Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model

In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Infection and immunity Ročník 82; číslo 11; s. 4718
Hlavní autoři: DeLeon, Stephanie, Clinton, Allie, Fowler, Haley, Everett, Jake, Horswill, Alexander R, Rumbaugh, Kendra P
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.11.2014
Témata:
ISSN:1098-5522, 1098-5522
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in wound infections, very little is known about their interspecies relationship. Evidence suggests that P. aeruginosa-S. aureus coinfections are more virulent than monoculture infection with either species; however, difficulties in growing these two pathogens together in vitro have hampered attempts to uncover the mechanisms involved. Here we describe a simple and clinically relevant in vitro wound model that supported concomitant growth of P. aeruginosa and S. aureus. We observed that the ability of P. aeruginosa and S. aureus to survive antibiotic treatment increased when they were grown together in planktonic cocultures and that antibiotic tolerance was further enhanced when they were grown together in the wound model. We attributed this enhanced tolerance to both the "host-derived" and "bacterium-derived" matrix components. Taken together, our data indicate that P. aeruginosa and S. aureus may benefit each other by coinfecting wounds and that the host-derived matrix may serve as important a role as the bacterium-derived matrix in protecting bacteria from some antibiotics.
AbstractList In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in wound infections, very little is known about their interspecies relationship. Evidence suggests that P. aeruginosa-S. aureus coinfections are more virulent than monoculture infection with either species; however, difficulties in growing these two pathogens together in vitro have hampered attempts to uncover the mechanisms involved. Here we describe a simple and clinically relevant in vitro wound model that supported concomitant growth of P. aeruginosa and S. aureus. We observed that the ability of P. aeruginosa and S. aureus to survive antibiotic treatment increased when they were grown together in planktonic cocultures and that antibiotic tolerance was further enhanced when they were grown together in the wound model. We attributed this enhanced tolerance to both the "host-derived" and "bacterium-derived" matrix components. Taken together, our data indicate that P. aeruginosa and S. aureus may benefit each other by coinfecting wounds and that the host-derived matrix may serve as important a role as the bacterium-derived matrix in protecting bacteria from some antibiotics.In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in wound infections, very little is known about their interspecies relationship. Evidence suggests that P. aeruginosa-S. aureus coinfections are more virulent than monoculture infection with either species; however, difficulties in growing these two pathogens together in vitro have hampered attempts to uncover the mechanisms involved. Here we describe a simple and clinically relevant in vitro wound model that supported concomitant growth of P. aeruginosa and S. aureus. We observed that the ability of P. aeruginosa and S. aureus to survive antibiotic treatment increased when they were grown together in planktonic cocultures and that antibiotic tolerance was further enhanced when they were grown together in the wound model. We attributed this enhanced tolerance to both the "host-derived" and "bacterium-derived" matrix components. Taken together, our data indicate that P. aeruginosa and S. aureus may benefit each other by coinfecting wounds and that the host-derived matrix may serve as important a role as the bacterium-derived matrix in protecting bacteria from some antibiotics.
In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in wound infections, very little is known about their interspecies relationship. Evidence suggests that P. aeruginosa-S. aureus coinfections are more virulent than monoculture infection with either species; however, difficulties in growing these two pathogens together in vitro have hampered attempts to uncover the mechanisms involved. Here we describe a simple and clinically relevant in vitro wound model that supported concomitant growth of P. aeruginosa and S. aureus. We observed that the ability of P. aeruginosa and S. aureus to survive antibiotic treatment increased when they were grown together in planktonic cocultures and that antibiotic tolerance was further enhanced when they were grown together in the wound model. We attributed this enhanced tolerance to both the "host-derived" and "bacterium-derived" matrix components. Taken together, our data indicate that P. aeruginosa and S. aureus may benefit each other by coinfecting wounds and that the host-derived matrix may serve as important a role as the bacterium-derived matrix in protecting bacteria from some antibiotics.
Author Clinton, Allie
Horswill, Alexander R
Rumbaugh, Kendra P
Fowler, Haley
Everett, Jake
DeLeon, Stephanie
Author_xml – sequence: 1
  givenname: Stephanie
  surname: DeLeon
  fullname: DeLeon, Stephanie
  organization: Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
– sequence: 2
  givenname: Allie
  surname: Clinton
  fullname: Clinton, Allie
  organization: Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
– sequence: 3
  givenname: Haley
  surname: Fowler
  fullname: Fowler, Haley
  organization: Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
– sequence: 4
  givenname: Jake
  surname: Everett
  fullname: Everett, Jake
  organization: Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
– sequence: 5
  givenname: Alexander R
  surname: Horswill
  fullname: Horswill, Alexander R
  organization: Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
– sequence: 6
  givenname: Kendra P
  surname: Rumbaugh
  fullname: Rumbaugh, Kendra P
  email: kendra.rumbaugh@ttuhsc.edu
  organization: Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA kendra.rumbaugh@ttuhsc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25156721$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EN3rmWWbqYmadKZWZbio1BQqK6HNLmpkZmk5qH035tiBTfnnMv5uFzuGA2ss4DQNcFTQmh9t1qsppiSpi4JO0MjgnPinNLBvzxE4xA-MCaMsfoCDSknfF5RMkK7zcGC35kQjSyMjeCFjMbZUDhdvARIyvXOilAI8GlnrAuiEFYVmyj274fOSSdlym3ykM3YXB71y0Tvim-XMto7Bd0lOteiC3B18gl6e7h_XT6V6-fH1XKxLiUjVSzVlgPXqiYUBJ1rBVg1TcWa47CdEZaPVlTJWRZcSSUklpoJjoWGGgTWdIJuf_fuvftMEGLbmyCh64QFl0JL5rjhmHNMMnpzQtO2B9XuvemFP7R_z6E_OXpqjQ
CitedBy_id crossref_primary_10_1038_s41598_020_75086_6
crossref_primary_10_1038_s41522_016_0002_1
crossref_primary_10_1016_j_jiph_2023_12_016
crossref_primary_10_3389_fimmu_2025_1488699
crossref_primary_10_1038_s41598_024_53317_4
crossref_primary_10_1039_D4SC08622H
crossref_primary_10_1007_s00449_020_02454_x
crossref_primary_10_1039_D0MH01826K
crossref_primary_10_3390_antibiotics10121481
crossref_primary_10_1038_s41579_024_01035_z
crossref_primary_10_1371_journal_pone_0134624
crossref_primary_10_3390_antibiotics14060597
crossref_primary_10_1111_1462_2920_15734
crossref_primary_10_1080_21505594_2024_2397503
crossref_primary_10_1186_s12918_016_0334_8
crossref_primary_10_1016_j_ymthe_2022_07_016
crossref_primary_10_1039_D4SM01441C
crossref_primary_10_1016_j_jcf_2019_10_015
crossref_primary_10_1038_ismej_2017_83
crossref_primary_10_3390_polym16131820
crossref_primary_10_1002_bit_25963
crossref_primary_10_1111_1755_0998_13535
crossref_primary_10_1038_s41598_020_80522_8
crossref_primary_10_1016_j_bioflm_2025_100256
crossref_primary_10_3389_fmicb_2023_1211761
crossref_primary_10_1093_labmed_lmac101
crossref_primary_10_3389_fbioe_2019_00449
crossref_primary_10_3390_ma17040793
crossref_primary_10_1099_jmm_0_001134
crossref_primary_10_1111_iwj_13564
crossref_primary_10_1111_1751_7915_14261
crossref_primary_10_1128_mSphere_00247_17
crossref_primary_10_1038_s41540_024_00360_6
crossref_primary_10_3389_fcimb_2023_1176755
crossref_primary_10_1016_j_jmb_2015_09_002
crossref_primary_10_1007_s00248_018_1207_z
crossref_primary_10_3390_microorganisms10081500
crossref_primary_10_1093_jambio_lxae042
crossref_primary_10_1111_jam_14421
crossref_primary_10_2217_fmb_2020_0301
crossref_primary_10_1093_jac_dkaf153
crossref_primary_10_1128_msystems_00338_22
crossref_primary_10_3390_antibiotics12071164
crossref_primary_10_1038_s41598_019_52726_0
crossref_primary_10_1016_j_ijpharm_2025_125199
crossref_primary_10_1016_j_actbio_2021_10_014
crossref_primary_10_1016_j_actbio_2022_10_039
crossref_primary_10_1038_s41598_022_12650_2
crossref_primary_10_1038_s41522_024_00512_w
crossref_primary_10_1016_j_addr_2023_114778
crossref_primary_10_1177_02683555221088380
crossref_primary_10_1371_journal_pcbi_1006179
crossref_primary_10_1071_MA23029
crossref_primary_10_1016_j_pdpdt_2020_102002
crossref_primary_10_3390_antibiotics10070827
crossref_primary_10_3390_gels10010060
crossref_primary_10_3389_fmicb_2020_00291
crossref_primary_10_1128_jb_00174_22
crossref_primary_10_3390_ijms25042087
crossref_primary_10_3390_pathogens10020144
crossref_primary_10_1007_s13346_023_01406_8
crossref_primary_10_1111_1462_2920_13594
crossref_primary_10_1089_wound_2020_1176
crossref_primary_10_1186_s12866_024_03520_0
crossref_primary_10_1007_s00253_016_7596_3
crossref_primary_10_1016_j_biopha_2022_114184
crossref_primary_10_1016_j_mib_2020_02_003
crossref_primary_10_1093_infdis_jix541
crossref_primary_10_3389_fmicb_2019_00721
crossref_primary_10_1038_s41598_022_25569_5
crossref_primary_10_1080_17460913_2024_2417617
crossref_primary_10_1073_pnas_2212340119
crossref_primary_10_3390_environments12040105
crossref_primary_10_1089_mdr_2020_0512
crossref_primary_10_1038_s41522_024_00637_y
crossref_primary_10_1038_srep46336
crossref_primary_10_3389_fmicb_2022_959156
crossref_primary_10_1016_j_mimet_2020_105994
crossref_primary_10_1016_j_envres_2023_117118
crossref_primary_10_1016_j_watres_2024_122137
crossref_primary_10_3389_fphar_2024_1339858
crossref_primary_10_2217_fmb_2019_0279
crossref_primary_10_1038_s41579_022_00683_3
crossref_primary_10_1093_jac_dkz247
crossref_primary_10_1093_femspd_fty003
crossref_primary_10_1371_journal_pone_0234832
crossref_primary_10_3389_fmicb_2022_1068251
crossref_primary_10_1093_nar_gkaf471
crossref_primary_10_1093_femsle_fnx128
crossref_primary_10_1096_fj_202100717RR
crossref_primary_10_1080_00914037_2018_1534111
crossref_primary_10_1186_s12964_024_01622_w
crossref_primary_10_3390_microorganisms10112279
crossref_primary_10_1016_j_ijpharm_2020_120110
crossref_primary_10_1016_j_preteyeres_2019_100804
crossref_primary_10_1080_1040841X_2016_1252312
crossref_primary_10_3389_fphar_2020_566334
crossref_primary_10_1080_08927014_2020_1859499
crossref_primary_10_1016_j_diagmicrobio_2020_115080
crossref_primary_10_1128_msphere_00686_24
crossref_primary_10_3390_v12050559
crossref_primary_10_3390_pharmaceutics13081117
crossref_primary_10_1080_1040841X_2020_1863329
crossref_primary_10_1016_j_csbj_2020_11_043
crossref_primary_10_1128_iai_00407_23
crossref_primary_10_3390_pharmaceutics16111484
crossref_primary_10_1016_j_addr_2018_07_019
crossref_primary_10_1016_j_micres_2024_127612
crossref_primary_10_1128_JB_00559_19
crossref_primary_10_1186_s12951_020_00760_w
crossref_primary_10_1007_s40588_022_00180_4
crossref_primary_10_1099_jmm_0_001100
crossref_primary_10_1128_spectrum_02882_24
crossref_primary_10_3389_fmicb_2022_791802
crossref_primary_10_3389_fmicb_2021_617784
crossref_primary_10_1038_s41579_019_0186_5
crossref_primary_10_1128_IAI_00116_17
crossref_primary_10_1038_s41522_018_0056_3
crossref_primary_10_7554_eLife_81112
crossref_primary_10_1016_j_otsr_2018_03_003
crossref_primary_10_3389_fcimb_2020_00379
crossref_primary_10_1111_1751_7915_70137
crossref_primary_10_1016_j_cub_2018_05_024
crossref_primary_10_1177_0885328218756653
crossref_primary_10_1016_j_compbiomed_2022_105997
crossref_primary_10_1183_16000617_0041_2019
crossref_primary_10_1093_rb_rbab054
crossref_primary_10_1007_s00018_019_03377_x
crossref_primary_10_1016_j_ijbiomac_2025_143169
crossref_primary_10_1016_j_bioadv_2023_213613
crossref_primary_10_1007_s12275_018_8331_9
crossref_primary_10_1128_msystems_00111_25
crossref_primary_10_1186_s12917_020_02630_x
crossref_primary_10_3390_ph16070961
crossref_primary_10_3390_microorganisms10102027
crossref_primary_10_1007_s12268_025_2416_x
crossref_primary_10_3390_ijms23136942
crossref_primary_10_1016_j_carpta_2025_100796
crossref_primary_10_1128_AAC_02007_20
crossref_primary_10_1128_AAC_02414_20
crossref_primary_10_7554_eLife_83664
crossref_primary_10_1186_s40001_022_00804_x
crossref_primary_10_1007_s10482_018_1103_z
crossref_primary_10_1002_JLB_MR0318_128
crossref_primary_10_1186_s12866_020_02071_4
crossref_primary_10_1016_j_envres_2022_113905
crossref_primary_10_1002_advs_202410893
crossref_primary_10_1038_s41396_018_0146_5
crossref_primary_10_3390_microorganisms11010016
crossref_primary_10_3389_fphar_2021_675300
crossref_primary_10_1016_j_colsurfb_2021_111588
crossref_primary_10_1586_14787210_2015_1023291
crossref_primary_10_1080_1040841X_2024_2397359
crossref_primary_10_1016_j_snb_2023_135179
crossref_primary_10_1080_08927014_2021_2022125
crossref_primary_10_3389_fgene_2022_883199
crossref_primary_10_3389_fcimb_2022_869736
crossref_primary_10_3390_ijms24021004
crossref_primary_10_1111_joim_12782
crossref_primary_10_3390_microorganisms9102074
crossref_primary_10_3390_toxins13030230
crossref_primary_10_3389_fcimb_2017_00125
crossref_primary_10_1016_j_msec_2021_112555
crossref_primary_10_3390_life13020504
crossref_primary_10_3389_fmicb_2023_1326904
crossref_primary_10_1159_000494757
crossref_primary_10_1371_journal_pone_0221565
crossref_primary_10_1111_1462_2920_12873
crossref_primary_10_1128_AAC_00302_17
crossref_primary_10_1002_bit_27078
crossref_primary_10_1371_journal_pone_0304491
crossref_primary_10_1080_1040841X_2019_1700209
crossref_primary_10_1371_journal_pbio_3002488
crossref_primary_10_2147_IJN_S265934
crossref_primary_10_1128_JB_00159_20
crossref_primary_10_3390_ph15070884
crossref_primary_10_3389_fmicb_2018_02287
crossref_primary_10_1038_nmicrobiol_2017_79
crossref_primary_10_3389_fmicb_2022_832919
crossref_primary_10_1016_j_ijbiomac_2023_127247
crossref_primary_10_1128_msystems_00576_25
crossref_primary_10_1002_cbic_202500105
crossref_primary_10_1021_acsinfecdis_5c00225
crossref_primary_10_1111_1751_7915_70174
crossref_primary_10_3390_pathogens10020096
crossref_primary_10_1128_spectrum_04226_23
crossref_primary_10_3389_fmicb_2020_00695
crossref_primary_10_1371_journal_pone_0137753
crossref_primary_10_1080_08927014_2018_1425684
crossref_primary_10_1002_admt_202400219
crossref_primary_10_1038_s41522_024_00621_6
crossref_primary_10_1038_s41598_017_09886_8
crossref_primary_10_1093_jac_dky216
crossref_primary_10_3389_fcimb_2020_00450
crossref_primary_10_1016_j_colsurfb_2025_114880
crossref_primary_10_1080_03008207_2017_1350174
crossref_primary_10_1016_j_carbpol_2020_116625
crossref_primary_10_1128_AAC_00547_18
crossref_primary_10_2147_IDR_S260708
crossref_primary_10_1038_s41598_024_79573_y
crossref_primary_10_1128_JB_00072_15
crossref_primary_10_3390_antibiotics8030103
crossref_primary_10_1016_j_bios_2019_111538
crossref_primary_10_1186_s12879_022_07238_0
crossref_primary_10_1371_journal_pone_0298829
crossref_primary_10_1080_17425247_2025_2452303
crossref_primary_10_1128_JB_00530_19
crossref_primary_10_1016_j_biochi_2024_11_002
crossref_primary_10_1186_s12864_018_5398_y
crossref_primary_10_2217_fmb_15_109
crossref_primary_10_3389_fmicb_2018_01450
crossref_primary_10_1016_j_powtec_2023_119152
crossref_primary_10_1038_s41522_021_00243_2
crossref_primary_10_1128_mbio_03846_24
crossref_primary_10_1080_14787210_2025_2538614
crossref_primary_10_1038_s41598_019_50094_3
crossref_primary_10_2478_abmj_2021_0012
crossref_primary_10_3389_fcimb_2022_1020391
crossref_primary_10_1371_journal_pone_0237263
crossref_primary_10_1128_spectrum_00626_24
crossref_primary_10_1016_j_bbrep_2025_102127
crossref_primary_10_1371_journal_pone_0123648
crossref_primary_10_3389_fcimb_2024_1326730
crossref_primary_10_3390_ijms25010411
crossref_primary_10_1111_mmi_14699
crossref_primary_10_3389_fimmu_2022_984016
crossref_primary_10_3390_microorganisms11051210
crossref_primary_10_1016_j_tim_2024_11_009
crossref_primary_10_3390_biomedicines9060675
crossref_primary_10_3390_ijms18051077
crossref_primary_10_1309_LMBNSWKUI4JPN7SO
crossref_primary_10_1038_nrmicro_2015_8
crossref_primary_10_1186_s12916_020_01820_6
crossref_primary_10_1016_j_biotechadv_2021_107734
crossref_primary_10_3390_microorganisms8101580
crossref_primary_10_1038_s41579_024_01086_2
crossref_primary_10_3390_biomedicines7020034
crossref_primary_10_1038_ismej_2015_220
crossref_primary_10_3389_fbioe_2019_00418
crossref_primary_10_1039_D2NR02051C
crossref_primary_10_1371_journal_pone_0152755
crossref_primary_10_1128_AEM_00962_20
crossref_primary_10_3390_ijms22020482
crossref_primary_10_3390_molecules27154879
crossref_primary_10_1038_s41598_021_04008_x
crossref_primary_10_3390_microorganisms12010042
crossref_primary_10_1038_s41467_023_36252_2
crossref_primary_10_1128_AAC_01998_16
crossref_primary_10_1093_ismejo_wraf104
crossref_primary_10_1128_IAI_00934_19
crossref_primary_10_3389_fmicb_2021_672975
crossref_primary_10_1016_j_chembiol_2022_02_007
crossref_primary_10_1016_j_jconrel_2019_06_011
crossref_primary_10_1039_D0NH00624F
crossref_primary_10_1016_j_jmb_2016_05_006
crossref_primary_10_3390_antibiotics9110747
crossref_primary_10_1016_j_actbio_2021_11_010
crossref_primary_10_1038_s41467_021_20965_3
crossref_primary_10_1111_wrr_12944
crossref_primary_10_1007_s00253_020_10687_9
crossref_primary_10_1016_j_ceramint_2025_07_076
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/IAI.02198-14
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
ExternalDocumentID 25156721
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI083211
– fundername: NIAID NIH HHS
  grantid: P01 AI083211
– fundername: NIAID NIH HHS
  grantid: R15 AI105763
– fundername: NIAID NIH HHS
  grantid: AI105763
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UPT
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c417t-db5e5fd812ea26fde0d99749a26fb314672d2dc3d2d07cdac0cf4a50afe8ea0f2
IEDL.DBID 7X8
ISICitedReferencesCount 316
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343582900027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5522
IngestDate Sun Nov 09 13:30:50 EST 2025
Thu Apr 03 07:08:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-db5e5fd812ea26fde0d99749a26fb314672d2dc3d2d07cdac0cf4a50afe8ea0f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iai.asm.org/content/iai/82/11/4718.full.pdf
PMID 25156721
PQID 1609505501
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1609505501
pubmed_primary_25156721
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2014
References 4313167 - Appl Microbiol. 1969 Nov;18(5):766-70
4014440 - Am J Pathol. 1985 Jul;120(1):13-21
11407793 - J Bone Joint Surg Am. 2001 Jun;83-A(6):855-61
111024 - Microbiol Rev. 1979 Mar;43(1):73-102
19564370 - Antimicrob Agents Chemother. 2009 Sep;53(9):3914-22
239464 - Thromb Res. 1975 Jun;6(6):501-10
8419592 - J Pediatr. 1993 Jan;122(1):1-9
18603682 - Indian J Pathol Microbiol. 2008 Apr-Jun;51(2):204-8
16030228 - J Bacteriol. 2005 Aug;187(15):5341-6
7986003 - Antimicrob Agents Chemother. 1994 Aug;38(8):1732-41
17172450 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19890-5
20081576 - J Wound Care. 2009 Dec;18(12):508, 510-12
23433007 - Int Wound J. 2015 Feb;12(1):47-52
16984578 - Int Wound J. 2006 Sep;3(3):225-31
24101503 - Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18380-5
16411377 - Br J Biomed Sci. 2005;62(4):175-8
22009290 - Eur J Clin Microbiol Infect Dis. 2012 Jul;31(7):1347-52
20216488 - J Wound Care. 2010 Feb;19(2):45-6, 48-50, 52-3
20835702 - Diabetologia. 2011 Jan;54(1):58-64
17562773 - Infect Immun. 2007 Aug;75(8):3715-21
23451098 - PLoS One. 2013;8(2):e56846
17873029 - J Bacteriol. 2007 Nov;189(22):8079-87
15866058 - J Diabetes Complications. 2005 May-Jun;19(3):138-41
16879411 - Mol Microbiol. 2006 Sep;61(5):1308-21
17449616 - J Bacteriol. 2007 Jun;189(12):4367-74
22076151 - PLoS One. 2011;6(11):e27317
20236200 - J Eur Acad Dermatol Venereol. 2010 Sep;24(9):1017-25
19188357 - Infect Immun. 2009 Apr;77(4):1623-35
25054067 - J Pathog. 2014;2014:173053
19389780 - Microbiology. 2009 Jul;155(Pt 7):2148-56
16030221 - J Bacteriol. 2005 Aug;187(15):5267-77
22132176 - PLoS One. 2011;6(11):e27943
20616768 - J Wound Care. 2010 Jul;19(7):272-8, 280-1
23751003 - Environ Microbiol. 2013 Oct;15(10):2865-78
19812273 - J Clin Microbiol. 2009 Dec;47(12):4084-9
19816382 - J Wound Care. 2009 Oct;18(10):426-31
15215091 - Antimicrob Agents Chemother. 2004 Jul;48(7):2431-6
15673721 - Antimicrob Agents Chemother. 2005 Feb;49(2):479-87
18211572 - Wound Repair Regen. 2008 Jan-Feb;16(1):1
24126517 - Infect Immun. 2014 Jan;82(1):92-100
20418950 - PLoS One. 2010;5(4):e10146
19207742 - FEMS Microbiol Rev. 2009 Jul;33(4):704-17
15302726 - Chest. 2004 Aug;126(2):412-9
18508940 - J Clin Microbiol. 2008 Aug;46(8):2717-22
23007678 - Med Microbiol Immunol. 2013 Apr;202(2):131-41
3104732 - Microbios. 1987;49(198):55-64
18211573 - Wound Repair Regen. 2008 Jan-Feb;16(1):2-10
21557060 - Adv Exp Med Biol. 2011;715:105-23
18325110 - BMC Microbiol. 2008;8:43
11157916 - J Antimicrob Chemother. 2001 Feb;47(2):239-40
19128252 - Wound Repair Regen. 2008 Nov-Dec;16(6):805-13
18086294 - Wound Repair Regen. 2008 Jan-Feb;16(1):37-44
17419768 - FEMS Microbiol Lett. 2007 May;270(2):179-88
20961515 - Euro Surveill. 2010 Oct 14;15(41):19688
21544190 - PLoS One. 2011;6(4):e19036
16751497 - Appl Environ Microbiol. 2006 Jun;72(6):3916-23
15995954 - J Infect Dis. 2005 Aug 1;192(3):410-9
16286361 - J Antimicrob Chemother. 2005 Dec;56(6):1042-6
References_xml – reference: 7986003 - Antimicrob Agents Chemother. 1994 Aug;38(8):1732-41
– reference: 17562773 - Infect Immun. 2007 Aug;75(8):3715-21
– reference: 21557060 - Adv Exp Med Biol. 2011;715:105-23
– reference: 20236200 - J Eur Acad Dermatol Venereol. 2010 Sep;24(9):1017-25
– reference: 16411377 - Br J Biomed Sci. 2005;62(4):175-8
– reference: 24101503 - Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18380-5
– reference: 111024 - Microbiol Rev. 1979 Mar;43(1):73-102
– reference: 11157916 - J Antimicrob Chemother. 2001 Feb;47(2):239-40
– reference: 18211573 - Wound Repair Regen. 2008 Jan-Feb;16(1):2-10
– reference: 15995954 - J Infect Dis. 2005 Aug 1;192(3):410-9
– reference: 19207742 - FEMS Microbiol Rev. 2009 Jul;33(4):704-17
– reference: 25054067 - J Pathog. 2014;2014:173053
– reference: 24126517 - Infect Immun. 2014 Jan;82(1):92-100
– reference: 16286361 - J Antimicrob Chemother. 2005 Dec;56(6):1042-6
– reference: 4014440 - Am J Pathol. 1985 Jul;120(1):13-21
– reference: 20216488 - J Wound Care. 2010 Feb;19(2):45-6, 48-50, 52-3
– reference: 20616768 - J Wound Care. 2010 Jul;19(7):272-8, 280-1
– reference: 16984578 - Int Wound J. 2006 Sep;3(3):225-31
– reference: 15673721 - Antimicrob Agents Chemother. 2005 Feb;49(2):479-87
– reference: 22009290 - Eur J Clin Microbiol Infect Dis. 2012 Jul;31(7):1347-52
– reference: 18508940 - J Clin Microbiol. 2008 Aug;46(8):2717-22
– reference: 20961515 - Euro Surveill. 2010 Oct 14;15(41):19688
– reference: 20418950 - PLoS One. 2010;5(4):e10146
– reference: 8419592 - J Pediatr. 1993 Jan;122(1):1-9
– reference: 19188357 - Infect Immun. 2009 Apr;77(4):1623-35
– reference: 239464 - Thromb Res. 1975 Jun;6(6):501-10
– reference: 22132176 - PLoS One. 2011;6(11):e27943
– reference: 22076151 - PLoS One. 2011;6(11):e27317
– reference: 15866058 - J Diabetes Complications. 2005 May-Jun;19(3):138-41
– reference: 23007678 - Med Microbiol Immunol. 2013 Apr;202(2):131-41
– reference: 15215091 - Antimicrob Agents Chemother. 2004 Jul;48(7):2431-6
– reference: 19128252 - Wound Repair Regen. 2008 Nov-Dec;16(6):805-13
– reference: 4313167 - Appl Microbiol. 1969 Nov;18(5):766-70
– reference: 17873029 - J Bacteriol. 2007 Nov;189(22):8079-87
– reference: 18325110 - BMC Microbiol. 2008;8:43
– reference: 23451098 - PLoS One. 2013;8(2):e56846
– reference: 16879411 - Mol Microbiol. 2006 Sep;61(5):1308-21
– reference: 18603682 - Indian J Pathol Microbiol. 2008 Apr-Jun;51(2):204-8
– reference: 19389780 - Microbiology. 2009 Jul;155(Pt 7):2148-56
– reference: 15302726 - Chest. 2004 Aug;126(2):412-9
– reference: 23433007 - Int Wound J. 2015 Feb;12(1):47-52
– reference: 3104732 - Microbios. 1987;49(198):55-64
– reference: 11407793 - J Bone Joint Surg Am. 2001 Jun;83-A(6):855-61
– reference: 17449616 - J Bacteriol. 2007 Jun;189(12):4367-74
– reference: 19816382 - J Wound Care. 2009 Oct;18(10):426-31
– reference: 16751497 - Appl Environ Microbiol. 2006 Jun;72(6):3916-23
– reference: 23751003 - Environ Microbiol. 2013 Oct;15(10):2865-78
– reference: 20835702 - Diabetologia. 2011 Jan;54(1):58-64
– reference: 18211572 - Wound Repair Regen. 2008 Jan-Feb;16(1):1
– reference: 16030221 - J Bacteriol. 2005 Aug;187(15):5267-77
– reference: 19564370 - Antimicrob Agents Chemother. 2009 Sep;53(9):3914-22
– reference: 20081576 - J Wound Care. 2009 Dec;18(12):508, 510-12
– reference: 17419768 - FEMS Microbiol Lett. 2007 May;270(2):179-88
– reference: 19812273 - J Clin Microbiol. 2009 Dec;47(12):4084-9
– reference: 16030228 - J Bacteriol. 2005 Aug;187(15):5341-6
– reference: 21544190 - PLoS One. 2011;6(4):e19036
– reference: 17172450 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19890-5
– reference: 18086294 - Wound Repair Regen. 2008 Jan-Feb;16(1):37-44
SSID ssj0014448
Score 2.5976646
Snippet In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4718
SubjectTerms Anti-Bacterial Agents - pharmacology
Bacteriological Techniques - methods
Coculture Techniques - methods
Drug Resistance, Bacterial - physiology
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - physiology
Staphylococcus aureus - drug effects
Staphylococcus aureus - physiology
Title Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model
URI https://www.ncbi.nlm.nih.gov/pubmed/25156721
https://www.proquest.com/docview/1609505501
Volume 82
WOSCitedRecordID wos000343582900027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qVHzxY37NLyL4Gm3apE2fZIjDgRsDP9jbSJN09KWd7TrZf--l7diTIPiSUo6WkLve_ZrL_Q6hO1cF2qOMk1iDBbPA0ySSVBLB_cjGKyUq3oLP12A4FONxOGo23IrmWOXKJ1aOWmfK7pE_UMuM5gCepo-zL2K7RtnsatNCYxO1PIAy1qqD8TqLwBirS-FCQTgAjdXBd1c89Lv9ewhvILD1O7-ByyrI9A7-O71DtN_AS9yt7eEIbZi0jXbqhpPLNtodNKn0YzR9W9qyv4qnGVvSiLwucShwFuNRYUqdwTtlgaXJy2mSZoXEMtUY0CloBkJgplQJ0jI3cElSENpxkczzDH_bZk246rJzgj56z-9PL6TpukAUo8Gc6IgbDpqjrpGuH2vj6BB-OkJ7E3nWsbra1cqDwQmUlspRMZPckbERRjqxe4q20iw15wj7Ho0EhEnOAs6U9oV0uA5ZrGnELU9_B92uFnMCVm1TFTI1WVlM1svZQWe1Riazmn5jAoiMwyToxR-evkR7gHBYXTx4hVoxfNPmGm2rxTwp8pvKXGAcjgY_o3fLZA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+interactions+of+Pseudomonas+aeruginosa+and+Staphylococcus+aureus+in+an+in+vitro+wound+model&rft.jtitle=Infection+and+immunity&rft.au=DeLeon%2C+Stephanie&rft.au=Clinton%2C+Allie&rft.au=Fowler%2C+Haley&rft.au=Everett%2C+Jake&rft.date=2014-11-01&rft.issn=1098-5522&rft.eissn=1098-5522&rft.volume=82&rft.issue=11&rft.spage=4718&rft_id=info:doi/10.1128%2FIAI.02198-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5522&client=summon