Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics

In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 28; H. 10; S. 2306 - 2318
Hauptverfasser: Chong Zhang, Pin Lim, Qin, A. K., Kay Chen Tan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining useful life (RUL) of the system. Neural networks-based approaches have produced promising results on RUL estimation, although their performances are influenced by handcrafted features and manually specified parameters. In this paper, we propose a multiobjective deep belief networks ensemble (MODBNE) method. MODBNE employs a multiobjective evolutionary algorithm integrated with the traditional DBN training technique to evolve multiple DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. The eventually evolved DBNs are combined to establish an ensemble model used for RUL estimation, where combination weights are optimized via a single-objective differential evolution algorithm using a task-oriented objective function. We evaluate the proposed method on several prognostic benchmarking data sets and also compare it with some existing approaches. Experimental results demonstrate the superiority of our proposed method.
AbstractList In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining useful life (RUL) of the system. Neural networks-based approaches have produced promising results on RUL estimation, although their performances are influenced by handcrafted features and manually specified parameters. In this paper, we propose a multiobjective deep belief networks ensemble (MODBNE) method. MODBNE employs a multiobjective evolutionary algorithm integrated with the traditional DBN training technique to evolve multiple DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. The eventually evolved DBNs are combined to establish an ensemble model used for RUL estimation, where combination weights are optimized via a single-objective differential evolution algorithm using a task-oriented objective function. We evaluate the proposed method on several prognostic benchmarking data sets and also compare it with some existing approaches. Experimental results demonstrate the superiority of our proposed method.
Author Pin Lim
Kay Chen Tan
Qin, A. K.
Chong Zhang
Author_xml – sequence: 1
  surname: Chong Zhang
  fullname: Chong Zhang
  email: zhangchong@u.nus.edu
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 2
  surname: Pin Lim
  fullname: Pin Lim
  email: pin.lim@rolls-royce.com
  organization: Adv. Technol. Center of Rolls Royce Singapore, Singapore, Singapore
– sequence: 3
  givenname: A. K.
  surname: Qin
  fullname: Qin, A. K.
  email: kai.qin@rmit.edu.au
  organization: Sch. of Sci., RMIT Univ., Melbourne, VIC, Australia
– sequence: 4
  surname: Kay Chen Tan
  fullname: Kay Chen Tan
  email: eletankc@nus.edu.sg
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27416606$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxa2qiP6hX4BKlSUuvSTYXq_tPUJJASkEBK3Um_E648ph1w72bqt-e5wm7aEHfBlr9HtPM_OO0H6IARB6S8mUUtK8v1os5r-mjFAxZbVislF76JBRwSasUmr_-S9vDtBJzitSniC14M1rdMAkp0IQcYh-fxu7wcd2BXbwd4A_AazxR-g8OLyA4T6mPxnPQoa-7QC7mPBP6I0PPtzi6wxu7PDcO8CzPPjeFKeAfcA_UrwNsbRsfoNeOdNlONnVY3R9Obu6-DKZf__89eLDfGI5lcOklZzLJXewtJZxIZwFbpmhDQXOSdu01jDJDFd17UilmKuoMrK0qWgBgFXH6Hzru07x7wh50L3PFrrOBIhj1lQxIamqOS3ouxfoKo4plOk0o2WOmnKyoc521Nj2sNTrVBZMD_rpdgVQW8CmmHMCp60fHk8wJOM7TYneJKUfk9KbpPQuqSJlL6RP7v8VnW5Fviz8LJA1UY1i1T_x3p6r
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_jmsy_2025_05_009
crossref_primary_10_1109_TIM_2022_3162283
crossref_primary_10_1016_j_measurement_2023_113098
crossref_primary_10_1016_j_asoc_2022_109604
crossref_primary_10_1109_ACCESS_2019_2949059
crossref_primary_10_1109_TNNLS_2021_3059784
crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_1016_j_asoc_2022_108879
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_nucengdes_2024_113474
crossref_primary_10_1016_j_engappai_2025_110072
crossref_primary_10_1109_TMECH_2022_3144351
crossref_primary_10_1109_ACCESS_2019_2903295
crossref_primary_10_1109_TII_2019_2896665
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1016_j_ress_2022_109006
crossref_primary_10_1109_ACCESS_2021_3116813
crossref_primary_10_1109_JSEN_2023_3261874
crossref_primary_10_3390_electronics10010039
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1088_1361_6501_ac7636
crossref_primary_10_1049_enc2_12015
crossref_primary_10_1109_TNNLS_2020_2977132
crossref_primary_10_1177_00202940221098048
crossref_primary_10_1016_j_eswa_2022_119102
crossref_primary_10_1109_TASE_2025_3549061
crossref_primary_10_1016_j_ins_2018_06_043
crossref_primary_10_1016_j_ress_2022_108383
crossref_primary_10_1080_24725854_2020_1766729
crossref_primary_10_1016_j_jocs_2021_101508
crossref_primary_10_3390_app11178159
crossref_primary_10_1007_s10489_021_02243_3
crossref_primary_10_1111_exsy_13316
crossref_primary_10_1177_1748006X211001979
crossref_primary_10_1109_TMECH_2020_2992331
crossref_primary_10_1016_j_isatra_2022_04_042
crossref_primary_10_1109_TIM_2022_3149094
crossref_primary_10_1016_j_ress_2021_107927
crossref_primary_10_1016_j_ijepes_2019_02_046
crossref_primary_10_1007_s10845_021_01747_6
crossref_primary_10_1109_TNSE_2022_3163473
crossref_primary_10_1038_s41598_022_10191_2
crossref_primary_10_1016_j_comcom_2023_03_014
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1016_j_asoc_2021_107379
crossref_primary_10_1145_3366633
crossref_primary_10_1109_TKDE_2019_2961076
crossref_primary_10_3390_e24121818
crossref_primary_10_1109_TIM_2025_3551036
crossref_primary_10_1016_j_aei_2021_101396
crossref_primary_10_1016_j_ins_2020_12_032
crossref_primary_10_1109_TIM_2022_3167778
crossref_primary_10_1109_TASE_2021_3083670
crossref_primary_10_1002_qre_3256
crossref_primary_10_1109_TIM_2022_3204089
crossref_primary_10_1016_j_knosys_2022_109340
crossref_primary_10_1109_ACCESS_2018_2890593
crossref_primary_10_1109_ACCESS_2019_2919566
crossref_primary_10_1007_s10845_022_01916_1
crossref_primary_10_3390_s25020497
crossref_primary_10_1007_s40747_025_02027_z
crossref_primary_10_1088_1361_6501_ac793f
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1007_s11227_023_05429_3
crossref_primary_10_1109_JSEN_2024_3447717
crossref_primary_10_3390_en17225538
crossref_primary_10_1016_j_isatra_2021_02_024
crossref_primary_10_3390_en16062513
crossref_primary_10_1007_s10845_022_01929_w
crossref_primary_10_1016_j_jmsy_2020_11_020
crossref_primary_10_3390_math10071022
crossref_primary_10_1016_j_aei_2023_101973
crossref_primary_10_3390_s23136163
crossref_primary_10_1007_s00170_021_08351_1
crossref_primary_10_1016_j_ifacol_2020_12_2795
crossref_primary_10_1016_j_ress_2023_109456
crossref_primary_10_1016_j_asoc_2024_112646
crossref_primary_10_1016_j_ress_2023_109337
crossref_primary_10_1016_j_measurement_2020_108707
crossref_primary_10_1109_JSEN_2024_3504565
crossref_primary_10_1109_TCPMT_2023_3282616
crossref_primary_10_1016_j_ymssp_2024_112135
crossref_primary_10_1002_qre_3151
crossref_primary_10_1038_s41598_023_40315_1
crossref_primary_10_1109_TCYB_2022_3164683
crossref_primary_10_1016_j_jii_2023_100444
crossref_primary_10_1016_j_neucom_2019_07_075
crossref_primary_10_1016_j_dche_2023_100111
crossref_primary_10_1016_j_jmsy_2024_02_011
crossref_primary_10_1088_1361_6501_acb83e
crossref_primary_10_1109_JSEN_2022_3185161
crossref_primary_10_1016_j_measurement_2021_109090
crossref_primary_10_1016_j_knosys_2020_105843
crossref_primary_10_1002_eng2_12305
crossref_primary_10_1016_j_aei_2023_101966
crossref_primary_10_1088_1742_6596_1878_1_012034
crossref_primary_10_1109_TIM_2024_3398070
crossref_primary_10_1016_j_bspc_2022_104379
crossref_primary_10_1016_j_measurement_2023_112824
crossref_primary_10_1016_j_eswa_2023_121859
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_3390_app13127186
crossref_primary_10_1016_j_eswa_2025_127870
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1109_JETCAS_2023_3248642
crossref_primary_10_1016_j_mechmachtheory_2018_11_005
crossref_primary_10_1016_j_ins_2023_119795
crossref_primary_10_1109_MCI_2020_3039066
crossref_primary_10_1049_elp2_70090
crossref_primary_10_1109_ACCESS_2023_3259221
crossref_primary_10_1007_s10489_021_03034_6
crossref_primary_10_1016_j_eswa_2020_113232
crossref_primary_10_1109_TIE_2020_2972443
crossref_primary_10_1016_j_isatra_2023_06_020
crossref_primary_10_1016_j_neucom_2021_09_022
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_3390_s22166252
crossref_primary_10_1002_qre_3494
crossref_primary_10_1080_08982112_2020_1754427
crossref_primary_10_3390_e25020242
crossref_primary_10_1088_1361_6501_ac7f7f
crossref_primary_10_1155_2021_5185938
crossref_primary_10_1016_j_knosys_2020_106555
crossref_primary_10_1109_TVT_2023_3319377
crossref_primary_10_1109_JSEN_2021_3136622
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1088_1361_6501_ade552
crossref_primary_10_1007_s42401_020_00070_x
crossref_primary_10_1016_j_asoc_2024_111649
crossref_primary_10_1016_j_ress_2023_109244
crossref_primary_10_1016_j_mfglet_2023_08_037
crossref_primary_10_1016_j_asoc_2023_110836
crossref_primary_10_1016_j_energy_2025_137253
crossref_primary_10_1080_10589759_2025_2558066
crossref_primary_10_1088_1361_6501_aca8c2
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1109_JSEN_2024_3404072
crossref_primary_10_1016_j_jmsy_2023_11_009
crossref_primary_10_1016_j_eswa_2021_114569
crossref_primary_10_1007_s10845_022_02015_x
crossref_primary_10_1007_s10462_021_09992_0
crossref_primary_10_1016_j_ress_2021_107878
crossref_primary_10_1016_j_aei_2023_101898
crossref_primary_10_1016_j_ijfatigue_2023_107722
crossref_primary_10_1109_TIM_2023_3240208
crossref_primary_10_1177_09544100211050432
crossref_primary_10_3390_act11030067
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_inffus_2020_10_014
crossref_primary_10_1109_TNNLS_2023_3305601
crossref_primary_10_1109_TNNLS_2021_3084249
crossref_primary_10_1109_ACCESS_2023_3263196
crossref_primary_10_1016_j_cie_2022_108211
crossref_primary_10_3390_cancers15143608
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_1007_s12652_020_01930_2
crossref_primary_10_1109_TII_2021_3126309
crossref_primary_10_3390_sym17081362
crossref_primary_10_3390_s22155680
crossref_primary_10_1016_j_neucom_2022_04_055
crossref_primary_10_1109_TASE_2025_3530845
crossref_primary_10_1016_j_ress_2023_109344
crossref_primary_10_1016_j_ress_2020_107241
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_1016_j_arcontrol_2021_04_001
crossref_primary_10_1088_1361_6501_ac632d
crossref_primary_10_3390_s22134763
crossref_primary_10_1109_ACCESS_2020_3020356
crossref_primary_10_1016_j_measurement_2021_109685
crossref_primary_10_1109_JSEN_2023_3285531
crossref_primary_10_1177_16878132241239802
crossref_primary_10_1109_TIM_2025_3576953
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_3390_aerospace11020138
crossref_primary_10_1016_j_engappai_2023_106845
crossref_primary_10_3390_s20030723
crossref_primary_10_3390_eng6090210
crossref_primary_10_1016_j_isatra_2024_12_024
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_1109_TNNLS_2017_2695223
crossref_primary_10_1109_TCDS_2021_3107555
crossref_primary_10_1016_j_ymssp_2023_110767
crossref_primary_10_1109_JIOT_2024_3363610
crossref_primary_10_1016_j_cie_2025_111049
crossref_primary_10_1088_1361_6501_ad9e12
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1016_j_neunet_2020_03_007
crossref_primary_10_3390_act12040158
crossref_primary_10_1016_j_ress_2023_109163
crossref_primary_10_1109_TVT_2023_3234159
crossref_primary_10_1109_TEVC_2021_3079985
crossref_primary_10_1016_j_ress_2023_109181
crossref_primary_10_1109_ACCESS_2019_2942991
crossref_primary_10_1109_ACCESS_2020_2966827
crossref_primary_10_1109_JSEN_2023_3296670
crossref_primary_10_3390_sym13101861
crossref_primary_10_1162_neco_a_01368
crossref_primary_10_1016_j_aei_2024_102608
crossref_primary_10_1016_j_ress_2022_108908
crossref_primary_10_1002_qre_3308
crossref_primary_10_1109_JSEN_2024_3494020
crossref_primary_10_1109_TCYB_2017_2774266
crossref_primary_10_3390_app15020966
crossref_primary_10_3390_app9224813
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1016_j_jmsy_2021_10_004
crossref_primary_10_1007_s13198_025_02911_4
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_1109_TNNLS_2021_3100554
crossref_primary_10_1016_j_jestch_2023_101409
crossref_primary_10_1088_1361_6501_ad6c73
crossref_primary_10_1016_j_ress_2024_110540
crossref_primary_10_1016_j_neucom_2020_01_031
crossref_primary_10_1016_j_ress_2020_107207
crossref_primary_10_1016_j_apenergy_2020_114817
crossref_primary_10_1016_j_isatra_2023_11_043
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1109_TIM_2023_3291801
crossref_primary_10_1109_TTE_2021_3128018
crossref_primary_10_1016_j_isatra_2018_11_024
crossref_primary_10_1016_j_measurement_2021_110354
crossref_primary_10_3390_aerospace9120839
crossref_primary_10_3390_e24070905
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_compind_2019_02_004
crossref_primary_10_1109_JSEN_2025_3546498
crossref_primary_10_1109_TNNLS_2020_3007943
crossref_primary_10_1007_s40747_023_01199_w
crossref_primary_10_3233_JIFS_223971
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_1109_TIM_2021_3053992
crossref_primary_10_1109_TEVC_2022_3231387
crossref_primary_10_1007_s40747_025_01886_w
crossref_primary_10_1016_j_engappai_2023_106956
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1016_j_measurement_2024_114242
crossref_primary_10_1109_JIOT_2025_3569131
crossref_primary_10_1109_ACCESS_2022_3184693
crossref_primary_10_1016_j_asoc_2020_106992
crossref_primary_10_1177_10775463221129930
crossref_primary_10_1109_ACCESS_2022_3203406
crossref_primary_10_1109_ACCESS_2019_2943076
crossref_primary_10_1007_s13369_019_04008_0
crossref_primary_10_1109_TIM_2020_2986853
crossref_primary_10_1016_j_ifacol_2022_07_353
crossref_primary_10_1007_s00170_021_06976_w
crossref_primary_10_1016_j_procs_2022_12_241
crossref_primary_10_1007_s11227_023_05126_1
crossref_primary_10_1016_j_eswa_2024_124829
crossref_primary_10_1016_j_ress_2022_108717
crossref_primary_10_1016_j_measurement_2020_108215
crossref_primary_10_1088_1361_6501_ace20b
crossref_primary_10_1051_jnwpu_20213920407
crossref_primary_10_1016_j_neucom_2019_01_110
crossref_primary_10_3390_aerospace9100609
crossref_primary_10_3390_ai2010005
crossref_primary_10_1093_jcde_qwae018
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1016_j_asoc_2020_106344
crossref_primary_10_3390_s21124217
crossref_primary_10_1016_j_knosys_2021_107652
crossref_primary_10_1109_ACCESS_2019_2925634
crossref_primary_10_3390_s22155744
crossref_primary_10_1109_JAS_2022_105746
crossref_primary_10_1002_qre_2651
crossref_primary_10_1016_j_ress_2024_110012
crossref_primary_10_1109_TCYB_2021_3124838
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1109_TR_2018_2882682
crossref_primary_10_1016_j_conengprac_2023_105840
crossref_primary_10_1016_j_ymssp_2022_109053
crossref_primary_10_3390_s21206772
crossref_primary_10_1109_TNNLS_2019_2901273
crossref_primary_10_1016_j_ymssp_2019_05_005
crossref_primary_10_3103_S0146411621010089
crossref_primary_10_1088_2631_8695_ad5f04
crossref_primary_10_1016_j_neucom_2023_126353
crossref_primary_10_1016_j_pnucene_2022_104143
crossref_primary_10_3390_math10122066
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s00603_021_02757_9
crossref_primary_10_3390_s21134284
crossref_primary_10_1002_qre_70043
crossref_primary_10_1007_s10845_021_01750_x
crossref_primary_10_1016_j_ress_2023_109096
crossref_primary_10_1109_JIOT_2021_3055977
crossref_primary_10_1109_TII_2020_2983760
crossref_primary_10_1109_TIM_2023_3322481
crossref_primary_10_1177_1687814020923202
crossref_primary_10_1109_TIM_2022_3160561
crossref_primary_10_1109_JSEN_2021_3060395
crossref_primary_10_1109_TEVC_2023_3290172
crossref_primary_10_3390_s21185994
crossref_primary_10_1016_j_procs_2022_12_383
crossref_primary_10_1007_s00170_024_14000_0
crossref_primary_10_1088_1361_6501_aced5f
crossref_primary_10_1016_j_compind_2019_103182
crossref_primary_10_1109_ACCESS_2024_3381492
crossref_primary_10_1155_2022_5796505
crossref_primary_10_1109_TNNLS_2023_3310482
crossref_primary_10_3390_app10041378
crossref_primary_10_1002_cjce_23753
crossref_primary_10_3390_math13081347
crossref_primary_10_1109_TNNLS_2019_2952864
crossref_primary_10_1016_j_eswa_2025_127277
crossref_primary_10_1016_j_neucom_2019_10_053
crossref_primary_10_1109_JAS_2024_124962
crossref_primary_10_1002_qre_2997
crossref_primary_10_1109_TIM_2023_3334339
crossref_primary_10_1109_TIM_2024_3375984
crossref_primary_10_1109_TIE_2018_2864702
crossref_primary_10_1109_TPWRS_2020_3041866
crossref_primary_10_1007_s00158_022_03410_x
crossref_primary_10_1007_s10462_022_10359_2
crossref_primary_10_1109_TR_2020_3010970
crossref_primary_10_3390_s20226626
crossref_primary_10_1016_j_ymssp_2020_107322
crossref_primary_10_1109_TIM_2025_3550613
crossref_primary_10_1016_j_asoc_2025_113017
crossref_primary_10_1016_j_neucom_2023_127226
crossref_primary_10_1016_j_psep_2021_08_022
crossref_primary_10_1109_TIM_2023_3309395
crossref_primary_10_1016_j_engappai_2024_108160
crossref_primary_10_1088_1361_6501_ad8b62
crossref_primary_10_1016_j_ress_2024_110167
crossref_primary_10_1155_2018_6231745
crossref_primary_10_1016_j_engappai_2024_109799
crossref_primary_10_1016_j_jmsy_2023_04_002
crossref_primary_10_1109_ACCESS_2019_2937798
crossref_primary_10_1109_ACCESS_2020_2973500
crossref_primary_10_1109_ACCESS_2021_3052305
crossref_primary_10_1109_TETCI_2018_2880516
crossref_primary_10_1109_TNNLS_2018_2832648
crossref_primary_10_1109_TNNLS_2017_2772870
crossref_primary_10_1016_j_ress_2020_107028
crossref_primary_10_1088_1361_6501_ad31f5
crossref_primary_10_1007_s12206_020_0526_4
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_1007_s00170_022_09032_3
crossref_primary_10_1088_1742_6596_2171_1_012016
crossref_primary_10_1080_00224065_2021_1960934
crossref_primary_10_1016_j_ress_2022_108869
crossref_primary_10_1109_TMECH_2023_3325538
crossref_primary_10_1088_1742_6596_2591_1_012063
crossref_primary_10_1080_00224065_2025_2540790
crossref_primary_10_1016_j_ress_2022_108986
crossref_primary_10_1016_j_aei_2024_102566
crossref_primary_10_1016_j_engappai_2020_103849
crossref_primary_10_1016_j_ins_2024_121140
crossref_primary_10_1007_s00500_022_07625_4
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_1109_TNNLS_2021_3136768
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1016_j_procs_2021_02_036
crossref_primary_10_1109_JSEN_2021_3109623
crossref_primary_10_1109_TIM_2025_3560753
crossref_primary_10_1109_TR_2023_3349201
crossref_primary_10_1109_JSEN_2023_3299432
crossref_primary_10_1080_1448837X_2022_2072447
crossref_primary_10_1016_j_chemolab_2021_104278
crossref_primary_10_1038_s41598_025_09155_z
crossref_primary_10_1109_JAS_2022_105935
crossref_primary_10_1109_TIM_2023_3246526
crossref_primary_10_2478_jaiscr_2025_0003
crossref_primary_10_1088_1742_6596_1646_1_012120
crossref_primary_10_1002_qre_2947
crossref_primary_10_1109_TIM_2021_3055788
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1016_j_measurement_2021_110637
crossref_primary_10_1109_ACCESS_2022_3211258
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1080_01691864_2018_1529620
crossref_primary_10_1016_j_ast_2024_109065
crossref_primary_10_1109_ACCESS_2023_3322733
crossref_primary_10_1016_j_ymssp_2023_110221
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1109_TAI_2021_3067574
crossref_primary_10_1002_int_22621
crossref_primary_10_1002_qre_3808
crossref_primary_10_1007_s00500_023_08316_4
crossref_primary_10_3390_electronics10202453
crossref_primary_10_1007_s00521_021_06089_1
crossref_primary_10_1007_s10489_025_06705_w
crossref_primary_10_1016_j_inffus_2024_102383
crossref_primary_10_1109_TASE_2023_3239004
crossref_primary_10_1155_2024_6465566
crossref_primary_10_1016_j_asoc_2020_106351
crossref_primary_10_1155_2020_8814658
crossref_primary_10_1016_j_asoc_2020_106474
crossref_primary_10_3390_s22186886
crossref_primary_10_1016_j_asoc_2020_106113
crossref_primary_10_1088_1757_899X_1043_3_032011
crossref_primary_10_3390_math11244972
crossref_primary_10_1109_TIM_2025_3569885
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1109_TIM_2022_3184352
crossref_primary_10_1016_j_asoc_2023_110041
crossref_primary_10_3390_s21020418
crossref_primary_10_1109_TNNLS_2020_2978857
crossref_primary_10_1007_s12206_020_0908_7
crossref_primary_10_1016_j_aquaeng_2020_102085
crossref_primary_10_3390_s25134224
crossref_primary_10_1109_TNSE_2020_2996379
crossref_primary_10_1109_TIM_2022_3227956
crossref_primary_10_3390_s24248022
crossref_primary_10_1109_TII_2021_3121326
crossref_primary_10_1007_s10845_020_01630_w
crossref_primary_10_3390_e27010079
crossref_primary_10_1109_TIM_2024_3413142
crossref_primary_10_3390_inventions3030041
crossref_primary_10_1109_TEVC_2019_2918140
crossref_primary_10_1016_j_ress_2020_106926
crossref_primary_10_1007_s11424_025_3210_z
crossref_primary_10_1038_s41598_025_08515_z
crossref_primary_10_1109_TAES_2024_3402199
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_1088_1361_6501_ac84f8
crossref_primary_10_1109_TNNLS_2020_2979839
crossref_primary_10_1109_TNSRE_2018_2864119
crossref_primary_10_1016_j_neucom_2021_04_109
crossref_primary_10_3390_aerospace10050474
crossref_primary_10_1109_TNNLS_2017_2708712
crossref_primary_10_1007_s00521_022_07378_z
crossref_primary_10_1016_j_ymssp_2017_11_024
crossref_primary_10_1109_TAI_2021_3097311
crossref_primary_10_1109_TNNLS_2023_3330487
crossref_primary_10_3390_machines10110974
crossref_primary_10_1109_TII_2019_2915536
crossref_primary_10_1109_TII_2019_2896288
crossref_primary_10_3390_machines10100927
crossref_primary_10_3390_s24134117
crossref_primary_10_1063_5_0125885
crossref_primary_10_1016_j_ress_2022_108531
crossref_primary_10_3390_data6010005
crossref_primary_10_1016_j_ress_2021_108297
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1109_ACCESS_2020_2976595
crossref_primary_10_1109_TCYB_2018_2886012
crossref_primary_10_1155_2019_9859281
crossref_primary_10_1177_1748006X19866546
crossref_primary_10_1109_TASE_2024_3372711
crossref_primary_10_1109_ACCESS_2020_3026337
crossref_primary_10_1016_j_ress_2022_108405
crossref_primary_10_1016_j_rineng_2025_105137
crossref_primary_10_1109_TII_2021_3053304
crossref_primary_10_1007_s11276_021_02677_0
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1109_ACCESS_2021_3140165
crossref_primary_10_1109_TCE_2024_3510786
crossref_primary_10_1142_S0219649219500424
crossref_primary_10_1007_s11760_023_02800_y
crossref_primary_10_1155_2017_5067651
crossref_primary_10_1109_TMECH_2021_3094986
crossref_primary_10_3390_electronics11213616
crossref_primary_10_1007_s11668_024_01922_w
crossref_primary_10_1038_s41598_024_59095_3
crossref_primary_10_1109_JSEN_2023_3342884
crossref_primary_10_1016_j_dsp_2023_104368
crossref_primary_10_1016_j_measurement_2020_108653
crossref_primary_10_3390_aerospace11100809
crossref_primary_10_1007_s40745_025_00637_5
crossref_primary_10_1016_j_ress_2022_108590
crossref_primary_10_1109_TII_2023_3265532
crossref_primary_10_3390_e25040606
crossref_primary_10_1016_j_ress_2025_111121
crossref_primary_10_1038_s41529_018_0058_x
crossref_primary_10_1109_TCE_2024_3507006
crossref_primary_10_3390_en15041320
crossref_primary_10_1007_s00521_022_07595_6
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1061_JAEEEZ_ASENG_5887
crossref_primary_10_3390_s23125669
crossref_primary_10_1016_j_eswa_2023_120952
crossref_primary_10_1016_j_future_2018_12_009
crossref_primary_10_1109_TAI_2024_3396422
crossref_primary_10_3390_app13169194
crossref_primary_10_1016_j_heliyon_2023_e17118
crossref_primary_10_1016_j_ress_2020_107098
crossref_primary_10_1109_TIE_2019_2891463
crossref_primary_10_1109_ACCESS_2019_2920297
crossref_primary_10_1016_j_asoc_2023_111071
crossref_primary_10_1109_TIM_2020_3031113
crossref_primary_10_1016_j_engappai_2023_107357
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_1007_s42405_024_00828_z
crossref_primary_10_1109_TII_2024_3353923
crossref_primary_10_1016_j_compeleceng_2021_107195
crossref_primary_10_1109_TNNLS_2021_3070840
crossref_primary_10_1007_s42835_024_02036_x
crossref_primary_10_1007_s40747_021_00606_4
crossref_primary_10_1016_j_measurement_2020_107788
crossref_primary_10_1016_j_ress_2023_109821
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2022_108330
crossref_primary_10_1007_s44163_023_00089_x
crossref_primary_10_1016_j_ress_2021_108012
crossref_primary_10_1016_j_neunet_2023_11_032
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1016_j_isatra_2020_03_007
crossref_primary_10_1016_j_ress_2018_11_027
crossref_primary_10_1007_s11227_023_05404_y
crossref_primary_10_1109_TIE_2019_2907440
crossref_primary_10_1016_j_compchemeng_2020_107197
crossref_primary_10_1016_j_ymssp_2021_107785
crossref_primary_10_1109_TII_2023_3254656
crossref_primary_10_1109_TIM_2020_2996004
crossref_primary_10_3390_app13010017
crossref_primary_10_1016_j_ress_2022_108444
crossref_primary_10_1155_2022_9707940
crossref_primary_10_3390_su15010029
crossref_primary_10_1109_TAES_2021_3056086
Cites_doi 10.1023/A:1008202821328
10.1109/TEVC.2008.927706
10.1016/j.ress.2009.08.001
10.1109/TEVC.2014.2353672
10.1109/AERO.2010.5446841
10.1109/TEVC.2014.2301794
10.1109/TNNLS.2013.2264952
10.1109/TIE.2004.824875
10.1109/TEVC.2015.2443001
10.1613/jair.614
10.1109/PHM.2008.4711414
10.1109/TEVC.2014.2308305
10.1109/34.58871
10.1007/s11047-005-1625-y
10.1109/PHM.2008.4711421
10.1016/j.ymssp.2009.11.005
10.1109/TEVC.2015.2450018
10.1109/PHM.2008.4711422
10.1109/ICPHM.2012.6299526
10.1109/TASL.2011.2109382
10.1109/TEVC.2008.925798
10.1109/TIE.2010.2098369
10.1109/TEVC.2007.892759
10.1115/1.4004981
10.1016/j.neucom.2005.12.126
10.1109/4235.887237
10.1016/S0893-6080(99)00073-8
10.1016/j.inffus.2004.04.004
10.1016/j.ress.2010.02.016
10.1016/j.ymssp.2008.06.009
10.1007/978-1-4020-6668-9_5
10.1177/0142331208092031
10.1109/PHM.2008.4711423
10.21236/AD0256582
10.1162/neco.2006.18.7.1527
10.1109/TR.2012.2196171
10.1109/ICASSP.2011.5947494
10.1109/CEC.2013.6557689
10.1214/aos/1013203451
10.1109/AERO.2014.6836267
10.1109/34.709601
10.1109/TCYB.2014.2378056
10.1007/s10852-005-9020-3
10.1109/CEC.2003.1299928
10.1016/j.ress.2012.03.008
10.1111/j.2517-6161.1996.tb02080.x
10.1109/PHM.2008.4711436
10.1016/j.ymssp.2011.10.019
10.1109/TNNLS.2013.2296046
10.1016/j.neucom.2013.03.047
10.1109/TKDE.2010.26
10.1109/SMC.2015.19
10.1109/MCI.2016.2532268
10.1109/TNNLS.2013.2246578
10.2514/6.2005-7002
10.1109/TEVC.2015.2455812
10.1109/PHM.2008.4711456
10.1016/j.ress.2013.08.004
10.1109/ICPHM.2013.6621419
10.1145/1553374.1553453
10.1177/0142331208092030
10.1023/B:STCO.0000035301.49549.88
10.1109/TNNLS.2013.2268279
10.1016/j.jpowsour.2004.02.032
10.1007/3-540-45656-2_1
10.1016/j.ymssp.2013.07.010
10.1016/j.ress.2013.02.022
10.1016/j.neunet.2014.09.003
10.1016/j.ymssp.2007.12.004
10.1109/JSEN.2013.2293517
10.1016/j.ymssp.2005.11.008
10.1145/2330163.2330301
10.1109/TEVC.2015.2433672
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2582798
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2318
ExternalDocumentID 27416606
10_1109_TNNLS_2016_2582798
7508982
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Singapore
  grantid: R-263-000-A12-112
  funderid: 10.13039/501100001459
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-b7447d4fedcc2466fce4c2a191e440b9bca272a4855f0382f318a79bc16beee23
IEDL.DBID RIE
ISICitedReferencesCount 637
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411293200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Sat Sep 27 23:44:49 EDT 2025
Mon Jun 30 07:04:09 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Sat Nov 29 01:39:55 EST 2025
Tue Nov 18 21:44:58 EST 2025
Tue Aug 26 16:38:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-b7447d4fedcc2466fce4c2a191e440b9bca272a4855f0382f318a79bc16beee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2162-4344
PMID 27416606
PQID 2174451401
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_2174451401
crossref_citationtrail_10_1109_TNNLS_2016_2582798
proquest_miscellaneous_1826718541
ieee_primary_7508982
crossref_primary_10_1109_TNNLS_2016_2582798
pubmed_primary_27416606
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
dietterich (ref40) 1997; 18
ref13
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
tamilselvan (ref77) 2012
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
opitz (ref43) 1999; 11
ref49
sutton (ref23) 1986
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
tibshirani (ref74) 1996; 58
ref83
ref80
ref79
ref35
ref78
ref34
ref37
lim (ref16) 2016; pp
ref36
ref75
ref30
ref33
ref32
krogh (ref42) 1995
ref2
ref1
ref39
ref38
ho (ref76) 1998; 20
lim (ref15) 2014
ref70
ref73
ref72
riad (ref31) 2010; 10
ref68
ref24
ref67
ref26
ref69
ref25
ref64
ref20
ref63
ramasso (ref71) 2014
ref66
ref22
ref21
ref28
ref27
ref29
hinton (ref60) 2010; 9
saxena (ref65) 2008
ref62
ref61
References_xml – ident: ref17
  doi: 10.1023/A:1008202821328
– ident: ref18
  doi: 10.1109/TEVC.2008.927706
– year: 2008
  ident: ref65
  publication-title: Turbofan Engine Degradation Simulation Data Set
– ident: ref11
  doi: 10.1016/j.ress.2009.08.001
– volume: pp
  start-page: 1
  year: 2016
  ident: ref16
  article-title: Multimodal degradation prognostics based on switching Kalman filter ensemble
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref46
  doi: 10.1109/TEVC.2014.2353672
– ident: ref12
  doi: 10.1109/AERO.2010.5446841
– ident: ref47
  doi: 10.1109/TEVC.2014.2301794
– ident: ref39
  doi: 10.1109/TNNLS.2013.2264952
– ident: ref27
  doi: 10.1109/TIE.2004.824875
– ident: ref50
  doi: 10.1109/TEVC.2015.2443001
– volume: 11
  start-page: 169
  year: 1999
  ident: ref43
  article-title: Popular ensemble methods: An empirical study
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.614
– ident: ref67
  doi: 10.1109/PHM.2008.4711414
– ident: ref45
  doi: 10.1109/TEVC.2014.2308305
– ident: ref41
  doi: 10.1109/34.58871
– ident: ref20
  doi: 10.1007/s11047-005-1625-y
– ident: ref8
  doi: 10.1109/PHM.2008.4711421
– ident: ref7
  doi: 10.1016/j.ymssp.2009.11.005
– ident: ref48
  doi: 10.1109/TEVC.2015.2450018
– ident: ref4
  doi: 10.1109/PHM.2008.4711422
– ident: ref35
  doi: 10.1109/ICPHM.2012.6299526
– ident: ref57
  doi: 10.1109/TASL.2011.2109382
– ident: ref63
  doi: 10.1109/TEVC.2008.925798
– ident: ref33
  doi: 10.1109/TIE.2010.2098369
– ident: ref64
  doi: 10.1109/TEVC.2007.892759
– ident: ref2
  doi: 10.1115/1.4004981
– ident: ref72
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref61
  doi: 10.1109/4235.887237
– ident: ref51
  doi: 10.1016/S0893-6080(99)00073-8
– ident: ref36
  doi: 10.1016/j.inffus.2004.04.004
– volume: 18
  start-page: 97
  year: 1997
  ident: ref40
  article-title: Machine-learning research
  publication-title: AI Mag
– ident: ref25
  doi: 10.1016/j.ress.2010.02.016
– ident: ref5
  doi: 10.1016/j.ymssp.2008.06.009
– ident: ref13
  doi: 10.1007/978-1-4020-6668-9_5
– ident: ref3
  doi: 10.1177/0142331208092031
– ident: ref30
  doi: 10.1109/PHM.2008.4711423
– ident: ref22
  doi: 10.21236/AD0256582
– ident: ref21
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref1
  doi: 10.1109/TR.2012.2196171
– ident: ref58
  doi: 10.1109/ICASSP.2011.5947494
– start-page: 612
  year: 2014
  ident: ref71
  article-title: Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset
  publication-title: Proc Annu Conf Prognostics Health Manage Soc (PHM)
– volume: 10
  start-page: 50
  year: 2010
  ident: ref31
  article-title: Evaluation of neural networks in the subject of prognostics as compared to linear regression model
  publication-title: Int J Eng Technol
– ident: ref24
  doi: 10.1109/CEC.2013.6557689
– start-page: 823
  year: 1986
  ident: ref23
  article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks
  publication-title: Proc 8th Annu Conf Cognit Sci Soc
– ident: ref75
  doi: 10.1214/aos/1013203451
– ident: ref54
  doi: 10.1109/AERO.2014.6836267
– volume: 20
  start-page: 832
  year: 1998
  ident: ref76
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: ref32
  doi: 10.1109/TCYB.2014.2378056
– ident: ref44
  doi: 10.1007/s10852-005-9020-3
– ident: ref53
  doi: 10.1109/CEC.2003.1299928
– ident: ref14
  doi: 10.1016/j.ress.2012.03.008
– volume: 58
  start-page: 267
  year: 1996
  ident: ref74
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 9
  start-page: 926
  year: 2010
  ident: ref60
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Momentum
– ident: ref70
  doi: 10.1109/PHM.2008.4711436
– ident: ref69
  doi: 10.1016/j.ymssp.2011.10.019
– ident: ref55
  doi: 10.1109/TNNLS.2013.2296046
– ident: ref79
  doi: 10.1016/j.neucom.2013.03.047
– ident: ref62
  doi: 10.1109/TKDE.2010.26
– ident: ref66
  doi: 10.1109/SMC.2015.19
– start-page: 2
  year: 2014
  ident: ref15
  article-title: Estimation of remaining useful life based on switching Kalman filter neural network ensemble
  publication-title: Proc Int Conf Prognostics Health Manage (PHM)
– ident: ref83
  doi: 10.1109/MCI.2016.2532268
– ident: ref38
  doi: 10.1109/TNNLS.2013.2246578
– ident: ref9
  doi: 10.2514/6.2005-7002
– ident: ref49
  doi: 10.1109/TEVC.2015.2455812
– ident: ref68
  doi: 10.1109/PHM.2008.4711456
– ident: ref26
  doi: 10.1016/j.ress.2013.08.004
– ident: ref34
  doi: 10.1109/ICPHM.2013.6621419
– ident: ref56
  doi: 10.1145/1553374.1553453
– ident: ref6
  doi: 10.1177/0142331208092030
– ident: ref73
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref37
  doi: 10.1109/TNNLS.2013.2268279
– ident: ref10
  doi: 10.1016/j.jpowsour.2004.02.032
– ident: ref52
  doi: 10.1007/3-540-45656-2_1
– start-page: 231
  year: 1995
  ident: ref42
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref81
  doi: 10.1016/j.ymssp.2013.07.010
– ident: ref78
  doi: 10.1016/j.ress.2013.02.022
– start-page: 1
  year: 2012
  ident: ref77
  article-title: Deep belief network based state classification for structural health diagnosis
  publication-title: Proc IEEE Aerosp Conf
– ident: ref59
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref29
  doi: 10.1016/j.ymssp.2007.12.004
– ident: ref80
  doi: 10.1109/JSEN.2013.2293517
– ident: ref28
  doi: 10.1016/j.ymssp.2005.11.008
– ident: ref82
  doi: 10.1145/2330163.2330301
– ident: ref19
  doi: 10.1109/TEVC.2015.2433672
SSID ssj0000605649
Score 2.6885445
Snippet In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2306
SubjectTerms Artificial neural networks
Belief networks
Benchmark testing
Deep belief network (DBN)
Degradation
ensemble learning
Estimation
evolutionary algorithm (EA)
Evolutionary algorithms
Industrial applications
Maintenance engineering
multiobjective
Multiple objective analysis
Neural networks
Objective function
prognostics
Reliability
Reliability aspects
Training
Useful life
Title Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
URI https://ieeexplore.ieee.org/document/7508982
https://www.ncbi.nlm.nih.gov/pubmed/27416606
https://www.proquest.com/docview/2174451401
https://www.proquest.com/docview/1826718541
Volume 28
WOSCitedRecordID wos000411293200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5R1AOXAqW0y0uu1FsbSBzHjo9AF_WwilAL0t7S2BlLWy0J2uzy-_EjiTiUSr1FifOc8cw3zsx8AF9igTVFJSKmOI9YrdNI5gajVGdGWgiss9BdfyaKIp_P5e0WfBtrYRDRJ5_hudv0__LrVm_cUtmF9W65zK3BfSOECLVa43pKbHE592iXJpxGNBXzoUYmlhd3RTH75RK5-DnNciqk4-lznVs4d1xHL1yS51h5HW56t3Oz-38PvAfvenhJLoM-7MMWNu9hd6BuIP1MPoDfvvC2VX-CvSPfER_JFVpAakgRMsM7Mm06fFBLJBbYkp_4EMgkyH2HZrMks4VBMrUWIhQ_kkVDblety9tznZ8_wP3N9O76R9STLUSaJWIdKcGYqJnBWmvKODcamaaVDeeQsVhJpSsqaOV6yZg4zamxxqASdnfClX1vmh7CdtM2-AmI0lTFJkNTWeyQylyh1Gmtja6VMpjwCSTD9y5134ncEWIsSx-RxLL04iqduMpeXBP4Op7zGPpw_HP0gRPGOLKXwwROBrGW_VTtSheTsczFmRP4PB62k8z9OakabDdd6YIw68QzZsd8DOowXnvQoqO_3_MYdqhDAj7_7wS216sNnsJb_bRedKszq8nz_Mxr8jOa1e6p
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuLVAoWwoYiRukTRzHjo88tioiRBVspb2Z2BlLi7ZJtdnl92M7D3EAJG5R4jxnPPONMzMfwOtYYE1Ri4hpziNWmzSSucUoNZmVDgKbrO-uX4iyzJdLebUHb6daGEQMyWd45jfDv_y6NTu_VHbuvFsuc2dw72SM0aSv1ppWVGKHzHnAuzThNKKpWI5VMrE8X5Rl8c2ncvEzmuVUSM_U53u3cO7Zjn5zSoFl5e-AMziei8P_e-QHcDAATPKu14iHsIfNIzgcyRvIMJeP4HsovW31j97ikY-It-Q9OkhqSdnnhndk3nR4o9dIHLQlX_Gmp5Mg1x3a3ZoUK4tk7mxEX_5IVg252rQ-c8_3fn4M1xfzxYfLaKBbiAxLxDbSgjFRM4u1MZRxbg0yQysX0CFjsZbaVFTQyneTsXGaU-vMQSXc7oRr9940fQL7TdvgUyDaUB3bDG3l0EMqc43SpLWxptbaYsJnkIzfW5mhF7mnxFirEJPEUgVxKS8uNYhrBm-mc277Thz_HH3khTGNHOQwg9NRrGqYrJ3yURnLfKQ5g1fTYTfN_L-TqsF21ykfhjk3njE35rhXh-naoxad_PmeL-He5eJLoYpP5edncJ96XBCyAU9hf7vZ4XO4a35uV93mRdDnX4fF8Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Deep+Belief+Networks+Ensemble+for+Remaining+Useful+Life+Estimation+in+Prognostics&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Chong&rft.au=Lim%2C+Pin&rft.au=Qin%2C+A.+K.&rft.au=Tan%2C+Kay+Chen&rft.date=2017-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=10&rft.spage=2306&rft.epage=2318&rft_id=info:doi/10.1109%2FTNNLS.2016.2582798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2582798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon