Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo

Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It rem...

Full description

Saved in:
Bibliographic Details
Published in:Infection and immunity Vol. 82; no. 5; p. 1968
Main Authors: Falsetta, Megan L, Klein, Marlise I, Colonne, Punsiri M, Scott-Anne, Kathleen, Gregoire, Stacy, Pai, Chia-Hua, Gonzalez-Begne, Mireya, Watson, Gene, Krysan, Damian J, Bowen, William H, Koo, Hyun
Format: Journal Article
Language:English
Published: United States 01.05.2014
Subjects:
ISSN:1098-5522, 1098-5522
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
AbstractList Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
Author Gonzalez-Begne, Mireya
Watson, Gene
Koo, Hyun
Krysan, Damian J
Klein, Marlise I
Colonne, Punsiri M
Falsetta, Megan L
Pai, Chia-Hua
Bowen, William H
Scott-Anne, Kathleen
Gregoire, Stacy
Author_xml – sequence: 1
  givenname: Megan L
  surname: Falsetta
  fullname: Falsetta, Megan L
  organization: Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 2
  givenname: Marlise I
  surname: Klein
  fullname: Klein, Marlise I
– sequence: 3
  givenname: Punsiri M
  surname: Colonne
  fullname: Colonne, Punsiri M
– sequence: 4
  givenname: Kathleen
  surname: Scott-Anne
  fullname: Scott-Anne, Kathleen
– sequence: 5
  givenname: Stacy
  surname: Gregoire
  fullname: Gregoire, Stacy
– sequence: 6
  givenname: Chia-Hua
  surname: Pai
  fullname: Pai, Chia-Hua
– sequence: 7
  givenname: Mireya
  surname: Gonzalez-Begne
  fullname: Gonzalez-Begne, Mireya
– sequence: 8
  givenname: Gene
  surname: Watson
  fullname: Watson, Gene
– sequence: 9
  givenname: Damian J
  surname: Krysan
  fullname: Krysan, Damian J
– sequence: 10
  givenname: William H
  surname: Bowen
  fullname: Bowen, William H
– sequence: 11
  givenname: Hyun
  surname: Koo
  fullname: Koo, Hyun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24566629$$D View this record in MEDLINE/PubMed
BookMark eNpNUD1PwzAUtFARLYWNGXlkSbGNHTtjVfFRqRJDYY4c-xmMEjvESaH8eoIoEst7p3unu9M7RZMQAyB0QcmCUqau18v1ghCiZEb5EZpRUqhMCMYm__AUnab0RgjlnKsTNGVc5HnOihn63O6bysfeG9xBrXsfQ3r1La6g_wAIeNt30PbRRGOGhJuh1yFhHSxejcNbjXVdefNDpn2A7sV_QcI73w01BAM4OtzW-n0APIY4XzcJ-zDed_EMHTtdJzg_7Dl6vrt9Wj1km8f79Wq5yQynss-MlbpiEgiptLECmMzlTaGFE5ZpkCSnUCkonOQSHLXMKg5OOWJEbovKGjZHV7--bRfHHqkvG58M1LUOEIdUUkEV4zxndJReHqRD1YAt2843utuXf99i38KRcTM
CitedBy_id crossref_primary_10_3389_fmicb_2017_01036
crossref_primary_10_1371_journal_ppat_1012887
crossref_primary_10_1186_s12903_024_05001_2
crossref_primary_10_1016_j_archoralbio_2020_104886
crossref_primary_10_1371_journal_ppat_1009912
crossref_primary_10_3389_fmicb_2022_981203
crossref_primary_10_1371_journal_ppat_1006407
crossref_primary_10_1093_femspd_ftw005
crossref_primary_10_3389_fmicb_2018_01371
crossref_primary_10_1080_08927014_2020_1748603
crossref_primary_10_1016_j_ceb_2016_05_005
crossref_primary_10_1186_s12906_019_2717_z
crossref_primary_10_1016_j_mimet_2019_105815
crossref_primary_10_3389_fdmed_2023_991746
crossref_primary_10_1111_1462_2920_13440
crossref_primary_10_1186_s13104_019_4422_x
crossref_primary_10_1177_00220345231162349
crossref_primary_10_7759_cureus_83767
crossref_primary_10_1002_cbic_201600381
crossref_primary_10_1128_microbiolspec_GPP3_0051_2018
crossref_primary_10_1155_2020_4345804
crossref_primary_10_1080_20002297_2025_2473938
crossref_primary_10_1007_s10068_015_0079_y
crossref_primary_10_1080_20002297_2021_1894047
crossref_primary_10_1080_20002297_2019_1581520
crossref_primary_10_1016_j_jmb_2015_09_022
crossref_primary_10_1016_j_micinf_2015_03_008
crossref_primary_10_1007_s40496_014_0041_8
crossref_primary_10_1186_s40168_023_01561_7
crossref_primary_10_3390_jof4040122
crossref_primary_10_1038_s41368_018_0030_1
crossref_primary_10_1093_femsre_fuaa060
crossref_primary_10_3390_microorganisms11020318
crossref_primary_10_1007_s10103_021_03432_9
crossref_primary_10_1177_0022034520909313
crossref_primary_10_3390_molecules25173852
crossref_primary_10_1016_j_trsl_2016_07_004
crossref_primary_10_1016_j_jdent_2022_104245
crossref_primary_10_3389_fcimb_2017_00524
crossref_primary_10_3389_fcimb_2023_1151532
crossref_primary_10_3390_jcm9020517
crossref_primary_10_2478_cipms_2021_0029
crossref_primary_10_1002_marc_202100437
crossref_primary_10_1080_08927014_2021_1967334
crossref_primary_10_3389_fcimb_2024_1357631
crossref_primary_10_1016_j_toxicon_2024_107607
crossref_primary_10_1128_aem_00885_24
crossref_primary_10_1128_AEM_02825_19
crossref_primary_10_2298_SGS2501003T
crossref_primary_10_3390_antibiotics9040137
crossref_primary_10_1186_s13005_016_0125_x
crossref_primary_10_1038_s41598_021_90198_3
crossref_primary_10_1016_j_archoralbio_2018_02_019
crossref_primary_10_31744_einstein_journal_2025AO0663
crossref_primary_10_1016_j_rhum_2022_03_007
crossref_primary_10_3390_app131810236
crossref_primary_10_1073_pnas_2209699119
crossref_primary_10_7554_eLife_10106
crossref_primary_10_1007_s10787_024_01631_8
crossref_primary_10_1186_s13568_017_0505_z
crossref_primary_10_1177_0022034520908595
crossref_primary_10_3389_fcimb_2021_691092
crossref_primary_10_1038_s41598_018_24295_1
crossref_primary_10_1177_0022034520913248
crossref_primary_10_1016_j_archoralbio_2016_05_009
crossref_primary_10_1177_0022034520956975
crossref_primary_10_1007_s40496_016_0078_y
crossref_primary_10_1016_j_archoralbio_2020_104876
crossref_primary_10_1093_infdis_jiw201
crossref_primary_10_3389_fmicb_2016_00686
crossref_primary_10_1038_s41522_025_00660_7
crossref_primary_10_1093_mmy_myab008
crossref_primary_10_3390_microorganisms9112368
crossref_primary_10_1128_aem_01500_23
crossref_primary_10_1007_s00784_023_04969_5
crossref_primary_10_3389_fcimb_2014_00101
crossref_primary_10_12688_f1000research_20700_1
crossref_primary_10_1016_j_prosdent_2023_03_015
crossref_primary_10_3390_jof11040325
crossref_primary_10_1080_08927014_2021_1946519
crossref_primary_10_1038_s41598_020_76744_5
crossref_primary_10_1016_j_archoralbio_2022_105521
crossref_primary_10_12688_f1000research_20700_2
crossref_primary_10_3390_microorganisms11081982
crossref_primary_10_1080_20002297_2023_2198433
crossref_primary_10_3390_nu14183693
crossref_primary_10_1016_j_pcl_2018_05_004
crossref_primary_10_1128_spectrum_00782_22
crossref_primary_10_1177_0022034515625222
crossref_primary_10_3390_jof6010015
crossref_primary_10_4103_JISPPD_JISPPD_3_20
crossref_primary_10_1007_s40475_024_00332_0
crossref_primary_10_1155_ijod_9994172
crossref_primary_10_3390_jof7050340
crossref_primary_10_1016_j_bioflm_2025_100271
crossref_primary_10_1111_apm_13327
crossref_primary_10_1016_j_archoralbio_2017_05_014
crossref_primary_10_1080_20002297_2020_1724484
crossref_primary_10_1111_clr_13663
crossref_primary_10_1002_adma_202300320
crossref_primary_10_3389_fdmed_2022_849274
crossref_primary_10_1111_odi_12873
crossref_primary_10_1021_acsinfecdis_5c00079
crossref_primary_10_1002_mbo3_937
crossref_primary_10_1007_s00784_020_03493_0
crossref_primary_10_3389_fcimb_2020_00344
crossref_primary_10_1002_mbo3_812
crossref_primary_10_3389_fcimb_2023_1295063
crossref_primary_10_1016_j_biomaterials_2020_120581
crossref_primary_10_3390_pharmaceutics14071428
crossref_primary_10_1016_j_tim_2017_09_008
crossref_primary_10_1038_s44259_025_00115_1
crossref_primary_10_1111_jam_13070
crossref_primary_10_1016_j_pdpdt_2020_102018
crossref_primary_10_1155_2017_7953920
crossref_primary_10_1080_1040841X_2022_2062219
crossref_primary_10_1186_s12866_020_01834_3
crossref_primary_10_1371_journal_ppat_1011865
crossref_primary_10_3390_antibiotics12091433
crossref_primary_10_1111_odi_12401
crossref_primary_10_1371_journal_pone_0187418
crossref_primary_10_1155_2018_4757458
crossref_primary_10_3390_pathogens11101177
crossref_primary_10_1159_000494033
crossref_primary_10_1038_s41522_025_00725_7
crossref_primary_10_3390_pathogens12020155
crossref_primary_10_1016_j_jbspin_2021_105245
crossref_primary_10_1038_s41522_020_00181_5
crossref_primary_10_1080_08927014_2024_2395390
crossref_primary_10_1093_mmy_myw042
crossref_primary_10_1016_j_phymed_2018_10_005
crossref_primary_10_3389_fcimb_2025_1625103
crossref_primary_10_3390_coatings10060537
crossref_primary_10_3389_fmicb_2020_01605
crossref_primary_10_3390_molecules28031236
crossref_primary_10_1038_s41396_020_00823_8
crossref_primary_10_1186_s13099_023_00559_8
crossref_primary_10_1016_j_biomaterials_2016_05_051
crossref_primary_10_1093_femsyr_fov077
crossref_primary_10_1111_prd_12378
crossref_primary_10_1371_journal_pone_0164242
crossref_primary_10_1002_mbo3_1381
crossref_primary_10_1038_srep41332
crossref_primary_10_1111_prd_12371
crossref_primary_10_1016_j_mib_2015_06_002
crossref_primary_10_1080_20002297_2025_2522421
crossref_primary_10_1111_pbi_13643
crossref_primary_10_1186_s12903_021_01559_3
crossref_primary_10_1080_20002297_2022_2144047
crossref_primary_10_1007_s40588_018_0100_3
crossref_primary_10_1038_srep30578
crossref_primary_10_1080_20002297_2021_1964277
crossref_primary_10_3390_antibiotics11081044
crossref_primary_10_1016_j_jds_2017_09_006
crossref_primary_10_1093_femsre_fuad018
crossref_primary_10_3389_fcimb_2025_1533658
crossref_primary_10_1371_journal_pone_0185804
crossref_primary_10_1371_journal_pone_0308656
crossref_primary_10_3389_fcimb_2022_833339
crossref_primary_10_1007_s43939_025_00188_9
crossref_primary_10_1016_j_cvex_2025_06_001
crossref_primary_10_1128_IAI_00475_17
crossref_primary_10_3390_jof5040087
crossref_primary_10_1111_jphd_12348
crossref_primary_10_1177_0022034519866440
crossref_primary_10_1186_s12903_022_02621_4
crossref_primary_10_1177_0022034519880157
crossref_primary_10_1128_jb_00257_22
crossref_primary_10_1155_2022_4625368
crossref_primary_10_1371_journal_ppat_1007342
crossref_primary_10_1111_febs_16705
crossref_primary_10_1186_s12906_018_2132_x
crossref_primary_10_1080_08927014_2021_1916816
crossref_primary_10_1371_journal_pone_0290938
crossref_primary_10_1080_20002297_2024_2397831
crossref_primary_10_1093_femspd_ftw039
crossref_primary_10_3389_fcimb_2021_681131
crossref_primary_10_1038_sj_bdj_2014_308
crossref_primary_10_1038_s41467_023_38346_3
crossref_primary_10_1080_08927014_2014_983093
crossref_primary_10_1111_odi_14858
crossref_primary_10_3390_microorganisms10071437
crossref_primary_10_3390_pharmaceutics16020215
crossref_primary_10_1128_spectrum_01578_22
crossref_primary_10_1177_00220345251340040
crossref_primary_10_3390_dj7020042
crossref_primary_10_3390_pathogens10020183
crossref_primary_10_3389_fmicb_2020_00307
crossref_primary_10_1080_0005772X_2023_2166736
crossref_primary_10_1177_0022034515574865
crossref_primary_10_2147_IJN_S436613
crossref_primary_10_1007_s10103_017_2201_2
crossref_primary_10_1007_s11274_018_2472_1
crossref_primary_10_1177_00220345231176459
crossref_primary_10_3389_fmicb_2019_01188
crossref_primary_10_3390_antibiotics10050588
crossref_primary_10_1016_j_saa_2023_123318
crossref_primary_10_1128_msphere_00295_23
crossref_primary_10_1007_s13205_025_04227_3
crossref_primary_10_3390_dj10100184
crossref_primary_10_1177_0022034515592859
crossref_primary_10_3389_fmicb_2016_00140
crossref_primary_10_1016_j_micpath_2019_103619
crossref_primary_10_1007_s00253_022_12211_7
crossref_primary_10_1177_0022034518790941
crossref_primary_10_1016_j_heliyon_2024_e28826
crossref_primary_10_1016_j_jdent_2024_104997
crossref_primary_10_1038_s41396_020_0608_4
crossref_primary_10_1016_j_biomaterials_2023_122063
crossref_primary_10_3389_fcimb_2020_623980
crossref_primary_10_1038_s41467_020_15165_4
crossref_primary_10_1038_s41579_018_0089_x
crossref_primary_10_1186_s12903_021_01470_x
crossref_primary_10_1016_j_ajodo_2021_11_020
crossref_primary_10_1111_cmi_12657
crossref_primary_10_1080_20002297_2016_1270613
crossref_primary_10_1111_eos_12725
crossref_primary_10_1080_1040841X_2023_2211665
crossref_primary_10_1128_IAI_02843_14
crossref_primary_10_1016_j_archoralbio_2022_105582
crossref_primary_10_1093_femsyr_fov038
crossref_primary_10_1080_20002297_2025_2492198
crossref_primary_10_1080_14767058_2020_1730321
crossref_primary_10_1111_omi_12154
crossref_primary_10_1111_odi_12691
crossref_primary_10_3390_pharmaceutics15122707
crossref_primary_10_1080_08927014_2016_1144053
crossref_primary_10_1093_femspd_ftac010
crossref_primary_10_1111_omi_12152
crossref_primary_10_3390_microorganisms12010121
crossref_primary_10_1080_20002297_2020_1746494
crossref_primary_10_1093_cid_civ816
crossref_primary_10_1007_s11538_017_0246_9
crossref_primary_10_1007_s00784_024_06140_0
crossref_primary_10_1016_j_pdpdt_2024_104019
crossref_primary_10_1177_0022034517714414
crossref_primary_10_1016_j_bbi_2024_09_033
crossref_primary_10_1080_1040841X_2020_1843400
crossref_primary_10_3390_antibiotics10020116
crossref_primary_10_3390_pathogens12060848
crossref_primary_10_1016_j_archoralbio_2023_105714
crossref_primary_10_1016_j_jep_2020_113193
crossref_primary_10_1111_lam_13761
crossref_primary_10_1111_1751_7915_14547
crossref_primary_10_1371_journal_pone_0255003
crossref_primary_10_1007_s00784_022_04732_2
crossref_primary_10_3390_healthcare12131359
crossref_primary_10_1016_j_mycmed_2018_05_006
crossref_primary_10_1155_2018_1690747
crossref_primary_10_3390_antibiotics9080478
crossref_primary_10_1080_14787210_2017_1290524
crossref_primary_10_1371_journal_pone_0169565
crossref_primary_10_1080_08927014_2019_1608966
crossref_primary_10_1016_j_bioorg_2025_108165
crossref_primary_10_3389_froh_2022_880746
crossref_primary_10_3390_jof9030286
crossref_primary_10_1111_lam_13751
crossref_primary_10_1155_2017_2052938
crossref_primary_10_1016_j_jdent_2016_03_001
crossref_primary_10_2217_fmb_14_92
crossref_primary_10_1093_mmy_myac055
crossref_primary_10_1128_spectrum_02518_24
crossref_primary_10_1007_s00253_015_7154_4
crossref_primary_10_3402_jom_v6_26189
crossref_primary_10_1111_omi_12132
crossref_primary_10_1080_20002297_2021_1997230
crossref_primary_10_3389_fcimb_2023_1106231
crossref_primary_10_1055_s_0045_1809027
crossref_primary_10_3389_fcimb_2022_845738
crossref_primary_10_3389_fmicb_2023_1274201
crossref_primary_10_1016_j_archoralbio_2024_106070
crossref_primary_10_1080_08927014_2024_2418466
crossref_primary_10_1111_lam_13307
crossref_primary_10_1177_00220345211012385
crossref_primary_10_1177_00220345251325807
crossref_primary_10_1016_j_archoralbio_2020_104728
crossref_primary_10_1111_myc_12453
crossref_primary_10_1021_jacs_1c04825
crossref_primary_10_12688_f1000research_16275_2
crossref_primary_10_12688_f1000research_16275_1
crossref_primary_10_1590_0074_02760160294
crossref_primary_10_3390_microorganisms12081737
crossref_primary_10_3390_nu17182999
crossref_primary_10_1016_j_fbio_2025_106255
crossref_primary_10_1016_j_tim_2016_12_012
crossref_primary_10_2217_fmb_15_109
crossref_primary_10_3389_froh_2024_1360340
crossref_primary_10_1016_j_archoralbio_2019_03_017
crossref_primary_10_1111_omi_12125
crossref_primary_10_1038_s41598_022_21363_5
crossref_primary_10_7759_cureus_86159
crossref_primary_10_1007_s12088_018_0714_4
crossref_primary_10_3389_fmicb_2022_1020995
crossref_primary_10_3402_jom_v6_25443
crossref_primary_10_1186_s12866_015_0524_3
crossref_primary_10_1128_IAI_00648_20
crossref_primary_10_7759_cureus_60421
crossref_primary_10_1111_1758_2229_13053
crossref_primary_10_1155_2021_6617645
crossref_primary_10_3389_fphar_2021_760768
crossref_primary_10_3389_fmicb_2024_1399525
crossref_primary_10_1080_20002297_2020_1729305
crossref_primary_10_3390_jfb16020070
crossref_primary_10_3390_biomedicines12051056
crossref_primary_10_1016_j_cej_2022_137214
crossref_primary_10_3390_nu9111242
crossref_primary_10_1016_j_jdent_2020_103344
crossref_primary_10_1016_j_pdpdt_2022_102942
crossref_primary_10_1080_1040841X_2021_1921696
crossref_primary_10_1016_j_colsurfb_2018_11_023
crossref_primary_10_1128_MMBR_00044_18
crossref_primary_10_3390_ma16175818
crossref_primary_10_1038_s41396_018_0113_1
crossref_primary_10_1002_yea_3855
crossref_primary_10_1155_2021_6654793
crossref_primary_10_3390_molecules27020528
crossref_primary_10_1177_0022034520915879
crossref_primary_10_3390_pathogens11091014
crossref_primary_10_3389_fcimb_2022_993640
crossref_primary_10_1186_s12903_024_05355_7
crossref_primary_10_1016_j_pdpdt_2018_10_005
crossref_primary_10_1080_00016357_2016_1244560
crossref_primary_10_3390_microorganisms10112206
crossref_primary_10_1099_jmm_0_000419
crossref_primary_10_3390_antibiotics12081333
crossref_primary_10_1016_j_tim_2020_03_016
crossref_primary_10_3389_fmicb_2022_895537
crossref_primary_10_3390_jof4030112
crossref_primary_10_1371_journal_pone_0150457
crossref_primary_10_3390_antiox8110521
crossref_primary_10_3390_pharmaceutics11050234
crossref_primary_10_3390_plants9070838
crossref_primary_10_3390_pathogens8020070
crossref_primary_10_3390_pathogens11030335
crossref_primary_10_1016_j_mycmed_2019_100909
crossref_primary_10_1099_jmm_0_001063
crossref_primary_10_1111_omi_12223
crossref_primary_10_1007_s10103_018_2622_6
crossref_primary_10_5604_01_3001_0054_9116
crossref_primary_10_1007_s10103_021_03466_z
crossref_primary_10_1016_j_job_2021_02_003
crossref_primary_10_1016_j_pdj_2023_12_001
crossref_primary_10_1038_sj_bdj_2018_81
crossref_primary_10_1128_iai_00124_23
crossref_primary_10_3390_biomedicines12102235
crossref_primary_10_1038_s41598_025_99692_4
crossref_primary_10_1007_s10103_017_2336_1
crossref_primary_10_1155_2017_3510124
crossref_primary_10_1172_JCI168485
crossref_primary_10_3389_fmicb_2022_911623
crossref_primary_10_1159_000481833
crossref_primary_10_1371_journal_pone_0306862
crossref_primary_10_1186_s12903_023_02729_1
crossref_primary_10_1016_j_archoralbio_2021_105304
crossref_primary_10_1016_j_cxom_2017_04_012
crossref_primary_10_1002_mma_4900
crossref_primary_10_1128_IAI_00339_19
crossref_primary_10_2217_fmb_2020_0113
crossref_primary_10_1177_0022034520950286
crossref_primary_10_3390_microorganisms11061391
crossref_primary_10_1007_s12010_024_05119_7
crossref_primary_10_3390_microorganisms9010059
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/IAI.00087-14
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
ExternalDocumentID 24566629
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: T90DE021985
– fundername: NIDCR NIH HHS
  grantid: R90 DE022529
– fundername: NIDCR NIH HHS
  grantid: T90 DE021985
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
PKN
RHF
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UCJ
UPT
VH1
VQA
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
YIF
ZGI
ZXP
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c417t-cd7ab27e00bacd5e276739a5f5d2ae7061eb8e9f747ef1d2d84ef8f0c56d9bdc2
IEDL.DBID 7X8
ISICitedReferencesCount 436
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334666200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5522
IngestDate Fri Sep 05 13:04:20 EDT 2025
Wed Feb 19 01:57:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-cd7ab27e00bacd5e276739a5f5d2ae7061eb8e9f747ef1d2d84ef8f0c56d9bdc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iai.asm.org/content/iai/82/5/1968.full.pdf
PMID 24566629
PQID 1518244621
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1518244621
pubmed_primary_24566629
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2014
References 14563892 - J Antimicrob Chemother. 2003 Nov;52(5):782-9
20233920 - J Bacteriol. 2010 Jun;192(12):3024-32
17130296 - Antimicrob Agents Chemother. 2007 Feb;51(2):510-20
22491 - Infect Immun. 1977 Dec;18(3):708-16
9892785 - Caries Res. 1999;33(2):164-9
18957579 - Microbiology. 2008 Nov;154(Pt 11):3247-55
19552706 - FEMS Microbiol Lett. 2009 Oct;299(1):1-8
17475197 - Anal Biochem. 2007 Jun 15;365(2):208-14
23468929 - PLoS One. 2013;8(2):e57182
18395698 - Arch Oral Biol. 2008 Aug;53(8):755-64
21855346 - Trends Microbiol. 2011 Nov;19(11):557-63
24146611 - PLoS Pathog. 2013;9(10):e1003616
16436708 - Antimicrob Agents Chemother. 2006 Feb;50(2):542-6
21346355 - Caries Res. 2011;45(1):69-86
20497051 - J Infect Dis. 2010 Jul 1;202(1):171-5
1530843 - Infect Immun. 1992 Jan;60(1):284-95
16890907 - Arch Oral Biol. 2006 Nov;51(11):1024-8
2532001 - Arch Oral Biol. 1989;34(5):347-53
23049864 - PLoS One. 2012;7(9):e45795
24079976 - Cell Microbiol. 2014 Feb;16(2):214-31
19845041 - FEMS Yeast Res. 2009 Oct;9(7):990-9
10980166 - J Antimicrob Chemother. 2000 Sep;46(3):397-403
16643535 - Int J Paediatr Dent. 2006 May;16(3):152-60
20348933 - Nat Rev Microbiol. 2010 May;8(5):340-9
19246906 - Caries Res. 2009;43(2):83-91
8877089 - Caries Res. 1996;30(5):354-60
16849719 - J Med Microbiol. 2006 Aug;55(Pt 8):999-1008
20062794 - PLoS One. 2010;5(1):e8609
21957384 - Contemp Clin Dent. 2011 Apr;2(2):98-101
12940303 - Community Dent Health. 2003 Sep;20(3):139-45
19956771 - PLoS One. 2009;4(11):e7967
22496649 - PLoS Pathog. 2012;8(4):e1002623
6596042 - Arch Oral Biol. 1984;29(11):949-51
3170887 - J Dent Res. 1988 Oct;67(10):1316-8
22158429 - Nat Rev Microbiol. 2012 Feb;10(2):112-22
20516688 - Caries Res. 2010;44(3):272-6
19028906 - Appl Environ Microbiol. 2009 Feb;75(3):837-41
22717324 - Arch Oral Biol. 2012 Aug;57(8):1048-53
19374653 - Cell Microbiol. 2009 Jul;11(7):1034-43
16199702 - Pediatrics. 2005 Oct;116(4):921-6
3861249 - Caries Res. 1985;19(4):289-97
12624191 - Microbiology. 2003 Feb;149(Pt 2):279-94
9496917 - J Dent Res. 1998 Mar;77(3):445-52
22958384 - Mol Oral Microbiol. 2012 Oct;27(5):350-61
8359902 - Infect Immun. 1993 Sep;61(9):3811-7
9602288 - Arch Oral Biol. 1998 Feb;43(2):103-10
11255251 - Yeast. 2001 Mar 30;18(5):433-44
19941630 - J Appl Microbiol. 2010 Jun;108(6):2103-13
10460964 - Caries Res. 1999 Sep-Oct;33(5):393-400
15883718 - Mycopathologia. 2005 Apr;159(3):353-60
20861633 - Caries Res. 2010;44(5):485-97
20858780 - J Dent Res. 2010 Nov;89(11):1224-9
22876186 - PLoS Pathog. 2012;8(8):e1002848
2182544 - Infect Immun. 1990 May;58(5):1429-36
22104105 - Infect Immun. 2012 Feb;80(2):620-32
22394465 - Mol Oral Microbiol. 2012 Apr;27(2):57-69
22265407 - Cell. 2012 Jan 20;148(1-2):126-38
23207320 - Caries Res. 2013;47(2):89-102
23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45
20826648 - J Clin Microbiol. 2010 Nov;48(11):4121-8
20516280 - Antimicrob Agents Chemother. 2010 Aug;54(8):3505-8
18805978 - J Bacteriol. 2008 Dec;190(24):8145-54
21412001 - Caries Res. 2011;45(2):100-6
24490004 - J Oral Microbiol. 2014 Jan 29;6:null
11577162 - Microbiology. 2001 Oct;147(Pt 10):2841-8
13620455 - J Am Dent Assoc. 1959 Feb;58(2):43-55
21803906 - Appl Environ Microbiol. 2011 Sep;77(18):6357-67
19529758 - PLoS Biol. 2009 Jun;7(6):e1000133
12489838 - Community Dent Health. 2002 Dec;19(4):237-42
References_xml – reference: 1530843 - Infect Immun. 1992 Jan;60(1):284-95
– reference: 20826648 - J Clin Microbiol. 2010 Nov;48(11):4121-8
– reference: 8877089 - Caries Res. 1996;30(5):354-60
– reference: 17475197 - Anal Biochem. 2007 Jun 15;365(2):208-14
– reference: 22394465 - Mol Oral Microbiol. 2012 Apr;27(2):57-69
– reference: 9496917 - J Dent Res. 1998 Mar;77(3):445-52
– reference: 2532001 - Arch Oral Biol. 1989;34(5):347-53
– reference: 21855346 - Trends Microbiol. 2011 Nov;19(11):557-63
– reference: 22265407 - Cell. 2012 Jan 20;148(1-2):126-38
– reference: 19028906 - Appl Environ Microbiol. 2009 Feb;75(3):837-41
– reference: 18957579 - Microbiology. 2008 Nov;154(Pt 11):3247-55
– reference: 12489838 - Community Dent Health. 2002 Dec;19(4):237-42
– reference: 19246906 - Caries Res. 2009;43(2):83-91
– reference: 10460964 - Caries Res. 1999 Sep-Oct;33(5):393-400
– reference: 24146611 - PLoS Pathog. 2013;9(10):e1003616
– reference: 21412001 - Caries Res. 2011;45(2):100-6
– reference: 22491 - Infect Immun. 1977 Dec;18(3):708-16
– reference: 23468929 - PLoS One. 2013;8(2):e57182
– reference: 21803906 - Appl Environ Microbiol. 2011 Sep;77(18):6357-67
– reference: 19956771 - PLoS One. 2009;4(11):e7967
– reference: 22496649 - PLoS Pathog. 2012;8(4):e1002623
– reference: 21957384 - Contemp Clin Dent. 2011 Apr;2(2):98-101
– reference: 24490004 - J Oral Microbiol. 2014 Jan 29;6:null
– reference: 15883718 - Mycopathologia. 2005 Apr;159(3):353-60
– reference: 12624191 - Microbiology. 2003 Feb;149(Pt 2):279-94
– reference: 20858780 - J Dent Res. 2010 Nov;89(11):1224-9
– reference: 12940303 - Community Dent Health. 2003 Sep;20(3):139-45
– reference: 8359902 - Infect Immun. 1993 Sep;61(9):3811-7
– reference: 22958384 - Mol Oral Microbiol. 2012 Oct;27(5):350-61
– reference: 23049864 - PLoS One. 2012;7(9):e45795
– reference: 3170887 - J Dent Res. 1988 Oct;67(10):1316-8
– reference: 2182544 - Infect Immun. 1990 May;58(5):1429-36
– reference: 19529758 - PLoS Biol. 2009 Jun;7(6):e1000133
– reference: 22717324 - Arch Oral Biol. 2012 Aug;57(8):1048-53
– reference: 9892785 - Caries Res. 1999;33(2):164-9
– reference: 20497051 - J Infect Dis. 2010 Jul 1;202(1):171-5
– reference: 19552706 - FEMS Microbiol Lett. 2009 Oct;299(1):1-8
– reference: 6596042 - Arch Oral Biol. 1984;29(11):949-51
– reference: 16199702 - Pediatrics. 2005 Oct;116(4):921-6
– reference: 23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45
– reference: 22104105 - Infect Immun. 2012 Feb;80(2):620-32
– reference: 16436708 - Antimicrob Agents Chemother. 2006 Feb;50(2):542-6
– reference: 20861633 - Caries Res. 2010;44(5):485-97
– reference: 20233920 - J Bacteriol. 2010 Jun;192(12):3024-32
– reference: 24079976 - Cell Microbiol. 2014 Feb;16(2):214-31
– reference: 19374653 - Cell Microbiol. 2009 Jul;11(7):1034-43
– reference: 18395698 - Arch Oral Biol. 2008 Aug;53(8):755-64
– reference: 10980166 - J Antimicrob Chemother. 2000 Sep;46(3):397-403
– reference: 19845041 - FEMS Yeast Res. 2009 Oct;9(7):990-9
– reference: 23207320 - Caries Res. 2013;47(2):89-102
– reference: 22158429 - Nat Rev Microbiol. 2012 Feb;10(2):112-22
– reference: 19941630 - J Appl Microbiol. 2010 Jun;108(6):2103-13
– reference: 22876186 - PLoS Pathog. 2012;8(8):e1002848
– reference: 20516688 - Caries Res. 2010;44(3):272-6
– reference: 16643535 - Int J Paediatr Dent. 2006 May;16(3):152-60
– reference: 20348933 - Nat Rev Microbiol. 2010 May;8(5):340-9
– reference: 18805978 - J Bacteriol. 2008 Dec;190(24):8145-54
– reference: 13620455 - J Am Dent Assoc. 1959 Feb;58(2):43-55
– reference: 11577162 - Microbiology. 2001 Oct;147(Pt 10):2841-8
– reference: 20062794 - PLoS One. 2010;5(1):e8609
– reference: 9602288 - Arch Oral Biol. 1998 Feb;43(2):103-10
– reference: 20516280 - Antimicrob Agents Chemother. 2010 Aug;54(8):3505-8
– reference: 17130296 - Antimicrob Agents Chemother. 2007 Feb;51(2):510-20
– reference: 16849719 - J Med Microbiol. 2006 Aug;55(Pt 8):999-1008
– reference: 11255251 - Yeast. 2001 Mar 30;18(5):433-44
– reference: 16890907 - Arch Oral Biol. 2006 Nov;51(11):1024-8
– reference: 21346355 - Caries Res. 2011;45(1):69-86
– reference: 14563892 - J Antimicrob Chemother. 2003 Nov;52(5):782-9
– reference: 3861249 - Caries Res. 1985;19(4):289-97
SSID ssj0014448
Score 2.6100712
Snippet Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone;...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1968
SubjectTerms Animals
Biofilms
Candida albicans - physiology
Coculture Techniques
Dental Caries - microbiology
Dental Plaque - microbiology
Rats
Streptococcus mutans - physiology
Symbiosis
Title Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/24566629
https://www.proquest.com/docview/1518244621
Volume 82
WOSCitedRecordID wos000334666200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBbt-oNd1vXnurVDhV5FY0W2pNMoZaU5JBS6QW5Blp6YIbHdKAlN__o92Q49DQa9-GIL29LTe5_0fU-PkOu-1FYp41hqnWTCSWAqTQ0DoQCU97FYeVNsQo5GajzWj92GW-hklRuf2DhqV9m4R36DkUlhKMp48qN-ZrFqVGRXuxIa22Snj1AmSrrk-I1FEEK0qXBasRSBxkb4ztXN4HYQjy7EGRbzd_4FLpsgc3_w3s_7TD518JLetvZwSLagPCJ7bcHJ9RHZH3ZU-jF5eVrP8qLC5-h8I4j7U9S0E27RSFfXiwr9pV0GOlsiiAzUlI7exUQYZ6iZ5tGFBhrWMX-weIVAV8V82WQx0crTemrwDyi-xBfTWaBFifdX1Qn5ff_z190D68owMCsSuWA4iCbnEnq93FiXApeZ7GuT-tRxAxIBAeQKtMeFCfjEcacEeOV7Ns2czp3lp-RDWZXwhVBtEg6aQyLzeM4Xwj_r-okVogeZx5XhObna9O4EzTxyF6aEahkmb_17Ts7aIZrU7Xkck8jdZhnXX_-j9TfyESGPaCWLF2TH4ySHS7JrV4sizL839oPX0ePwLzUy0sE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbiotic+relationship+between+Streptococcus+mutans+and+Candida+albicans+synergizes+virulence+of+plaque+biofilms+in+vivo&rft.jtitle=Infection+and+immunity&rft.au=Falsetta%2C+Megan+L&rft.au=Klein%2C+Marlise+I&rft.au=Colonne%2C+Punsiri+M&rft.au=Scott-Anne%2C+Kathleen&rft.date=2014-05-01&rft.eissn=1098-5522&rft.volume=82&rft.issue=5&rft.spage=1968&rft_id=info:doi/10.1128%2FIAI.00087-14&rft_id=info%3Apmid%2F24566629&rft_id=info%3Apmid%2F24566629&rft.externalDocID=24566629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5522&client=summon