Prediction of benign and malignant breast cancer using data mining techniques

Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algorithms & computational technology Vol. 12; no. 2; pp. 119 - 126
Main Authors: Chaurasia, Vikas, Pal, Saurabh, Tiwari, BB
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01.06.2018
Sage Publications Ltd
SAGE Publishing
Subjects:
ISSN:1748-3026, 1748-3018, 1748-3026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy.
AbstractList Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy.
Author Pal, Saurabh
Chaurasia, Vikas
Tiwari, BB
Author_xml – sequence: 1
  givenname: Vikas
  surname: Chaurasia
  fullname: Chaurasia, Vikas
  email: chaurasia.vikas@gmail.com
  organization: Department of MCA, VBS Purvanchal University, Jaunpur, India
– sequence: 2
  givenname: Saurabh
  surname: Pal
  fullname: Pal, Saurabh
  organization: Department of MCA, VBS Purvanchal University, Jaunpur, India
– sequence: 3
  givenname: BB
  surname: Tiwari
  fullname: Tiwari, BB
  organization: Department. of ECE, Faculty of Engg. & Technology, VBS Purvanchal University, Jaunpur
BookMark eNp9UcuKVDEQDTKC4zh7lwHXV1N536UMPgZGdKHrUHncNk13MibphX_vvbaoDGht6lCcc-r1lFyUWhIhz4G9BDDmFRhpBQML1ijNuXpELrfSJBjXF3_hJ-S69z1bQ3BjQVySD59aijmMXAutC_Wp5F2hWCI94mGFWAb1LWEfNGAJqdFTz2VHIw6kx1w2PFL4WvK3U-rPyOMFDz1d_8pX5MvbN59v3k93H9_d3ry-m4IEMyac0XqjLIowe-kVN4tOGqNFqdXMPUJITMw-BpuU0T54bxYe2QzWgjJSXJHbs2-suHf3LR-xfXcVs_tZqG3nsI0cDsnNi0RpIyYZlQQerA6gYJHRBm01W1avF2ev-1a3HYbb11Mr6_iOCxCGAzOwstiZFVrtvaXld1dgbvuBe_iDVaIfSEIeuF16NMyH_wmns7DjLv2Z5p_8H42ul8I
CitedBy_id crossref_primary_10_3390_e25020245
crossref_primary_10_1155_2022_8141530
crossref_primary_10_1007_s41870_019_00395_7
crossref_primary_10_1007_s42600_022_00255_7
crossref_primary_10_1109_LSENS_2024_3417848
crossref_primary_10_4081_jphr_2020_1772
crossref_primary_10_1016_j_procs_2023_01_110
crossref_primary_10_32604_cmes_2022_019782
crossref_primary_10_1016_j_ins_2021_07_061
crossref_primary_10_1186_s40537_019_0247_7
crossref_primary_10_3390_app13042082
crossref_primary_10_1007_s00500_023_07939_x
crossref_primary_10_1007_s13721_023_00424_3
crossref_primary_10_1007_s00500_020_05321_9
crossref_primary_10_1007_s13369_025_10255_1
crossref_primary_10_1007_s42979_021_00465_3
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1088_1742_6596_1450_1_012076
crossref_primary_10_1186_s12880_024_01510_2
crossref_primary_10_1016_j_heliyon_2023_e22427
crossref_primary_10_1177_1063293X21991808
crossref_primary_10_1007_s13755_020_00109_5
crossref_primary_10_1007_s42454_022_00040_y
crossref_primary_10_1016_j_bspc_2022_104043
crossref_primary_10_1016_j_imu_2020_100459
crossref_primary_10_1155_2022_6333573
crossref_primary_10_3390_su13168900
crossref_primary_10_1038_s41598_025_15583_8
crossref_primary_10_1109_ACCESS_2020_2976149
crossref_primary_10_1007_s00432_023_04956_z
crossref_primary_10_1177_1176935120917955
crossref_primary_10_3389_fcell_2021_675978
crossref_primary_10_1088_1742_6596_2559_1_012002
crossref_primary_10_1016_j_compbiomed_2025_110335
crossref_primary_10_1016_j_imu_2019_100265
crossref_primary_10_1016_j_psep_2023_08_044
crossref_primary_10_1016_j_tsep_2024_103207
crossref_primary_10_1007_s12553_022_00687_2
crossref_primary_10_1007_s12553_024_00925_9
crossref_primary_10_26634_jcom_11_1_19374
crossref_primary_10_1007_s12010_019_03093_z
crossref_primary_10_3390_diagnostics13101700
crossref_primary_10_3390_nano10091696
crossref_primary_10_3390_app112210753
crossref_primary_10_4103_jehp_jehp_298_23
crossref_primary_10_1007_s42979_020_00305_w
crossref_primary_10_1007_s42454_020_00006_y
crossref_primary_10_1088_1742_6596_2646_1_012042
crossref_primary_10_3389_fgene_2021_629946
crossref_primary_10_3390_microorganisms13050956
crossref_primary_10_1088_1742_6596_1963_1_012140
crossref_primary_10_1007_s11042_022_13419_5
crossref_primary_10_1155_2020_4671349
crossref_primary_10_3892_br_2024_1889
crossref_primary_10_1016_j_imu_2024_101526
crossref_primary_10_1007_s00432_023_05238_4
crossref_primary_10_1016_j_eswa_2025_127272
crossref_primary_10_3390_diagnostics12112870
crossref_primary_10_1002_cam4_70231
crossref_primary_10_1109_JBHI_2019_2943401
crossref_primary_10_1007_s42979_020_00296_8
crossref_primary_10_1109_ACCESS_2024_3431998
crossref_primary_10_1007_s10586_025_05268_2
crossref_primary_10_1155_2021_6613671
crossref_primary_10_4018_IJBDAH_2018070101
crossref_primary_10_1109_ACCESS_2019_2940622
crossref_primary_10_3390_fi14050153
crossref_primary_10_1007_s11517_021_02405_y
crossref_primary_10_3390_jimaging6060039
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_29252_HEHP_7_3_139
crossref_primary_10_1080_00914037_2024_2375337
crossref_primary_10_1007_s41870_024_01798_x
crossref_primary_10_1016_j_bspc_2022_104023
crossref_primary_10_1016_j_bspc_2023_105016
crossref_primary_10_1109_ACCESS_2021_3105924
crossref_primary_10_1002_ijc_34568
crossref_primary_10_1007_s11831_025_10341_5
crossref_primary_10_1016_j_measurement_2021_109442
crossref_primary_10_1089_cmb_2021_0236
crossref_primary_10_1016_j_health_2023_100254
crossref_primary_10_1016_j_jbi_2021_103690
crossref_primary_10_1111_exsy_13201
crossref_primary_10_1080_0952813X_2021_1960629
crossref_primary_10_1038_s41598_023_27548_w
crossref_primary_10_1109_ACCESS_2025_3550015
crossref_primary_10_7717_peerj_cs_898
crossref_primary_10_1007_s41688_020_00039_x
crossref_primary_10_3390_su142113998
crossref_primary_10_4103_jehp_jehp_42_22
crossref_primary_10_1186_s12885_025_14796_4
crossref_primary_10_1007_s11042_024_19515_y
crossref_primary_10_1515_pjbr_2022_0107
Cites_doi 10.1093/bioinformatics/btg1066
10.1016/j.artmed.2004.07.002
10.1016/j.chemolab.2010.06.008
10.1109/JCSSE.2011.5930148
10.1109/ICBBE.2009.5162571
10.1007/BF00116251
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
JQ2
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1177/1748301818756225
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library (subscription)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1748-3026
EndPage 126
ExternalDocumentID oai_doaj_org_article_9f4a48dae4d5412c86c151f4d8c6860f
10_1177_1748301818756225
10.1177_1748301818756225
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8G5
AAJPV
AAOTM
AASGM
AATZT
ABAWP
ABQXT
ABUWG
ACDXX
ACGFS
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BPHCQ
CCPQU
CKLRP
CS3
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
GUQSH
H13
IL9
IPNFZ
J8X
J9A
K.F
KQ8
M2O
MET
MK~
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
RIG
ROL
SAUOL
SCDPB
SCNPE
SFC
AAYXX
ACHEB
AFFHD
CITATION
3V.
7SC
7XB
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c417t-a9a8b758a3c9b4b527f6e6ad8a46592ba1ce039bdc8e576bcbb7f2d0918815743
IEDL.DBID BENPR
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433109000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3026
1748-3018
IngestDate Tue Oct 14 18:44:41 EDT 2025
Mon Jun 30 06:09:06 EDT 2025
Sat Nov 29 08:14:56 EST 2025
Tue Nov 18 22:26:09 EST 2025
Tue Jun 17 22:48:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Naïve Bayes
RBF Network
Breast cancer
data mining
J48
Language English
License Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-a9a8b758a3c9b4b527f6e6ad8a46592ba1ce039bdc8e576bcbb7f2d0918815743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2313721071?pq-origsite=%requestingapplication%
PQID 2313721071
PQPubID 4450829
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_9f4a48dae4d5412c86c151f4d8c6860f
proquest_journals_2313721071
crossref_primary_10_1177_1748301818756225
crossref_citationtrail_10_1177_1748301818756225
sage_journals_10_1177_1748301818756225
PublicationCentury 2000
PublicationDate 20180600
2018-06-00
20180601
2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Brentwood
PublicationTitle Journal of algorithms & computational technology
PublicationYear 2018
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Delen, Walker, Kadam 2005; 34
Dursun, Glenn, Kadam 2004
Yadev, Pal 2012; 2
Fayyad, PiatetskyShapiro, Smyth 1996; 17
Venkatesan, Anitha 2006; 91
Yadav, Bharadwaj, Pal 2011; 1
Tan, Gilbert 2003; 2
Vikas, Pal 2014; 3
Wu 2007
Quinlan 1986
Li, Liu, Ng 2003; 19
Chaurasia, Pal 2014; 2
Chaurasia, Pal 2014; 3
Cao, Xu, Liang 2010; 103
Tan AC (bibr4-1748301818756225) 2003; 2
Venkatesan P (bibr15-1748301818756225) 2006; 91
Fayyad U (bibr1-1748301818756225) 1996; 17
Yadev SK (bibr13-1748301818756225) 2012; 2
Dursun D (bibr18-1748301818756225) 2004
bibr2-1748301818756225
Chaurasia V (bibr6-1748301818756225) 2014; 2
bibr11-1748301818756225
Yadav SK (bibr14-1748301818756225) 2011; 1
bibr17-1748301818756225
bibr8-1748301818756225
Wu X (bibr12-1748301818756225) 2007
bibr19-1748301818756225
Vikas C (bibr7-1748301818756225) 2014; 3
bibr3-1748301818756225
bibr16-1748301818756225
bibr10-1748301818756225
bibr9-1748301818756225
Chaurasia V (bibr5-1748301818756225) 2014; 3
References_xml – volume: 2
  start-page: S75
  year: 2003
  end-page: S83
  article-title: Ensemble machine learning on gene expression data for cancer classification
  publication-title: Appl Bioinformatics
– year: 2007
  article-title: Top 10 algorithms in data mining analysis
  publication-title: Knowl Inf Syst
– volume: 3
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Performance analysis of data mining algorithms for diagnosis and prediction of heart and breast cancer disease
  publication-title: Rev Res
– volume: 2
  start-page: 51
  year: 2012
  end-page: 56
  article-title: Data mining: a prediction for performance improvement of engineering students using classification
  publication-title: World Comput Sci Inf Technol
– volume: 17
  start-page: 37
  year: 1996
  end-page: 54
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Magazine
– volume: 3
  start-page: 10
  year: 2014
  end-page: 22
  article-title: Data mining techniques: to predict and resolve breast cancer survivability
  publication-title: Int J Comput Sci Mobile Comput
– volume: 1
  year: 2011
  article-title: Data mining applications: a comparative study for predicting students’ performance
  publication-title: Int J Innovative Technol Creative Eng
– volume: 91
  start-page: 1195
  year: 2006
  end-page: 1199
  article-title: Application of a radial basis function neural network for diagnosis of diabetes mellitus
  publication-title: Curr Sci
– volume: 2
  start-page: 2456
  year: 2014
  end-page: 2465
  article-title: A novel approach for breast cancer detection using data mining techniques
  publication-title: Int J Innovative Res Comput Commun Eng
– volume: 19
  start-page: ii93
  year: 2003
  end-page: ii102
  article-title: Discovery of significant rules for classifying cancer diagnosis data
  publication-title: Bioinformatics
– volume: 34
  start-page: 113
  year: 2005
  end-page: 127
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif Intell Med
– volume: 103
  start-page: 129
  year: 2010
  end-page: 136
  article-title: Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity
  publication-title: Chemometr Intell Lab Syst
– year: 2004
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif Intell Med
– start-page: 81
  year: 1986
  end-page: 106
  article-title: Induction of decision trees
  publication-title: Mach Learn
– volume: 2
  start-page: S75
  year: 2003
  ident: bibr4-1748301818756225
  publication-title: Appl Bioinformatics
– ident: bibr16-1748301818756225
– ident: bibr8-1748301818756225
  doi: 10.1093/bioinformatics/btg1066
– ident: bibr10-1748301818756225
  doi: 10.1016/j.artmed.2004.07.002
– volume: 3
  start-page: 10
  year: 2014
  ident: bibr5-1748301818756225
  publication-title: Int J Comput Sci Mobile Comput
– volume: 1
  year: 2011
  ident: bibr14-1748301818756225
  publication-title: Int J Innovative Technol Creative Eng
– volume: 91
  start-page: 1195
  year: 2006
  ident: bibr15-1748301818756225
  publication-title: Curr Sci
– year: 2004
  ident: bibr18-1748301818756225
  publication-title: Artif Intell Med
– ident: bibr11-1748301818756225
  doi: 10.1016/j.chemolab.2010.06.008
– volume: 17
  start-page: 37
  year: 1996
  ident: bibr1-1748301818756225
  publication-title: AI Magazine
– ident: bibr19-1748301818756225
– ident: bibr9-1748301818756225
  doi: 10.1109/JCSSE.2011.5930148
– volume: 2
  start-page: 51
  year: 2012
  ident: bibr13-1748301818756225
  publication-title: World Comput Sci Inf Technol
– volume: 2
  start-page: 2456
  year: 2014
  ident: bibr6-1748301818756225
  publication-title: Int J Innovative Res Comput Commun Eng
– volume: 3
  start-page: 1
  year: 2014
  ident: bibr7-1748301818756225
  publication-title: Rev Res
– year: 2007
  ident: bibr12-1748301818756225
  publication-title: Knowl Inf Syst
– ident: bibr2-1748301818756225
– ident: bibr3-1748301818756225
  doi: 10.1109/ICBBE.2009.5162571
– ident: bibr17-1748301818756225
  doi: 10.1007/BF00116251
SSID ssj0000327813
Score 2.5415025
Snippet Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Accuracy
Algorithms
Breast cancer
Data mining
Datasets
Income
Measurement methods
Scientific papers
Survivability
Urbanization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MRqlT2I4CG0m273cVSxeLClB4Xewj5LwabSVn-_M0n6UFAvXie7ZDMz2fmGGb4h5ArEURqWJpDpSCwz6sQ4qROL4Y9HLnVp6SfZ76vhUA82Rn1hT1hJD1wqrqkjN1x5E7jvcJY6JRwEqci9ckKJVsTbtyX1RjJV3MHwZlXMRgbErRLwYrWuUTZRhiIGYF2kOCV7IyYV1P1f8OZGi1cRdbr7ZK-Ci_S2POYB2Qr5IdntrbhW50ekN5hhsQUVTKeR2pCPRzk1uacTwNgjbHShFlvPF9ShiWcUe91HFHtD6aSYD0FXTK7zY_LSfXi-f0yqIQmJ40wuEqONsgD6Tdtpy20nlVEEYbwyHCum1jCcCKatdypAbmGdtTKmHmCCUqwD-OGE1PJpHk4Jbcs0pkJ7YTjnUSD1mQ4hKh3bnivm6qS5VFPmKgZxHGTxmrGKNPy7YuvkZrXjrWTP-GXtHWp-tQ55rwsBeENWeUP2lzfUSWNpt6z6GecZQFj4NMhzWZ1coy3Xj346zNl_HOac7AC8UmVjWYPUFrP3cEG23cdiPJ9dFg77CacO5uA
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of benign and malignant breast cancer using data mining techniques
URI https://journals.sagepub.com/doi/full/10.1177/1748301818756225
https://www.proquest.com/docview/2313721071
https://doaj.org/article/9f4a48dae4d5412c86c151f4d8c6860f
Volume 12
WOSCitedRecordID wos000433109000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3026
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3026
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3026
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3026
  databaseCode: M2O
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4Ee-gLUlLTaA0LqwUrtbNa7p6pBrahEglWBVE7WPqNK1Cl24Pcz42ycUqm9cPFhvLbWntndbx76BuADikOu0yxBTyenNKNKtM1VYuj444HnaqnpL_l0Km9uVBEDbk0sq1ztie1G7eaWYuQDxCFD9FbwRDy7_5VQ1yjKrsYWGi9hk5jK0M43xxfT4rqLspziDGTbIxmRt0zQmuU6VzkgGYlSBO0io27ZD86mlsL_H9z5oNSrPX0ud_533ruwHXEnO18ayh688NU-bE060tbmDUyKmrI2pCk2D8z46nZWMV05dodgfUYVM8xQDfuCWbKVmlHR_IxRkSm7axtNsI4StnkL3y8vvn36nMRuC4nlab5ItNLSoPegh1YZbkZZHoQX2knNKfVqdEqtxZRxVnp0Uow1Jg-ZQ7whZTpCIPIONqp55Q-A4QeHTCgnNOc8COJQU94HqcLQcZnaHgxW_7m0kYqcOmL8LNPIPv5YMz046Z64X9JwPDN2TKrrxhGBdiuY17MyrsdSBa65dNpzN-JpZqWwiH0Cd9IKKU5DD_ordZZxVTflWpc9-EjGsL711GQOn3_Pe3iNCEwua8_6sLGof_sjeGX_LG6b-jha83EbKMDrJPuKsuJqUvz4C8Ho-Xw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk48CwiUMAHQOKwSnfjeO0DqsqjatQkyqFI5bT4GVWim7IbQP1T_Y3M7CsFid564Or1Wrv2N54Zz3g-gFfYHFIdJxF6OimFGVWkbaoiQ-qPB56qeqUn6Wwmj4_VfAMu2rswlFbZ7onVRu2Wls7IB2iHDNFbQY24e_Y9ItYoiq62FBo1LA79-S902cp344-4vq-TZP_T0YeDqGEViCyP01WklZYGrWQ9tMpwM0rSILzQTmpOIUajY6LQUsZZ6dEYN9aYNCQO9aqU8QgVLo57AzY5gb0Hm_PxdP6lO9XZwT-WFSczWvoyQumR69jogNqoKUYnQSTEzn1JF1aUAX_YuZdSyyptt3_vf5un-3C3savZXi0ID2DD5w_hzrQrSls-gum8oKgUIZEtAzM-P1nkTOeOnaIzsqCMIGYoR3_FLMlCwehSwIJREi07rYg0WFfyttyCz9fyP4-hly9z_wQYTnBIhHJCc86DoBpxyvsgVRg6LmPbh0G7rpltSq0T48e3LG6qq_-NhD687d44q8uMXNH3PUGl60cFwquGZbHImv0mU4FrLp323I14nFgpLNp2gTtphRQ7oQ_bLXyyZtcqszV2-vCGwLd-9K-PeXr1OC_h1sHRdJJNxrPDZ3AbrU1Z59ltQ29V_PDP4ab9uTopixeNJDH4et2g_A1MOlQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+benign+and+malignant+breast+cancer+using+data+mining+techniques&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Chaurasia%2C+Vikas&rft.au=Pal%2C+Saurabh&rft.au=Tiwari%2C+BB&rft.date=2018-06-01&rft.issn=1748-3018&rft.eissn=1748-3026&rft.volume=12&rft.issue=2&rft.spage=119&rft.epage=126&rft_id=info:doi/10.1177%2F1748301818756225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1748301818756225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3026&client=summon