Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 28; H. 10; S. 2306 - 2318 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining useful life (RUL) of the system. Neural networks-based approaches have produced promising results on RUL estimation, although their performances are influenced by handcrafted features and manually specified parameters. In this paper, we propose a multiobjective deep belief networks ensemble (MODBNE) method. MODBNE employs a multiobjective evolutionary algorithm integrated with the traditional DBN training technique to evolve multiple DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. The eventually evolved DBNs are combined to establish an ensemble model used for RUL estimation, where combination weights are optimized via a single-objective differential evolution algorithm using a task-oriented objective function. We evaluate the proposed method on several prognostic benchmarking data sets and also compare it with some existing approaches. Experimental results demonstrate the superiority of our proposed method. |
|---|---|
| AbstractList | In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining useful life (RUL) of the system. Neural networks-based approaches have produced promising results on RUL estimation, although their performances are influenced by handcrafted features and manually specified parameters. In this paper, we propose a multiobjective deep belief networks ensemble (MODBNE) method. MODBNE employs a multiobjective evolutionary algorithm integrated with the traditional DBN training technique to evolve multiple DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. The eventually evolved DBNs are combined to establish an ensemble model used for RUL estimation, where combination weights are optimized via a single-objective differential evolution algorithm using a task-oriented objective function. We evaluate the proposed method on several prognostic benchmarking data sets and also compare it with some existing approaches. Experimental results demonstrate the superiority of our proposed method. |
| Author | Pin Lim Kay Chen Tan Qin, A. K. Chong Zhang |
| Author_xml | – sequence: 1 surname: Chong Zhang fullname: Chong Zhang email: zhangchong@u.nus.edu organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 2 surname: Pin Lim fullname: Pin Lim email: pin.lim@rolls-royce.com organization: Adv. Technol. Center of Rolls Royce Singapore, Singapore, Singapore – sequence: 3 givenname: A. K. surname: Qin fullname: Qin, A. K. email: kai.qin@rmit.edu.au organization: Sch. of Sci., RMIT Univ., Melbourne, VIC, Australia – sequence: 4 surname: Kay Chen Tan fullname: Kay Chen Tan email: eletankc@nus.edu.sg organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27416606$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9vEzEQxa2qiP6hX4BKlSUuvSTYXq_tPUJJASkEBK3Um_E648ph1w72bqt-e5wm7aEHfBlr9HtPM_OO0H6IARB6S8mUUtK8v1os5r-mjFAxZbVislF76JBRwSasUmr_-S9vDtBJzitSniC14M1rdMAkp0IQcYh-fxu7wcd2BXbwd4A_AazxR-g8OLyA4T6mPxnPQoa-7QC7mPBP6I0PPtzi6wxu7PDcO8CzPPjeFKeAfcA_UrwNsbRsfoNeOdNlONnVY3R9Obu6-DKZf__89eLDfGI5lcOklZzLJXewtJZxIZwFbpmhDQXOSdu01jDJDFd17UilmKuoMrK0qWgBgFXH6Hzru07x7wh50L3PFrrOBIhj1lQxIamqOS3ouxfoKo4plOk0o2WOmnKyoc521Nj2sNTrVBZMD_rpdgVQW8CmmHMCp60fHk8wJOM7TYneJKUfk9KbpPQuqSJlL6RP7v8VnW5Fviz8LJA1UY1i1T_x3p6r |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_jmsy_2025_05_009 crossref_primary_10_1109_TIM_2022_3162283 crossref_primary_10_1016_j_measurement_2023_113098 crossref_primary_10_1016_j_asoc_2022_109604 crossref_primary_10_1109_ACCESS_2019_2949059 crossref_primary_10_1109_TNNLS_2021_3059784 crossref_primary_10_1016_j_aei_2024_103053 crossref_primary_10_1016_j_asoc_2022_108879 crossref_primary_10_1109_JSEN_2023_3326487 crossref_primary_10_1016_j_nucengdes_2024_113474 crossref_primary_10_1016_j_engappai_2025_110072 crossref_primary_10_1109_TMECH_2022_3144351 crossref_primary_10_1109_ACCESS_2019_2903295 crossref_primary_10_1109_TII_2019_2896665 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1016_j_ress_2022_109006 crossref_primary_10_1109_ACCESS_2021_3116813 crossref_primary_10_1109_JSEN_2023_3261874 crossref_primary_10_3390_electronics10010039 crossref_primary_10_1109_JSEN_2023_3246595 crossref_primary_10_1088_1361_6501_ac7636 crossref_primary_10_1049_enc2_12015 crossref_primary_10_1109_TNNLS_2020_2977132 crossref_primary_10_1177_00202940221098048 crossref_primary_10_1016_j_eswa_2022_119102 crossref_primary_10_1109_TASE_2025_3549061 crossref_primary_10_1016_j_ins_2018_06_043 crossref_primary_10_1016_j_ress_2022_108383 crossref_primary_10_1080_24725854_2020_1766729 crossref_primary_10_1016_j_jocs_2021_101508 crossref_primary_10_3390_app11178159 crossref_primary_10_1007_s10489_021_02243_3 crossref_primary_10_1111_exsy_13316 crossref_primary_10_1177_1748006X211001979 crossref_primary_10_1109_TMECH_2020_2992331 crossref_primary_10_1016_j_isatra_2022_04_042 crossref_primary_10_1109_TIM_2022_3149094 crossref_primary_10_1016_j_ress_2021_107927 crossref_primary_10_1016_j_ijepes_2019_02_046 crossref_primary_10_1007_s10845_021_01747_6 crossref_primary_10_1109_TNSE_2022_3163473 crossref_primary_10_1038_s41598_022_10191_2 crossref_primary_10_1016_j_comcom_2023_03_014 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1016_j_asoc_2021_107379 crossref_primary_10_1145_3366633 crossref_primary_10_1109_TKDE_2019_2961076 crossref_primary_10_3390_e24121818 crossref_primary_10_1109_TIM_2025_3551036 crossref_primary_10_1016_j_aei_2021_101396 crossref_primary_10_1016_j_ins_2020_12_032 crossref_primary_10_1109_TIM_2022_3167778 crossref_primary_10_1109_TASE_2021_3083670 crossref_primary_10_1002_qre_3256 crossref_primary_10_1109_TIM_2022_3204089 crossref_primary_10_1016_j_knosys_2022_109340 crossref_primary_10_1109_ACCESS_2018_2890593 crossref_primary_10_1109_ACCESS_2019_2919566 crossref_primary_10_1007_s10845_022_01916_1 crossref_primary_10_3390_s25020497 crossref_primary_10_1007_s40747_025_02027_z crossref_primary_10_1088_1361_6501_ac793f crossref_primary_10_1007_s10462_019_09719_2 crossref_primary_10_1016_j_engappai_2021_104552 crossref_primary_10_1007_s11227_023_05429_3 crossref_primary_10_1109_JSEN_2024_3447717 crossref_primary_10_3390_en17225538 crossref_primary_10_1016_j_isatra_2021_02_024 crossref_primary_10_3390_en16062513 crossref_primary_10_1007_s10845_022_01929_w crossref_primary_10_1016_j_jmsy_2020_11_020 crossref_primary_10_3390_math10071022 crossref_primary_10_1016_j_aei_2023_101973 crossref_primary_10_3390_s23136163 crossref_primary_10_1007_s00170_021_08351_1 crossref_primary_10_1016_j_ifacol_2020_12_2795 crossref_primary_10_1016_j_ress_2023_109456 crossref_primary_10_1016_j_asoc_2024_112646 crossref_primary_10_1016_j_ress_2023_109337 crossref_primary_10_1016_j_measurement_2020_108707 crossref_primary_10_1109_JSEN_2024_3504565 crossref_primary_10_1109_TCPMT_2023_3282616 crossref_primary_10_1016_j_ymssp_2024_112135 crossref_primary_10_1002_qre_3151 crossref_primary_10_1038_s41598_023_40315_1 crossref_primary_10_1109_TCYB_2022_3164683 crossref_primary_10_1016_j_jii_2023_100444 crossref_primary_10_1016_j_neucom_2019_07_075 crossref_primary_10_1016_j_dche_2023_100111 crossref_primary_10_1016_j_jmsy_2024_02_011 crossref_primary_10_1088_1361_6501_acb83e crossref_primary_10_1109_JSEN_2022_3185161 crossref_primary_10_1016_j_measurement_2021_109090 crossref_primary_10_1016_j_knosys_2020_105843 crossref_primary_10_1002_eng2_12305 crossref_primary_10_1016_j_aei_2023_101966 crossref_primary_10_1088_1742_6596_1878_1_012034 crossref_primary_10_1109_TIM_2024_3398070 crossref_primary_10_1016_j_bspc_2022_104379 crossref_primary_10_1016_j_measurement_2023_112824 crossref_primary_10_1016_j_eswa_2023_121859 crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_3390_app13127186 crossref_primary_10_1016_j_eswa_2025_127870 crossref_primary_10_1016_j_ress_2023_109662 crossref_primary_10_1109_JETCAS_2023_3248642 crossref_primary_10_1016_j_mechmachtheory_2018_11_005 crossref_primary_10_1016_j_ins_2023_119795 crossref_primary_10_1109_MCI_2020_3039066 crossref_primary_10_1049_elp2_70090 crossref_primary_10_1109_ACCESS_2023_3259221 crossref_primary_10_1007_s10489_021_03034_6 crossref_primary_10_1016_j_eswa_2020_113232 crossref_primary_10_1109_TIE_2020_2972443 crossref_primary_10_1016_j_isatra_2023_06_020 crossref_primary_10_1016_j_neucom_2021_09_022 crossref_primary_10_1109_TR_2023_3277332 crossref_primary_10_3390_s22166252 crossref_primary_10_1002_qre_3494 crossref_primary_10_1080_08982112_2020_1754427 crossref_primary_10_3390_e25020242 crossref_primary_10_1088_1361_6501_ac7f7f crossref_primary_10_1155_2021_5185938 crossref_primary_10_1016_j_knosys_2020_106555 crossref_primary_10_1109_TVT_2023_3319377 crossref_primary_10_1109_JSEN_2021_3136622 crossref_primary_10_1016_j_ress_2023_109247 crossref_primary_10_1088_1361_6501_ade552 crossref_primary_10_1007_s42401_020_00070_x crossref_primary_10_1016_j_asoc_2024_111649 crossref_primary_10_1016_j_ress_2023_109244 crossref_primary_10_1016_j_mfglet_2023_08_037 crossref_primary_10_1016_j_asoc_2023_110836 crossref_primary_10_1016_j_energy_2025_137253 crossref_primary_10_1080_10589759_2025_2558066 crossref_primary_10_1088_1361_6501_aca8c2 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1109_JSEN_2024_3404072 crossref_primary_10_1016_j_jmsy_2023_11_009 crossref_primary_10_1016_j_eswa_2021_114569 crossref_primary_10_1007_s10845_022_02015_x crossref_primary_10_1007_s10462_021_09992_0 crossref_primary_10_1016_j_ress_2021_107878 crossref_primary_10_1016_j_aei_2023_101898 crossref_primary_10_1016_j_ijfatigue_2023_107722 crossref_primary_10_1109_TIM_2023_3240208 crossref_primary_10_1177_09544100211050432 crossref_primary_10_3390_act11030067 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_1109_TNNLS_2023_3305601 crossref_primary_10_1109_TNNLS_2021_3084249 crossref_primary_10_1109_ACCESS_2023_3263196 crossref_primary_10_1016_j_cie_2022_108211 crossref_primary_10_3390_cancers15143608 crossref_primary_10_1016_j_measurement_2024_116345 crossref_primary_10_1007_s12652_020_01930_2 crossref_primary_10_1109_TII_2021_3126309 crossref_primary_10_3390_sym17081362 crossref_primary_10_3390_s22155680 crossref_primary_10_1016_j_neucom_2022_04_055 crossref_primary_10_1109_TASE_2025_3530845 crossref_primary_10_1016_j_ress_2023_109344 crossref_primary_10_1016_j_ress_2020_107241 crossref_primary_10_1109_TNNLS_2023_3290974 crossref_primary_10_1016_j_arcontrol_2021_04_001 crossref_primary_10_1088_1361_6501_ac632d crossref_primary_10_3390_s22134763 crossref_primary_10_1109_ACCESS_2020_3020356 crossref_primary_10_1016_j_measurement_2021_109685 crossref_primary_10_1109_JSEN_2023_3285531 crossref_primary_10_1177_16878132241239802 crossref_primary_10_1109_TIM_2025_3576953 crossref_primary_10_1007_s12206_021_1109_8 crossref_primary_10_3390_aerospace11020138 crossref_primary_10_1016_j_engappai_2023_106845 crossref_primary_10_3390_s20030723 crossref_primary_10_3390_eng6090210 crossref_primary_10_1016_j_isatra_2024_12_024 crossref_primary_10_1016_j_cie_2022_108559 crossref_primary_10_1109_TNNLS_2017_2695223 crossref_primary_10_1109_TCDS_2021_3107555 crossref_primary_10_1016_j_ymssp_2023_110767 crossref_primary_10_1109_JIOT_2024_3363610 crossref_primary_10_1016_j_cie_2025_111049 crossref_primary_10_1088_1361_6501_ad9e12 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1016_j_neunet_2020_03_007 crossref_primary_10_3390_act12040158 crossref_primary_10_1016_j_ress_2023_109163 crossref_primary_10_1109_TVT_2023_3234159 crossref_primary_10_1109_TEVC_2021_3079985 crossref_primary_10_1016_j_ress_2023_109181 crossref_primary_10_1109_ACCESS_2019_2942991 crossref_primary_10_1109_ACCESS_2020_2966827 crossref_primary_10_1109_JSEN_2023_3296670 crossref_primary_10_3390_sym13101861 crossref_primary_10_1162_neco_a_01368 crossref_primary_10_1016_j_aei_2024_102608 crossref_primary_10_1016_j_ress_2022_108908 crossref_primary_10_1002_qre_3308 crossref_primary_10_1109_JSEN_2024_3494020 crossref_primary_10_1109_TCYB_2017_2774266 crossref_primary_10_3390_app15020966 crossref_primary_10_3390_app9224813 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1016_j_jmsy_2021_10_004 crossref_primary_10_1007_s13198_025_02911_4 crossref_primary_10_1016_j_measurement_2021_110565 crossref_primary_10_1109_TNNLS_2021_3100554 crossref_primary_10_1016_j_jestch_2023_101409 crossref_primary_10_1088_1361_6501_ad6c73 crossref_primary_10_1016_j_ress_2024_110540 crossref_primary_10_1016_j_neucom_2020_01_031 crossref_primary_10_1016_j_ress_2020_107207 crossref_primary_10_1016_j_apenergy_2020_114817 crossref_primary_10_1016_j_isatra_2023_11_043 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1109_TIM_2023_3291801 crossref_primary_10_1109_TTE_2021_3128018 crossref_primary_10_1016_j_isatra_2018_11_024 crossref_primary_10_1016_j_measurement_2021_110354 crossref_primary_10_3390_aerospace9120839 crossref_primary_10_3390_e24070905 crossref_primary_10_1016_j_asoc_2023_110419 crossref_primary_10_1016_j_compind_2019_02_004 crossref_primary_10_1109_JSEN_2025_3546498 crossref_primary_10_1109_TNNLS_2020_3007943 crossref_primary_10_1007_s40747_023_01199_w crossref_primary_10_3233_JIFS_223971 crossref_primary_10_1016_j_engappai_2023_105860 crossref_primary_10_1109_TIM_2021_3053992 crossref_primary_10_1109_TEVC_2022_3231387 crossref_primary_10_1007_s40747_025_01886_w crossref_primary_10_1016_j_engappai_2023_106956 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1016_j_measurement_2024_114242 crossref_primary_10_1109_JIOT_2025_3569131 crossref_primary_10_1109_ACCESS_2022_3184693 crossref_primary_10_1016_j_asoc_2020_106992 crossref_primary_10_1177_10775463221129930 crossref_primary_10_1109_ACCESS_2022_3203406 crossref_primary_10_1109_ACCESS_2019_2943076 crossref_primary_10_1007_s13369_019_04008_0 crossref_primary_10_1109_TIM_2020_2986853 crossref_primary_10_1016_j_ifacol_2022_07_353 crossref_primary_10_1007_s00170_021_06976_w crossref_primary_10_1016_j_procs_2022_12_241 crossref_primary_10_1007_s11227_023_05126_1 crossref_primary_10_1016_j_eswa_2024_124829 crossref_primary_10_1016_j_ress_2022_108717 crossref_primary_10_1016_j_measurement_2020_108215 crossref_primary_10_1088_1361_6501_ace20b crossref_primary_10_1051_jnwpu_20213920407 crossref_primary_10_1016_j_neucom_2019_01_110 crossref_primary_10_3390_aerospace9100609 crossref_primary_10_3390_ai2010005 crossref_primary_10_1093_jcde_qwae018 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1016_j_asoc_2020_106344 crossref_primary_10_3390_s21124217 crossref_primary_10_1016_j_knosys_2021_107652 crossref_primary_10_1109_ACCESS_2019_2925634 crossref_primary_10_3390_s22155744 crossref_primary_10_1109_JAS_2022_105746 crossref_primary_10_1002_qre_2651 crossref_primary_10_1016_j_ress_2024_110012 crossref_primary_10_1109_TCYB_2021_3124838 crossref_primary_10_1109_JIOT_2024_3376715 crossref_primary_10_1109_TR_2018_2882682 crossref_primary_10_1016_j_conengprac_2023_105840 crossref_primary_10_1016_j_ymssp_2022_109053 crossref_primary_10_3390_s21206772 crossref_primary_10_1109_TNNLS_2019_2901273 crossref_primary_10_1016_j_ymssp_2019_05_005 crossref_primary_10_3103_S0146411621010089 crossref_primary_10_1088_2631_8695_ad5f04 crossref_primary_10_1016_j_neucom_2023_126353 crossref_primary_10_1016_j_pnucene_2022_104143 crossref_primary_10_3390_math10122066 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s00603_021_02757_9 crossref_primary_10_3390_s21134284 crossref_primary_10_1002_qre_70043 crossref_primary_10_1007_s10845_021_01750_x crossref_primary_10_1016_j_ress_2023_109096 crossref_primary_10_1109_JIOT_2021_3055977 crossref_primary_10_1109_TII_2020_2983760 crossref_primary_10_1109_TIM_2023_3322481 crossref_primary_10_1177_1687814020923202 crossref_primary_10_1109_TIM_2022_3160561 crossref_primary_10_1109_JSEN_2021_3060395 crossref_primary_10_1109_TEVC_2023_3290172 crossref_primary_10_3390_s21185994 crossref_primary_10_1016_j_procs_2022_12_383 crossref_primary_10_1007_s00170_024_14000_0 crossref_primary_10_1088_1361_6501_aced5f crossref_primary_10_1016_j_compind_2019_103182 crossref_primary_10_1109_ACCESS_2024_3381492 crossref_primary_10_1155_2022_5796505 crossref_primary_10_1109_TNNLS_2023_3310482 crossref_primary_10_3390_app10041378 crossref_primary_10_1002_cjce_23753 crossref_primary_10_3390_math13081347 crossref_primary_10_1109_TNNLS_2019_2952864 crossref_primary_10_1016_j_eswa_2025_127277 crossref_primary_10_1016_j_neucom_2019_10_053 crossref_primary_10_1109_JAS_2024_124962 crossref_primary_10_1002_qre_2997 crossref_primary_10_1109_TIM_2023_3334339 crossref_primary_10_1109_TIM_2024_3375984 crossref_primary_10_1109_TIE_2018_2864702 crossref_primary_10_1109_TPWRS_2020_3041866 crossref_primary_10_1007_s00158_022_03410_x crossref_primary_10_1007_s10462_022_10359_2 crossref_primary_10_1109_TR_2020_3010970 crossref_primary_10_3390_s20226626 crossref_primary_10_1016_j_ymssp_2020_107322 crossref_primary_10_1109_TIM_2025_3550613 crossref_primary_10_1016_j_asoc_2025_113017 crossref_primary_10_1016_j_neucom_2023_127226 crossref_primary_10_1016_j_psep_2021_08_022 crossref_primary_10_1109_TIM_2023_3309395 crossref_primary_10_1016_j_engappai_2024_108160 crossref_primary_10_1088_1361_6501_ad8b62 crossref_primary_10_1016_j_ress_2024_110167 crossref_primary_10_1155_2018_6231745 crossref_primary_10_1016_j_engappai_2024_109799 crossref_primary_10_1016_j_jmsy_2023_04_002 crossref_primary_10_1109_ACCESS_2019_2937798 crossref_primary_10_1109_ACCESS_2020_2973500 crossref_primary_10_1109_ACCESS_2021_3052305 crossref_primary_10_1109_TETCI_2018_2880516 crossref_primary_10_1109_TNNLS_2018_2832648 crossref_primary_10_1109_TNNLS_2017_2772870 crossref_primary_10_1016_j_ress_2020_107028 crossref_primary_10_1088_1361_6501_ad31f5 crossref_primary_10_1007_s12206_020_0526_4 crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_1007_s00170_022_09032_3 crossref_primary_10_1088_1742_6596_2171_1_012016 crossref_primary_10_1080_00224065_2021_1960934 crossref_primary_10_1016_j_ress_2022_108869 crossref_primary_10_1109_TMECH_2023_3325538 crossref_primary_10_1088_1742_6596_2591_1_012063 crossref_primary_10_1080_00224065_2025_2540790 crossref_primary_10_1016_j_ress_2022_108986 crossref_primary_10_1016_j_aei_2024_102566 crossref_primary_10_1016_j_engappai_2020_103849 crossref_primary_10_1016_j_ins_2024_121140 crossref_primary_10_1007_s00500_022_07625_4 crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_1109_TNNLS_2021_3136768 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1016_j_procs_2021_02_036 crossref_primary_10_1109_JSEN_2021_3109623 crossref_primary_10_1109_TIM_2025_3560753 crossref_primary_10_1109_TR_2023_3349201 crossref_primary_10_1109_JSEN_2023_3299432 crossref_primary_10_1080_1448837X_2022_2072447 crossref_primary_10_1016_j_chemolab_2021_104278 crossref_primary_10_1038_s41598_025_09155_z crossref_primary_10_1109_JAS_2022_105935 crossref_primary_10_1109_TIM_2023_3246526 crossref_primary_10_2478_jaiscr_2025_0003 crossref_primary_10_1088_1742_6596_1646_1_012120 crossref_primary_10_1002_qre_2947 crossref_primary_10_1109_TIM_2021_3055788 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1016_j_measurement_2021_110637 crossref_primary_10_1109_ACCESS_2022_3211258 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1080_01691864_2018_1529620 crossref_primary_10_1016_j_ast_2024_109065 crossref_primary_10_1109_ACCESS_2023_3322733 crossref_primary_10_1016_j_ymssp_2023_110221 crossref_primary_10_1016_j_ress_2024_110030 crossref_primary_10_1109_TAI_2021_3067574 crossref_primary_10_1002_int_22621 crossref_primary_10_1002_qre_3808 crossref_primary_10_1007_s00500_023_08316_4 crossref_primary_10_3390_electronics10202453 crossref_primary_10_1007_s00521_021_06089_1 crossref_primary_10_1007_s10489_025_06705_w crossref_primary_10_1016_j_inffus_2024_102383 crossref_primary_10_1109_TASE_2023_3239004 crossref_primary_10_1155_2024_6465566 crossref_primary_10_1016_j_asoc_2020_106351 crossref_primary_10_1155_2020_8814658 crossref_primary_10_1016_j_asoc_2020_106474 crossref_primary_10_3390_s22186886 crossref_primary_10_1016_j_asoc_2020_106113 crossref_primary_10_1088_1757_899X_1043_3_032011 crossref_primary_10_3390_math11244972 crossref_primary_10_1109_TIM_2025_3569885 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1109_TIM_2022_3184352 crossref_primary_10_1016_j_asoc_2023_110041 crossref_primary_10_3390_s21020418 crossref_primary_10_1109_TNNLS_2020_2978857 crossref_primary_10_1007_s12206_020_0908_7 crossref_primary_10_1016_j_aquaeng_2020_102085 crossref_primary_10_3390_s25134224 crossref_primary_10_1109_TNSE_2020_2996379 crossref_primary_10_1109_TIM_2022_3227956 crossref_primary_10_3390_s24248022 crossref_primary_10_1109_TII_2021_3121326 crossref_primary_10_1007_s10845_020_01630_w crossref_primary_10_3390_e27010079 crossref_primary_10_1109_TIM_2024_3413142 crossref_primary_10_3390_inventions3030041 crossref_primary_10_1109_TEVC_2019_2918140 crossref_primary_10_1016_j_ress_2020_106926 crossref_primary_10_1007_s11424_025_3210_z crossref_primary_10_1038_s41598_025_08515_z crossref_primary_10_1109_TAES_2024_3402199 crossref_primary_10_1088_1361_6501_ac84f6 crossref_primary_10_1088_1361_6501_ac84f8 crossref_primary_10_1109_TNNLS_2020_2979839 crossref_primary_10_1109_TNSRE_2018_2864119 crossref_primary_10_1016_j_neucom_2021_04_109 crossref_primary_10_3390_aerospace10050474 crossref_primary_10_1109_TNNLS_2017_2708712 crossref_primary_10_1007_s00521_022_07378_z crossref_primary_10_1016_j_ymssp_2017_11_024 crossref_primary_10_1109_TAI_2021_3097311 crossref_primary_10_1109_TNNLS_2023_3330487 crossref_primary_10_3390_machines10110974 crossref_primary_10_1109_TII_2019_2915536 crossref_primary_10_1109_TII_2019_2896288 crossref_primary_10_3390_machines10100927 crossref_primary_10_3390_s24134117 crossref_primary_10_1063_5_0125885 crossref_primary_10_1016_j_ress_2022_108531 crossref_primary_10_3390_data6010005 crossref_primary_10_1016_j_ress_2021_108297 crossref_primary_10_1016_j_ymssp_2024_111551 crossref_primary_10_1109_ACCESS_2020_2976595 crossref_primary_10_1109_TCYB_2018_2886012 crossref_primary_10_1155_2019_9859281 crossref_primary_10_1177_1748006X19866546 crossref_primary_10_1109_TASE_2024_3372711 crossref_primary_10_1109_ACCESS_2020_3026337 crossref_primary_10_1016_j_ress_2022_108405 crossref_primary_10_1016_j_rineng_2025_105137 crossref_primary_10_1109_TII_2021_3053304 crossref_primary_10_1007_s11276_021_02677_0 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1109_ACCESS_2021_3140165 crossref_primary_10_1109_TCE_2024_3510786 crossref_primary_10_1142_S0219649219500424 crossref_primary_10_1007_s11760_023_02800_y crossref_primary_10_1155_2017_5067651 crossref_primary_10_1109_TMECH_2021_3094986 crossref_primary_10_3390_electronics11213616 crossref_primary_10_1007_s11668_024_01922_w crossref_primary_10_1038_s41598_024_59095_3 crossref_primary_10_1109_JSEN_2023_3342884 crossref_primary_10_1016_j_dsp_2023_104368 crossref_primary_10_1016_j_measurement_2020_108653 crossref_primary_10_3390_aerospace11100809 crossref_primary_10_1007_s40745_025_00637_5 crossref_primary_10_1016_j_ress_2022_108590 crossref_primary_10_1109_TII_2023_3265532 crossref_primary_10_3390_e25040606 crossref_primary_10_1016_j_ress_2025_111121 crossref_primary_10_1038_s41529_018_0058_x crossref_primary_10_1109_TCE_2024_3507006 crossref_primary_10_3390_en15041320 crossref_primary_10_1007_s00521_022_07595_6 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_1061_JAEEEZ_ASENG_5887 crossref_primary_10_3390_s23125669 crossref_primary_10_1016_j_eswa_2023_120952 crossref_primary_10_1016_j_future_2018_12_009 crossref_primary_10_1109_TAI_2024_3396422 crossref_primary_10_3390_app13169194 crossref_primary_10_1016_j_heliyon_2023_e17118 crossref_primary_10_1016_j_ress_2020_107098 crossref_primary_10_1109_TIE_2019_2891463 crossref_primary_10_1109_ACCESS_2019_2920297 crossref_primary_10_1016_j_asoc_2023_111071 crossref_primary_10_1109_TIM_2020_3031113 crossref_primary_10_1016_j_engappai_2023_107357 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_1007_s42405_024_00828_z crossref_primary_10_1109_TII_2024_3353923 crossref_primary_10_1016_j_compeleceng_2021_107195 crossref_primary_10_1109_TNNLS_2021_3070840 crossref_primary_10_1007_s42835_024_02036_x crossref_primary_10_1007_s40747_021_00606_4 crossref_primary_10_1016_j_measurement_2020_107788 crossref_primary_10_1016_j_ress_2023_109821 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2022_108330 crossref_primary_10_1007_s44163_023_00089_x crossref_primary_10_1016_j_ress_2021_108012 crossref_primary_10_1016_j_neunet_2023_11_032 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_1016_j_isatra_2020_03_007 crossref_primary_10_1016_j_ress_2018_11_027 crossref_primary_10_1007_s11227_023_05404_y crossref_primary_10_1109_TIE_2019_2907440 crossref_primary_10_1016_j_compchemeng_2020_107197 crossref_primary_10_1016_j_ymssp_2021_107785 crossref_primary_10_1109_TII_2023_3254656 crossref_primary_10_1109_TIM_2020_2996004 crossref_primary_10_3390_app13010017 crossref_primary_10_1016_j_ress_2022_108444 crossref_primary_10_1155_2022_9707940 crossref_primary_10_3390_su15010029 crossref_primary_10_1109_TAES_2021_3056086 |
| Cites_doi | 10.1023/A:1008202821328 10.1109/TEVC.2008.927706 10.1016/j.ress.2009.08.001 10.1109/TEVC.2014.2353672 10.1109/AERO.2010.5446841 10.1109/TEVC.2014.2301794 10.1109/TNNLS.2013.2264952 10.1109/TIE.2004.824875 10.1109/TEVC.2015.2443001 10.1613/jair.614 10.1109/PHM.2008.4711414 10.1109/TEVC.2014.2308305 10.1109/34.58871 10.1007/s11047-005-1625-y 10.1109/PHM.2008.4711421 10.1016/j.ymssp.2009.11.005 10.1109/TEVC.2015.2450018 10.1109/PHM.2008.4711422 10.1109/ICPHM.2012.6299526 10.1109/TASL.2011.2109382 10.1109/TEVC.2008.925798 10.1109/TIE.2010.2098369 10.1109/TEVC.2007.892759 10.1115/1.4004981 10.1016/j.neucom.2005.12.126 10.1109/4235.887237 10.1016/S0893-6080(99)00073-8 10.1016/j.inffus.2004.04.004 10.1016/j.ress.2010.02.016 10.1016/j.ymssp.2008.06.009 10.1007/978-1-4020-6668-9_5 10.1177/0142331208092031 10.1109/PHM.2008.4711423 10.21236/AD0256582 10.1162/neco.2006.18.7.1527 10.1109/TR.2012.2196171 10.1109/ICASSP.2011.5947494 10.1109/CEC.2013.6557689 10.1214/aos/1013203451 10.1109/AERO.2014.6836267 10.1109/34.709601 10.1109/TCYB.2014.2378056 10.1007/s10852-005-9020-3 10.1109/CEC.2003.1299928 10.1016/j.ress.2012.03.008 10.1111/j.2517-6161.1996.tb02080.x 10.1109/PHM.2008.4711436 10.1016/j.ymssp.2011.10.019 10.1109/TNNLS.2013.2296046 10.1016/j.neucom.2013.03.047 10.1109/TKDE.2010.26 10.1109/SMC.2015.19 10.1109/MCI.2016.2532268 10.1109/TNNLS.2013.2246578 10.2514/6.2005-7002 10.1109/TEVC.2015.2455812 10.1109/PHM.2008.4711456 10.1016/j.ress.2013.08.004 10.1109/ICPHM.2013.6621419 10.1145/1553374.1553453 10.1177/0142331208092030 10.1023/B:STCO.0000035301.49549.88 10.1109/TNNLS.2013.2268279 10.1016/j.jpowsour.2004.02.032 10.1007/3-540-45656-2_1 10.1016/j.ymssp.2013.07.010 10.1016/j.ress.2013.02.022 10.1016/j.neunet.2014.09.003 10.1016/j.ymssp.2007.12.004 10.1109/JSEN.2013.2293517 10.1016/j.ymssp.2005.11.008 10.1145/2330163.2330301 10.1109/TEVC.2015.2433672 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2016.2582798 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2318 |
| ExternalDocumentID | 27416606 10_1109_TNNLS_2016_2582798 7508982 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Education, Singapore grantid: R-263-000-A12-112 funderid: 10.13039/501100001459 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c417t-b7447d4fedcc2466fce4c2a191e440b9bca272a4855f0382f318a79bc16beee23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 637 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411293200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X |
| IngestDate | Sat Sep 27 23:44:49 EDT 2025 Mon Jun 30 07:04:09 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Sat Nov 29 01:39:55 EST 2025 Tue Nov 18 21:44:58 EST 2025 Tue Aug 26 16:38:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-b7447d4fedcc2466fce4c2a191e440b9bca272a4855f0382f318a79bc16beee23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2162-4344 |
| PMID | 27416606 |
| PQID | 2174451401 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2174451401 crossref_citationtrail_10_1109_TNNLS_2016_2582798 proquest_miscellaneous_1826718541 ieee_primary_7508982 crossref_primary_10_1109_TNNLS_2016_2582798 pubmed_primary_27416606 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 dietterich (ref40) 1997; 18 ref13 ref56 ref12 ref59 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 tamilselvan (ref77) 2012 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 opitz (ref43) 1999; 11 ref49 sutton (ref23) 1986 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 tibshirani (ref74) 1996; 58 ref83 ref80 ref79 ref35 ref78 ref34 ref37 lim (ref16) 2016; pp ref36 ref75 ref30 ref33 ref32 krogh (ref42) 1995 ref2 ref1 ref39 ref38 ho (ref76) 1998; 20 lim (ref15) 2014 ref70 ref73 ref72 riad (ref31) 2010; 10 ref68 ref24 ref67 ref26 ref69 ref25 ref64 ref20 ref63 ramasso (ref71) 2014 ref66 ref22 ref21 ref28 ref27 ref29 hinton (ref60) 2010; 9 saxena (ref65) 2008 ref62 ref61 |
| References_xml | – ident: ref17 doi: 10.1023/A:1008202821328 – ident: ref18 doi: 10.1109/TEVC.2008.927706 – year: 2008 ident: ref65 publication-title: Turbofan Engine Degradation Simulation Data Set – ident: ref11 doi: 10.1016/j.ress.2009.08.001 – volume: pp start-page: 1 year: 2016 ident: ref16 article-title: Multimodal degradation prognostics based on switching Kalman filter ensemble publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref46 doi: 10.1109/TEVC.2014.2353672 – ident: ref12 doi: 10.1109/AERO.2010.5446841 – ident: ref47 doi: 10.1109/TEVC.2014.2301794 – ident: ref39 doi: 10.1109/TNNLS.2013.2264952 – ident: ref27 doi: 10.1109/TIE.2004.824875 – ident: ref50 doi: 10.1109/TEVC.2015.2443001 – volume: 11 start-page: 169 year: 1999 ident: ref43 article-title: Popular ensemble methods: An empirical study publication-title: J Artif Intell Res doi: 10.1613/jair.614 – ident: ref67 doi: 10.1109/PHM.2008.4711414 – ident: ref45 doi: 10.1109/TEVC.2014.2308305 – ident: ref41 doi: 10.1109/34.58871 – ident: ref20 doi: 10.1007/s11047-005-1625-y – ident: ref8 doi: 10.1109/PHM.2008.4711421 – ident: ref7 doi: 10.1016/j.ymssp.2009.11.005 – ident: ref48 doi: 10.1109/TEVC.2015.2450018 – ident: ref4 doi: 10.1109/PHM.2008.4711422 – ident: ref35 doi: 10.1109/ICPHM.2012.6299526 – ident: ref57 doi: 10.1109/TASL.2011.2109382 – ident: ref63 doi: 10.1109/TEVC.2008.925798 – ident: ref33 doi: 10.1109/TIE.2010.2098369 – ident: ref64 doi: 10.1109/TEVC.2007.892759 – ident: ref2 doi: 10.1115/1.4004981 – ident: ref72 doi: 10.1016/j.neucom.2005.12.126 – ident: ref61 doi: 10.1109/4235.887237 – ident: ref51 doi: 10.1016/S0893-6080(99)00073-8 – ident: ref36 doi: 10.1016/j.inffus.2004.04.004 – volume: 18 start-page: 97 year: 1997 ident: ref40 article-title: Machine-learning research publication-title: AI Mag – ident: ref25 doi: 10.1016/j.ress.2010.02.016 – ident: ref5 doi: 10.1016/j.ymssp.2008.06.009 – ident: ref13 doi: 10.1007/978-1-4020-6668-9_5 – ident: ref3 doi: 10.1177/0142331208092031 – ident: ref30 doi: 10.1109/PHM.2008.4711423 – ident: ref22 doi: 10.21236/AD0256582 – ident: ref21 doi: 10.1162/neco.2006.18.7.1527 – ident: ref1 doi: 10.1109/TR.2012.2196171 – ident: ref58 doi: 10.1109/ICASSP.2011.5947494 – start-page: 612 year: 2014 ident: ref71 article-title: Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset publication-title: Proc Annu Conf Prognostics Health Manage Soc (PHM) – volume: 10 start-page: 50 year: 2010 ident: ref31 article-title: Evaluation of neural networks in the subject of prognostics as compared to linear regression model publication-title: Int J Eng Technol – ident: ref24 doi: 10.1109/CEC.2013.6557689 – start-page: 823 year: 1986 ident: ref23 article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks publication-title: Proc 8th Annu Conf Cognit Sci Soc – ident: ref75 doi: 10.1214/aos/1013203451 – ident: ref54 doi: 10.1109/AERO.2014.6836267 – volume: 20 start-page: 832 year: 1998 ident: ref76 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: ref32 doi: 10.1109/TCYB.2014.2378056 – ident: ref44 doi: 10.1007/s10852-005-9020-3 – ident: ref53 doi: 10.1109/CEC.2003.1299928 – ident: ref14 doi: 10.1016/j.ress.2012.03.008 – volume: 58 start-page: 267 year: 1996 ident: ref74 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Statist Soc Series B (Methodol ) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 9 start-page: 926 year: 2010 ident: ref60 article-title: A practical guide to training restricted Boltzmann machines publication-title: Momentum – ident: ref70 doi: 10.1109/PHM.2008.4711436 – ident: ref69 doi: 10.1016/j.ymssp.2011.10.019 – ident: ref55 doi: 10.1109/TNNLS.2013.2296046 – ident: ref79 doi: 10.1016/j.neucom.2013.03.047 – ident: ref62 doi: 10.1109/TKDE.2010.26 – ident: ref66 doi: 10.1109/SMC.2015.19 – start-page: 2 year: 2014 ident: ref15 article-title: Estimation of remaining useful life based on switching Kalman filter neural network ensemble publication-title: Proc Int Conf Prognostics Health Manage (PHM) – ident: ref83 doi: 10.1109/MCI.2016.2532268 – ident: ref38 doi: 10.1109/TNNLS.2013.2246578 – ident: ref9 doi: 10.2514/6.2005-7002 – ident: ref49 doi: 10.1109/TEVC.2015.2455812 – ident: ref68 doi: 10.1109/PHM.2008.4711456 – ident: ref26 doi: 10.1016/j.ress.2013.08.004 – ident: ref34 doi: 10.1109/ICPHM.2013.6621419 – ident: ref56 doi: 10.1145/1553374.1553453 – ident: ref6 doi: 10.1177/0142331208092030 – ident: ref73 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref37 doi: 10.1109/TNNLS.2013.2268279 – ident: ref10 doi: 10.1016/j.jpowsour.2004.02.032 – ident: ref52 doi: 10.1007/3-540-45656-2_1 – start-page: 231 year: 1995 ident: ref42 article-title: Neural network ensembles, cross validation, and active learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref81 doi: 10.1016/j.ymssp.2013.07.010 – ident: ref78 doi: 10.1016/j.ress.2013.02.022 – start-page: 1 year: 2012 ident: ref77 article-title: Deep belief network based state classification for structural health diagnosis publication-title: Proc IEEE Aerosp Conf – ident: ref59 doi: 10.1016/j.neunet.2014.09.003 – ident: ref29 doi: 10.1016/j.ymssp.2007.12.004 – ident: ref80 doi: 10.1109/JSEN.2013.2293517 – ident: ref28 doi: 10.1016/j.ymssp.2005.11.008 – ident: ref82 doi: 10.1145/2330163.2330301 – ident: ref19 doi: 10.1109/TEVC.2015.2433672 |
| SSID | ssj0000605649 |
| Score | 2.6885445 |
| Snippet | In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2306 |
| SubjectTerms | Artificial neural networks Belief networks Benchmark testing Deep belief network (DBN) Degradation ensemble learning Estimation evolutionary algorithm (EA) Evolutionary algorithms Industrial applications Maintenance engineering multiobjective Multiple objective analysis Neural networks Objective function prognostics Reliability Reliability aspects Training Useful life |
| Title | Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics |
| URI | https://ieeexplore.ieee.org/document/7508982 https://www.ncbi.nlm.nih.gov/pubmed/27416606 https://www.proquest.com/docview/2174451401 https://www.proquest.com/docview/1826718541 |
| Volume | 28 |
| WOSCitedRecordID | wos000411293200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5R1AOXAqW0y0uu1FsbSBzHjo9AF_WwilAL0t7S2BlLWy0J2uzy-_EjiTiUSr1FifOc8cw3zsx8AF9igTVFJSKmOI9YrdNI5gajVGdGWgiss9BdfyaKIp_P5e0WfBtrYRDRJ5_hudv0__LrVm_cUtmF9W65zK3BfSOECLVa43pKbHE592iXJpxGNBXzoUYmlhd3RTH75RK5-DnNciqk4-lznVs4d1xHL1yS51h5HW56t3Oz-38PvAfvenhJLoM-7MMWNu9hd6BuIP1MPoDfvvC2VX-CvSPfER_JFVpAakgRMsM7Mm06fFBLJBbYkp_4EMgkyH2HZrMks4VBMrUWIhQ_kkVDblety9tznZ8_wP3N9O76R9STLUSaJWIdKcGYqJnBWmvKODcamaaVDeeQsVhJpSsqaOV6yZg4zamxxqASdnfClX1vmh7CdtM2-AmI0lTFJkNTWeyQylyh1Gmtja6VMpjwCSTD9y5134ncEWIsSx-RxLL04iqduMpeXBP4Op7zGPpw_HP0gRPGOLKXwwROBrGW_VTtSheTsczFmRP4PB62k8z9OakabDdd6YIw68QzZsd8DOowXnvQoqO_3_MYdqhDAj7_7wS216sNnsJb_bRedKszq8nz_Mxr8jOa1e6p |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuLVAoWwoYiRukTRzHjo88tioiRBVspb2Z2BlLi7ZJtdnl92M7D3EAJG5R4jxnPPONMzMfwOtYYE1Ri4hpziNWmzSSucUoNZmVDgKbrO-uX4iyzJdLebUHb6daGEQMyWd45jfDv_y6NTu_VHbuvFsuc2dw72SM0aSv1ppWVGKHzHnAuzThNKKpWI5VMrE8X5Rl8c2ncvEzmuVUSM_U53u3cO7Zjn5zSoFl5e-AMziei8P_e-QHcDAATPKu14iHsIfNIzgcyRvIMJeP4HsovW31j97ikY-It-Q9OkhqSdnnhndk3nR4o9dIHLQlX_Gmp5Mg1x3a3ZoUK4tk7mxEX_5IVg252rQ-c8_3fn4M1xfzxYfLaKBbiAxLxDbSgjFRM4u1MZRxbg0yQysX0CFjsZbaVFTQyneTsXGaU-vMQSXc7oRr9940fQL7TdvgUyDaUB3bDG3l0EMqc43SpLWxptbaYsJnkIzfW5mhF7mnxFirEJPEUgVxKS8uNYhrBm-mc277Thz_HH3khTGNHOQwg9NRrGqYrJ3yURnLfKQ5g1fTYTfN_L-TqsF21ykfhjk3njE35rhXh-naoxad_PmeL-He5eJLoYpP5edncJ96XBCyAU9hf7vZ4XO4a35uV93mRdDnX4fF8Qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Deep+Belief+Networks+Ensemble+for+Remaining+Useful+Life+Estimation+in+Prognostics&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Chong&rft.au=Lim%2C+Pin&rft.au=Qin%2C+A.+K.&rft.au=Tan%2C+Kay+Chen&rft.date=2017-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=10&rft.spage=2306&rft.epage=2318&rft_id=info:doi/10.1109%2FTNNLS.2016.2582798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2582798 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |