The θ-dependence of the Yang-Mills spectrum from analytic continuation
A bstract We study the θ -dependence of the string tension and of the lightest glueball mass in four-dimensional SU( N ) Yang-Mills theories. More precisely, we focus on the coefficients parametrizing the O θ 2 dependence of these quantities, which we investigate by means of numerical simulations of...
Uloženo v:
| Vydáno v: | The journal of high energy physics Ročník 2024; číslo 5; s. 163 - 23 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
14.05.2024
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A
bstract
We study the
θ
-dependence of the string tension and of the lightest glueball mass in four-dimensional SU(
N
) Yang-Mills theories. More precisely, we focus on the coefficients parametrizing the
O
θ
2
dependence of these quantities, which we investigate by means of numerical simulations of the lattice-discretized theory, carried out using imaginary values of the
θ
parameter. Topological freezing at large
N
is avoided using the Parallel Tempering on Boundary Conditions algorithm. We provide controlled continuum extrapolations of such coefficients in the
N
= 3 case, and we report the results obtained on two fairly fine lattice spacings for
N
= 6. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-8479 1029-8479 |
| DOI: | 10.1007/JHEP05(2024)163 |