Prediction of benign and malignant breast cancer using data mining techniques
Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common i...
Saved in:
| Published in: | Journal of algorithms & computational technology Vol. 12; no. 2; pp. 119 - 126 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London, England
SAGE Publications
01.06.2018
Sage Publications Ltd SAGE Publishing |
| Subjects: | |
| ISSN: | 1748-3026, 1748-3018, 1748-3026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy. |
|---|---|
| AbstractList | Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy. |
| Author | Pal, Saurabh Chaurasia, Vikas Tiwari, BB |
| Author_xml | – sequence: 1 givenname: Vikas surname: Chaurasia fullname: Chaurasia, Vikas email: chaurasia.vikas@gmail.com organization: Department of MCA, VBS Purvanchal University, Jaunpur, India – sequence: 2 givenname: Saurabh surname: Pal fullname: Pal, Saurabh organization: Department of MCA, VBS Purvanchal University, Jaunpur, India – sequence: 3 givenname: BB surname: Tiwari fullname: Tiwari, BB organization: Department. of ECE, Faculty of Engg. & Technology, VBS Purvanchal University, Jaunpur |
| BookMark | eNp9UcuKVDEQDTKC4zh7lwHXV1N536UMPgZGdKHrUHncNk13MibphX_vvbaoDGht6lCcc-r1lFyUWhIhz4G9BDDmFRhpBQML1ijNuXpELrfSJBjXF3_hJ-S69z1bQ3BjQVySD59aijmMXAutC_Wp5F2hWCI94mGFWAb1LWEfNGAJqdFTz2VHIw6kx1w2PFL4WvK3U-rPyOMFDz1d_8pX5MvbN59v3k93H9_d3ry-m4IEMyac0XqjLIowe-kVN4tOGqNFqdXMPUJITMw-BpuU0T54bxYe2QzWgjJSXJHbs2-suHf3LR-xfXcVs_tZqG3nsI0cDsnNi0RpIyYZlQQerA6gYJHRBm01W1avF2ev-1a3HYbb11Mr6_iOCxCGAzOwstiZFVrtvaXld1dgbvuBe_iDVaIfSEIeuF16NMyH_wmns7DjLv2Z5p_8H42ul8I |
| CitedBy_id | crossref_primary_10_3390_e25020245 crossref_primary_10_1155_2022_8141530 crossref_primary_10_1007_s41870_019_00395_7 crossref_primary_10_1007_s42600_022_00255_7 crossref_primary_10_1109_LSENS_2024_3417848 crossref_primary_10_4081_jphr_2020_1772 crossref_primary_10_1016_j_procs_2023_01_110 crossref_primary_10_32604_cmes_2022_019782 crossref_primary_10_1016_j_ins_2021_07_061 crossref_primary_10_1186_s40537_019_0247_7 crossref_primary_10_3390_app13042082 crossref_primary_10_1007_s00500_023_07939_x crossref_primary_10_1007_s13721_023_00424_3 crossref_primary_10_1007_s00500_020_05321_9 crossref_primary_10_1007_s13369_025_10255_1 crossref_primary_10_1007_s42979_021_00465_3 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1088_1742_6596_1450_1_012076 crossref_primary_10_1186_s12880_024_01510_2 crossref_primary_10_1016_j_heliyon_2023_e22427 crossref_primary_10_1177_1063293X21991808 crossref_primary_10_1007_s13755_020_00109_5 crossref_primary_10_1007_s42454_022_00040_y crossref_primary_10_1016_j_bspc_2022_104043 crossref_primary_10_1016_j_imu_2020_100459 crossref_primary_10_1155_2022_6333573 crossref_primary_10_3390_su13168900 crossref_primary_10_1038_s41598_025_15583_8 crossref_primary_10_1109_ACCESS_2020_2976149 crossref_primary_10_1007_s00432_023_04956_z crossref_primary_10_1177_1176935120917955 crossref_primary_10_3389_fcell_2021_675978 crossref_primary_10_1088_1742_6596_2559_1_012002 crossref_primary_10_1016_j_compbiomed_2025_110335 crossref_primary_10_1016_j_imu_2019_100265 crossref_primary_10_1016_j_psep_2023_08_044 crossref_primary_10_1016_j_tsep_2024_103207 crossref_primary_10_1007_s12553_022_00687_2 crossref_primary_10_1007_s12553_024_00925_9 crossref_primary_10_26634_jcom_11_1_19374 crossref_primary_10_1007_s12010_019_03093_z crossref_primary_10_3390_diagnostics13101700 crossref_primary_10_3390_nano10091696 crossref_primary_10_3390_app112210753 crossref_primary_10_4103_jehp_jehp_298_23 crossref_primary_10_1007_s42979_020_00305_w crossref_primary_10_1007_s42454_020_00006_y crossref_primary_10_1088_1742_6596_2646_1_012042 crossref_primary_10_3389_fgene_2021_629946 crossref_primary_10_3390_microorganisms13050956 crossref_primary_10_1088_1742_6596_1963_1_012140 crossref_primary_10_1007_s11042_022_13419_5 crossref_primary_10_1155_2020_4671349 crossref_primary_10_3892_br_2024_1889 crossref_primary_10_1016_j_imu_2024_101526 crossref_primary_10_1007_s00432_023_05238_4 crossref_primary_10_1016_j_eswa_2025_127272 crossref_primary_10_3390_diagnostics12112870 crossref_primary_10_1002_cam4_70231 crossref_primary_10_1109_JBHI_2019_2943401 crossref_primary_10_1007_s42979_020_00296_8 crossref_primary_10_1109_ACCESS_2024_3431998 crossref_primary_10_1007_s10586_025_05268_2 crossref_primary_10_1155_2021_6613671 crossref_primary_10_4018_IJBDAH_2018070101 crossref_primary_10_1109_ACCESS_2019_2940622 crossref_primary_10_3390_fi14050153 crossref_primary_10_1007_s11517_021_02405_y crossref_primary_10_3390_jimaging6060039 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_29252_HEHP_7_3_139 crossref_primary_10_1080_00914037_2024_2375337 crossref_primary_10_1007_s41870_024_01798_x crossref_primary_10_1016_j_bspc_2022_104023 crossref_primary_10_1016_j_bspc_2023_105016 crossref_primary_10_1109_ACCESS_2021_3105924 crossref_primary_10_1002_ijc_34568 crossref_primary_10_1007_s11831_025_10341_5 crossref_primary_10_1016_j_measurement_2021_109442 crossref_primary_10_1089_cmb_2021_0236 crossref_primary_10_1016_j_health_2023_100254 crossref_primary_10_1016_j_jbi_2021_103690 crossref_primary_10_1111_exsy_13201 crossref_primary_10_1080_0952813X_2021_1960629 crossref_primary_10_1038_s41598_023_27548_w crossref_primary_10_1109_ACCESS_2025_3550015 crossref_primary_10_7717_peerj_cs_898 crossref_primary_10_1007_s41688_020_00039_x crossref_primary_10_3390_su142113998 crossref_primary_10_4103_jehp_jehp_42_22 crossref_primary_10_1186_s12885_025_14796_4 crossref_primary_10_1007_s11042_024_19515_y crossref_primary_10_1515_pjbr_2022_0107 |
| Cites_doi | 10.1093/bioinformatics/btg1066 10.1016/j.artmed.2004.07.002 10.1016/j.chemolab.2010.06.008 10.1109/JCSSE.2011.5930148 10.1109/ICBBE.2009.5162571 10.1007/BF00116251 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AFRWT AAYXX CITATION 3V. 7SC 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH JQ2 L7M L~C L~D M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1177/1748301818756225 |
| DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library (subscription) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest One Academic Eastern Edition Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1748-3026 |
| EndPage | 126 |
| ExternalDocumentID | oai_doaj_org_article_9f4a48dae4d5412c86c151f4d8c6860f 10_1177_1748301818756225 10.1177_1748301818756225 |
| GroupedDBID | .4S .DC 0R~ 29J 4.4 54M 5GY 5VS 8G5 AAJPV AAOTM AASGM AATZT ABAWP ABQXT ABUWG ACDXX ACGFS ACROE ADBBV ADEBD ADMLS ADOGD AEDFJ AEWDL AFCOW AFKRA AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AUTPY AYAKG AZQEC BCNDV BDDNI BENPR BPHCQ CCPQU CKLRP CS3 DWQXO EBS EDO EJD F5P GNUQQ GROUPED_DOAJ GUQSH H13 IL9 IPNFZ J8X J9A K.F KQ8 M2O MET MK~ MV1 O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ RIG ROL SAUOL SCDPB SCNPE SFC AAYXX ACHEB AFFHD CITATION 3V. 7SC 7XB 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c417t-a9a8b758a3c9b4b527f6e6ad8a46592ba1ce039bdc8e576bcbb7f2d0918815743 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 114 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433109000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-3026 1748-3018 |
| IngestDate | Tue Oct 14 18:44:41 EDT 2025 Mon Jun 30 06:09:06 EDT 2025 Sat Nov 29 08:14:56 EST 2025 Tue Nov 18 22:26:09 EST 2025 Tue Jun 17 22:48:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Naïve Bayes RBF Network Breast cancer data mining J48 |
| Language | English |
| License | Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-a9a8b758a3c9b4b527f6e6ad8a46592ba1ce039bdc8e576bcbb7f2d0918815743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2313721071?pq-origsite=%requestingapplication% |
| PQID | 2313721071 |
| PQPubID | 4450829 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9f4a48dae4d5412c86c151f4d8c6860f proquest_journals_2313721071 crossref_primary_10_1177_1748301818756225 crossref_citationtrail_10_1177_1748301818756225 sage_journals_10_1177_1748301818756225 |
| PublicationCentury | 2000 |
| PublicationDate | 20180600 2018-06-00 20180601 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: Brentwood |
| PublicationTitle | Journal of algorithms & computational technology |
| PublicationYear | 2018 |
| Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
| References | Delen, Walker, Kadam 2005; 34 Dursun, Glenn, Kadam 2004 Yadev, Pal 2012; 2 Fayyad, PiatetskyShapiro, Smyth 1996; 17 Venkatesan, Anitha 2006; 91 Yadav, Bharadwaj, Pal 2011; 1 Tan, Gilbert 2003; 2 Vikas, Pal 2014; 3 Wu 2007 Quinlan 1986 Li, Liu, Ng 2003; 19 Chaurasia, Pal 2014; 2 Chaurasia, Pal 2014; 3 Cao, Xu, Liang 2010; 103 Tan AC (bibr4-1748301818756225) 2003; 2 Venkatesan P (bibr15-1748301818756225) 2006; 91 Fayyad U (bibr1-1748301818756225) 1996; 17 Yadev SK (bibr13-1748301818756225) 2012; 2 Dursun D (bibr18-1748301818756225) 2004 bibr2-1748301818756225 Chaurasia V (bibr6-1748301818756225) 2014; 2 bibr11-1748301818756225 Yadav SK (bibr14-1748301818756225) 2011; 1 bibr17-1748301818756225 bibr8-1748301818756225 Wu X (bibr12-1748301818756225) 2007 bibr19-1748301818756225 Vikas C (bibr7-1748301818756225) 2014; 3 bibr3-1748301818756225 bibr16-1748301818756225 bibr10-1748301818756225 bibr9-1748301818756225 Chaurasia V (bibr5-1748301818756225) 2014; 3 |
| References_xml | – volume: 2 start-page: S75 year: 2003 end-page: S83 article-title: Ensemble machine learning on gene expression data for cancer classification publication-title: Appl Bioinformatics – year: 2007 article-title: Top 10 algorithms in data mining analysis publication-title: Knowl Inf Syst – volume: 3 start-page: 1 year: 2014 end-page: 13 article-title: Performance analysis of data mining algorithms for diagnosis and prediction of heart and breast cancer disease publication-title: Rev Res – volume: 2 start-page: 51 year: 2012 end-page: 56 article-title: Data mining: a prediction for performance improvement of engineering students using classification publication-title: World Comput Sci Inf Technol – volume: 17 start-page: 37 year: 1996 end-page: 54 article-title: From data mining to knowledge discovery in databases publication-title: AI Magazine – volume: 3 start-page: 10 year: 2014 end-page: 22 article-title: Data mining techniques: to predict and resolve breast cancer survivability publication-title: Int J Comput Sci Mobile Comput – volume: 1 year: 2011 article-title: Data mining applications: a comparative study for predicting students’ performance publication-title: Int J Innovative Technol Creative Eng – volume: 91 start-page: 1195 year: 2006 end-page: 1199 article-title: Application of a radial basis function neural network for diagnosis of diabetes mellitus publication-title: Curr Sci – volume: 2 start-page: 2456 year: 2014 end-page: 2465 article-title: A novel approach for breast cancer detection using data mining techniques publication-title: Int J Innovative Res Comput Commun Eng – volume: 19 start-page: ii93 year: 2003 end-page: ii102 article-title: Discovery of significant rules for classifying cancer diagnosis data publication-title: Bioinformatics – volume: 34 start-page: 113 year: 2005 end-page: 127 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif Intell Med – volume: 103 start-page: 129 year: 2010 end-page: 136 article-title: Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity publication-title: Chemometr Intell Lab Syst – year: 2004 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif Intell Med – start-page: 81 year: 1986 end-page: 106 article-title: Induction of decision trees publication-title: Mach Learn – volume: 2 start-page: S75 year: 2003 ident: bibr4-1748301818756225 publication-title: Appl Bioinformatics – ident: bibr16-1748301818756225 – ident: bibr8-1748301818756225 doi: 10.1093/bioinformatics/btg1066 – ident: bibr10-1748301818756225 doi: 10.1016/j.artmed.2004.07.002 – volume: 3 start-page: 10 year: 2014 ident: bibr5-1748301818756225 publication-title: Int J Comput Sci Mobile Comput – volume: 1 year: 2011 ident: bibr14-1748301818756225 publication-title: Int J Innovative Technol Creative Eng – volume: 91 start-page: 1195 year: 2006 ident: bibr15-1748301818756225 publication-title: Curr Sci – year: 2004 ident: bibr18-1748301818756225 publication-title: Artif Intell Med – ident: bibr11-1748301818756225 doi: 10.1016/j.chemolab.2010.06.008 – volume: 17 start-page: 37 year: 1996 ident: bibr1-1748301818756225 publication-title: AI Magazine – ident: bibr19-1748301818756225 – ident: bibr9-1748301818756225 doi: 10.1109/JCSSE.2011.5930148 – volume: 2 start-page: 51 year: 2012 ident: bibr13-1748301818756225 publication-title: World Comput Sci Inf Technol – volume: 2 start-page: 2456 year: 2014 ident: bibr6-1748301818756225 publication-title: Int J Innovative Res Comput Commun Eng – volume: 3 start-page: 1 year: 2014 ident: bibr7-1748301818756225 publication-title: Rev Res – year: 2007 ident: bibr12-1748301818756225 publication-title: Knowl Inf Syst – ident: bibr2-1748301818756225 – ident: bibr3-1748301818756225 doi: 10.1109/ICBBE.2009.5162571 – ident: bibr17-1748301818756225 doi: 10.1007/BF00116251 |
| SSID | ssj0000327813 |
| Score | 2.5415025 |
| Snippet | Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed... |
| SourceID | doaj proquest crossref sage |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119 |
| SubjectTerms | Accuracy Algorithms Breast cancer Data mining Datasets Income Measurement methods Scientific papers Survivability Urbanization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MRqlT2I4CG0m273cVSxeLClB4Xewj5LwabSVn-_M0n6UFAvXie7ZDMz2fmGGb4h5ArEURqWJpDpSCwz6sQ4qROL4Y9HLnVp6SfZ76vhUA82Rn1hT1hJD1wqrqkjN1x5E7jvcJY6JRwEqci9ckKJVsTbtyX1RjJV3MHwZlXMRgbErRLwYrWuUTZRhiIGYF2kOCV7IyYV1P1f8OZGi1cRdbr7ZK-Ci_S2POYB2Qr5IdntrbhW50ekN5hhsQUVTKeR2pCPRzk1uacTwNgjbHShFlvPF9ShiWcUe91HFHtD6aSYD0FXTK7zY_LSfXi-f0yqIQmJ40wuEqONsgD6Tdtpy20nlVEEYbwyHCum1jCcCKatdypAbmGdtTKmHmCCUqwD-OGE1PJpHk4Jbcs0pkJ7YTjnUSD1mQ4hKh3bnivm6qS5VFPmKgZxHGTxmrGKNPy7YuvkZrXjrWTP-GXtHWp-tQ55rwsBeENWeUP2lzfUSWNpt6z6GecZQFj4NMhzWZ1coy3Xj346zNl_HOac7AC8UmVjWYPUFrP3cEG23cdiPJ9dFg77CacO5uA priority: 102 providerName: Directory of Open Access Journals |
| Title | Prediction of benign and malignant breast cancer using data mining techniques |
| URI | https://journals.sagepub.com/doi/full/10.1177/1748301818756225 https://www.proquest.com/docview/2313721071 https://doaj.org/article/9f4a48dae4d5412c86c151f4d8c6860f |
| Volume | 12 |
| WOSCitedRecordID | wos000433109000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3026 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3026 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3026 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3026 databaseCode: M2O dateStart: 20160301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4Ee-gLUlLTaA0LqwUrtbNa7p6pBrahEglWBVE7WPqNK1Cl24Pcz42ycUqm9cPFhvLbWntndbx76BuADikOu0yxBTyenNKNKtM1VYuj444HnaqnpL_l0Km9uVBEDbk0sq1ztie1G7eaWYuQDxCFD9FbwRDy7_5VQ1yjKrsYWGi9hk5jK0M43xxfT4rqLspziDGTbIxmRt0zQmuU6VzkgGYlSBO0io27ZD86mlsL_H9z5oNSrPX0ud_533ruwHXEnO18ayh688NU-bE060tbmDUyKmrI2pCk2D8z46nZWMV05dodgfUYVM8xQDfuCWbKVmlHR_IxRkSm7axtNsI4StnkL3y8vvn36nMRuC4nlab5ItNLSoPegh1YZbkZZHoQX2knNKfVqdEqtxZRxVnp0Uow1Jg-ZQ7whZTpCIPIONqp55Q-A4QeHTCgnNOc8COJQU94HqcLQcZnaHgxW_7m0kYqcOmL8LNPIPv5YMz046Z64X9JwPDN2TKrrxhGBdiuY17MyrsdSBa65dNpzN-JpZqWwiH0Cd9IKKU5DD_ordZZxVTflWpc9-EjGsL711GQOn3_Pe3iNCEwua8_6sLGof_sjeGX_LG6b-jha83EbKMDrJPuKsuJqUvz4C8Ho-Xw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk48CwiUMAHQOKwSnfjeO0DqsqjatQkyqFI5bT4GVWim7IbQP1T_Y3M7CsFid564Or1Wrv2N54Zz3g-gFfYHFIdJxF6OimFGVWkbaoiQ-qPB56qeqUn6Wwmj4_VfAMu2rswlFbZ7onVRu2Wls7IB2iHDNFbQY24e_Y9ItYoiq62FBo1LA79-S902cp344-4vq-TZP_T0YeDqGEViCyP01WklZYGrWQ9tMpwM0rSILzQTmpOIUajY6LQUsZZ6dEYN9aYNCQO9aqU8QgVLo57AzY5gb0Hm_PxdP6lO9XZwT-WFSczWvoyQumR69jogNqoKUYnQSTEzn1JF1aUAX_YuZdSyyptt3_vf5un-3C3savZXi0ID2DD5w_hzrQrSls-gum8oKgUIZEtAzM-P1nkTOeOnaIzsqCMIGYoR3_FLMlCwehSwIJREi07rYg0WFfyttyCz9fyP4-hly9z_wQYTnBIhHJCc86DoBpxyvsgVRg6LmPbh0G7rpltSq0T48e3LG6qq_-NhD687d44q8uMXNH3PUGl60cFwquGZbHImv0mU4FrLp323I14nFgpLNp2gTtphRQ7oQ_bLXyyZtcqszV2-vCGwLd-9K-PeXr1OC_h1sHRdJJNxrPDZ3AbrU1Z59ltQ29V_PDP4ab9uTopixeNJDH4et2g_A1MOlQU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+benign+and+malignant+breast+cancer+using+data+mining+techniques&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Chaurasia%2C+Vikas&rft.au=Pal%2C+Saurabh&rft.au=Tiwari%2C+BB&rft.date=2018-06-01&rft.issn=1748-3018&rft.eissn=1748-3026&rft.volume=12&rft.issue=2&rft.spage=119&rft.epage=126&rft_id=info:doi/10.1177%2F1748301818756225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1748301818756225 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3026&client=summon |