdXL2EL5cyywfwepkOqHHEBTcxBgh0-TQarWz2JmyKo0UCkpiEh143UpPYkOl7it6jGVLAr0Qt_Tilk7cHdhedjhfsIhc3fS9h8Oymaf_rh9MZ8ey0SZSexa7OEs0pQVTSgu0LNacUaawyEl1YKuFh2x0UikvsdGBnRZgl6-vmM-Tfw_1HG47gMlP-4ODTbjjO9VpTWwLVqvZnJ7CTfxejcrZs3p3BHB03UD7BRSbVtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+radius+jet+clustering+algorithm&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Biswarup+Mukhopadhyaya&rft.au=Tousik+Samui&rft.au=Ritesh+K.+Singh&rft.date=2023-04-04&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2023&rft.issue=4&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1007%2FJHEP04%282023%29019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b1921162be384aab9cf41b54e6ac87ea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon