Cosmic superstrings, metastable strings and ultralight primordial black holes: from NANOGrav to LIGO and beyond

A bstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of str...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2025; no. 2; pp. 95 - 35
Main Authors: Datta, Satyabrata, Samanta, Rome
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 14.02.2025
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1029-8479, 1029-8479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes ( M BH < 10 9 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
AbstractList Abstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes (M BH < 109 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes ( M BH < 10 9 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes (MBH < 109 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
A bstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes ( M BH < 10 9 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
ArticleNumber 95
Author Datta, Satyabrata
Samanta, Rome
Author_xml – sequence: 1
  givenname: Satyabrata
  orcidid: 0000-0002-3656-3652
  surname: Datta
  fullname: Datta, Satyabrata
  email: amisatyabrata703@gmail.com
  organization: Department of Physics and Institute of Theoretical Physics, Nanjing Normal University
– sequence: 2
  givenname: Rome
  orcidid: 0000-0003-3670-4889
  surname: Samanta
  fullname: Samanta, Rome
  organization: Scuola Superiore Meridionale, Università degli studi di Napoli “Federico II”, INFN — Sezione di Napoli
BookMark eNp1kUFvGyEQhVGVSk3SnntF6qWV6gRY2IXeIit1HFlxD-0ZzQLr4OLFBRwp_744m6pVpZwYjeZ7vJl3hk7GODqE3lNyQQnpLm9vrr8R9pERJj4RJV6hU0qYmkneqZN_6jfoLOctIVRQRU5RnMe88wbnw96lXJIfN_kz3rkCuUAfHH7uYRgtPoSSIPjNfcH75HcxWQ8B9wHMT3wfg8tf8JDiDt9d3a0XCR5wiXi1XKyf4N49xtG-Ra8HCNm9e37P0Y-v19_nN7PVerGcX61mhtOuzEBSy4VpJfAGGO96sEN1PDhjO9c0zCorRAeu4YJJOXDiCBu4c1bIQdbdmnO0nHRthK0-uoX0qCN4_dSIaaMhFW-C00Za3ove9o1k3HZG0r5nrRrqV-CUMlXrw6S1T_HXweWit_GQxmpfN7TtWCPbVtUpMU2ZFHNObtDGFyg-jvVoPmhK9DEnPeWkjznpmlPlLv_j_rh9mSATkffHbFz66-cl5DdgiKbH
CitedBy_id crossref_primary_10_1088_1475_7516_2025_08_092
crossref_primary_10_1088_1475_7516_2025_08_095
crossref_primary_10_3847_1538_4357_adcee5
crossref_primary_10_1007_JHEP06_2025_217
crossref_primary_10_1088_1475_7516_2025_08_001
crossref_primary_10_1103_528x_qzs3
crossref_primary_10_1088_1475_7516_2025_04_044
crossref_primary_10_1088_1475_7516_2025_05_005
crossref_primary_10_1088_1475_7516_2025_07_091
crossref_primary_10_1103_fcg5_bkbn
Cites_doi 10.1088/1475-7516/2005/04/003
10.1103/PhysRevD.104.123536
10.1140/epjc/s10052-019-7542-5
10.1088/1475-7516/2019/11/017
10.1103/PhysRevD.106.123515
10.1103/PhysRevD.108.083527
10.1103/PhysRevLett.87.221103
10.3847/2041-8213/acdd02
10.1016/S0370-1573(99)00102-7
10.1103/PhysRevD.107.095002
10.1088/1475-7516/2021/03/053
10.1016/j.physletb.2024.138473
10.1103/PhysRevLett.101.101101
10.1007/JHEP01(2021)097
10.1103/PhysRevD.85.083525
10.1103/PhysRevLett.132.171002
10.1103/PhysRevD.95.063002
10.1093/mnras/152.1.75
10.1007/JHEP07(2022)130
10.1103/PhysRevD.109.023522
10.1007/s41114-021-00032-5
10.1088/1475-7516/2019/12/012
10.1088/1126-6708/2005/10/013
10.1103/PhysRevD.31.3052
10.1103/PhysRevD.64.064008
10.1140/epjc/s10052-020-7735-y
10.1007/JHEP05(2021)211
10.1103/PhysRevD.47.2324
10.1103/PhysRevLett.122.201301
10.3390/universe10050211
10.1007/JHEP09(2020)178
10.1103/PhysRevLett.127.231801
10.1088/1475-7516/2019/05/005
10.1103/PhysRevD.107.104021
10.1088/0264-9381/32/7/074001
10.1088/1475-7516/2021/04/062
10.1016/j.physletb.2020.135914
10.1016/j.physletb.2024.138924
10.1007/JHEP03(2023)127
10.1007/JHEP08(2019)001
10.1016/j.physletb.2023.137724
10.1088/1475-7516/2022/08/068
10.1103/PhysRevD.101.123533
10.1103/PhysRevD.73.064006
10.1007/s41114-017-0004-1
10.1103/PhysRevD.110.043528
10.1088/1475-7516/2022/10/089
10.1088/1126-6708/2004/06/013
10.1140/epjc/s10052-020-8092-6
10.1088/1475-7516/2021/08/021
10.1103/PhysRevD.104.083523
10.1017/pasa.2019.42
10.1103/PhysRevLett.126.021104
10.1088/1475-7516/2024/10/007
10.1103/PhysRevD.108.103019
10.1103/PhysRevResearch.2.043321
10.1088/1475-7516/2018/05/035
10.1088/1475-7516/2024/02/020
10.1103/PhysRevD.108.103511
10.3390/universe7110398
10.1088/1475-7516/2018/04/009
10.1088/1475-7516/2022/01/057
10.1088/1361-6382/aaa7b4
10.1103/PhysRevLett.82.2832
10.1088/1475-7516/2023/10/001
10.1103/PhysRevD.96.104046
10.1103/PhysRevD.79.123519
10.1142/S0217751X21501396
10.1103/PhysRevLett.129.041101
10.1088/1475-7516/2021/11/022
10.1103/PhysRevD.84.024028
10.1016/0550-3213(82)90037-2
10.1103/PhysRevLett.103.111303
10.1103/PhysRevD.101.083511
10.1088/1361-6633/ac1e31
10.1103/PhysRevD.105.045001
10.1088/0034-4885/58/5/001
10.1016/j.physletb.2018.01.050
10.1088/1475-7516/2023/11/020
10.1103/PhysRevLett.82.4168
10.1016/j.physletb.2005.09.070
10.1016/0370-2693(86)91126-3
10.1103/PhysRevD.73.041301
10.1088/1475-7516/2016/11/044
10.1007/JHEP07(2024)204
10.1103/PhysRevD.108.123529
10.1088/0305-4470/9/8/029
10.1103/PhysRevD.89.103501
10.1103/PhysRevD.110.115013
10.1103/PhysRevD.68.103514
10.1103/PhysRevD.108.095041
10.1016/B978-0-32-395636-9.00012-8
10.1103/RevModPhys.97.015001
10.1134/S0202289321040101
10.1103/PhysRevD.101.103508
10.1016/j.physletb.2021.136722
10.1103/PhysRevD.108.095053
10.1103/PhysRevD.54.2535
10.1103/PhysRevD.64.023508
10.1103/PhysRevD.108.023531
10.1088/1475-7516/2004/03/010
10.1103/PhysRevD.44.376
10.1103/PhysRevD.105.015023
10.1103/PhysRevD.108.124009
10.1088/1475-7516/2020/01/024
10.1103/PhysRevD.105.116011
10.1103/PhysRevD.59.102001
10.1103/PhysRevLett.126.041304
10.1016/0370-2693(81)91144-8
10.1103/PhysRevLett.102.161101
10.1103/PhysRevD.78.065048
10.1088/1475-7516/2023/10/041
10.1103/PhysRevD.106.035019
10.1103/RevModPhys.88.015004
10.1088/1475-7516/2024/01/015
10.1007/JHEP01(2019)081
10.1088/1674-4527/acdfa5
10.1103/PhysRevLett.128.031102
10.1088/1475-7516/2020/04/034
10.1103/PhysRevD.109.103001
10.1093/mnras/168.2.399
10.1103/PhysRevD.89.023512
10.1103/PhysRevD.110.063549
10.1088/1475-7516/2022/06/017
10.1103/PhysRevD.37.263
10.1103/PhysRevD.65.043514
10.1088/1475-7516/2020/10/029
10.1007/JHEP08(2023)196
10.1140/epjp/s13360-020-00564-9
10.1103/PhysRevD.102.095018
10.1103/PhysRevD.88.023516
10.1103/PhysRevLett.126.041305
10.1103/PhysRevD.109.103538
10.1103/PhysRevLett.122.201101
10.1103/PhysRevLett.128.111101
10.1103/PhysRevD.104.103021
10.1088/1475-7516/2021/12/006
10.1103/PhysRevD.43.1060
10.1088/1475-7516/2016/10/034
10.1103/PhysRevLett.72.17
10.1016/j.dark.2024.101667
10.1103/PhysRevD.107.123537
10.1088/0264-9381/23/6/004
10.1007/JHEP08(2024)060
10.1016/j.nuclphysb.2024.116528
10.1103/PhysRevD.104.075007
10.1103/PhysRevD.105.015022
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP02(2025)095
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 35
ExternalDocumentID oai_doaj_org_article_c8d4b5bdb3824d7c81bb269fcd7ae99c
10_1007_JHEP02_2025_095
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S1Z
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-a81d45c68a43a247badf151fecd7e332d9d557ae345288f40e02f4eed58f80153
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422486700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Mon Nov 10 04:34:07 EST 2025
Sat Oct 18 23:13:24 EDT 2025
Tue Nov 18 22:12:01 EST 2025
Sat Nov 29 07:09:05 EST 2025
Tue Oct 14 01:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cosmology of Theories BSM
Black Holes
Baryo-and Leptogenesis
Early Universe Particle Physics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-a81d45c68a43a247badf151fecd7e332d9d557ae345288f40e02f4eed58f80153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3656-3652
0000-0003-3670-4889
OpenAccessLink https://doaj.org/article/c8d4b5bdb3824d7c81bb269fcd7ae99c
PQID 3167238669
PQPubID 2034718
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_c8d4b5bdb3824d7c81bb269fcd7ae99c
proquest_journals_3167238669
crossref_citationtrail_10_1007_JHEP02_2025_095
crossref_primary_10_1007_JHEP02_2025_095
springer_journals_10_1007_JHEP02_2025_095
PublicationCentury 2000
PublicationDate 2025-02-14
PublicationDateYYYYMMDD 2025-02-14
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References A Datta (25536_CR163) 2021; 127
S Datta (25536_CR52) 2021; 08
25536_CR86
K Inomata (25536_CR139) 2020; 101
25536_CR85
N Bernal (25536_CR112) 2022; 106
25536_CR82
25536_CR81
K Schmitz (25536_CR106) 2021; 01
K Saikawa (25536_CR107) 2018; 05
N Aggarwal (25536_CR145) 2021; 24
R Roshan (25536_CR35) 2025; 97
DG Figueroa (25536_CR56) 2024; 132
T Fujita (25536_CR68) 2014; 89
JD Romano (25536_CR109) 2017; 20
JJ Blanco-Pillado (25536_CR94) 2018; 778
EJ Copeland (25536_CR17) 2004; 06
25536_CR78
A Ambrosone (25536_CR133) 2022; 105
25536_CR76
25536_CR75
25536_CR74
G Lazarides (25536_CR61) 2023; 108
R Maji (25536_CR62) 2024; 01
25536_CR160
25536_CR164
WT Emond (25536_CR77) 2022; 01
DJ Reardon (25536_CR45) 2023; 951
R Samanta (25536_CR51) 2021; 05
25536_CR67
Y-P Wu (25536_CR128) 2022; 128
V Domcke (25536_CR151) 2022; 129
25536_CR66
25536_CR65
25536_CR3
A Ejlli (25536_CR152) 2019; 79
25536_CR1
J Martin (25536_CR141) 2020; 01
25536_CR2
C Caprini (25536_CR15) 2019; 11
25536_CR158
B Carr (25536_CR4) 2021; 84
M Sakellariadou (25536_CR21) 2005; 04
25536_CR157
25536_CR159
S Blasi (25536_CR49) 2021; 126
A Berlin (25536_CR153) 2022; 105
S Blasi (25536_CR91) 2020; 2
JJ Blanco-Pillado (25536_CR80) 2017; 96
25536_CR154
25536_CR55
K Schmitz (25536_CR92) 2024; 110
25536_CR54
P Di Bari (25536_CR161) 2016; 11
25536_CR53
O Lennon (25536_CR69) 2018; 04
V Domcke (25536_CR147) 2021; 126
PP Avelino (25536_CR23) 2012; 85
J Ellis (25536_CR50) 2021; 126
A Weltman (25536_CR98) 2020; 37
25536_CR146
S Antusch (25536_CR60) 2024; 10
H Xu (25536_CR46) 2023; 23
A Monin (25536_CR28) 2008; 78
MA Masoud (25536_CR32) 2021; 11
H Cheng (25536_CR93) 2024; 46
T Akutsu (25536_CR148) 2008; 101
25536_CR143
25536_CR142
25536_CR48
25536_CR47
WG Lamb (25536_CR165) 2023; 108
25536_CR44
25536_CR43
25536_CR42
25536_CR40
R Calabrese (25536_CR121) 2024; 109
N Bernal (25536_CR127) 2021; 104
D Hooper (25536_CR70) 2019; 08
D Borah (25536_CR73) 2023; 03
T Kitabayashi (25536_CR134) 2021; 36
W Buchmuller (25536_CR31) 2023; 11
G Domènech (25536_CR12) 2021; 823
P Di Bari (25536_CR162) 2020; 10
25536_CR135
25536_CR138
R-G Cai (25536_CR140) 2019; 122
25536_CR137
I Masina (25536_CR132) 2021; 27
N Bhaumik (25536_CR126) 2022; 07
G Servant (25536_CR33) 2024; 109
JJ Blanco-Pillado (25536_CR79) 2014; 89
T Papanikolaou (25536_CR10) 2021; 03
R Samanta (25536_CR72) 2022; 06
25536_CR131
25536_CR37
E Babichev (25536_CR96) 2023; 108
25536_CR119
T Hasegawa (25536_CR41) 2019; 12
R Calabrese (25536_CR124) 2023; 107
RH Cyburt (25536_CR39) 2016; 88
T Papanikolaou (25536_CR13) 2022; 10
25536_CR125
J Ellis (25536_CR57) 2024; 109
25536_CR129
A Peimbert (25536_CR95) 2016; 52
K-Y Choi (25536_CR123) 2024; 02
A Ito (25536_CR149) 2020; 80
P Auclair (25536_CR88) 2020; 101
D Matsunami (25536_CR87) 2019; 122
25536_CR120
25536_CR26
S Antusch (25536_CR38) 2024; 856
25536_CR25
D Marfatia (25536_CR63) 2024; 07
L Morrison (25536_CR71) 2019; 05
25536_CR22
25536_CR108
M Gell-Mann (25536_CR136) 1979; 790927
W Buchmuller (25536_CR30) 2021; 12
C Pallis (25536_CR64) 2024; 10
25536_CR114
25536_CR113
K Schmitz (25536_CR122) 2024; 849
L Sousa (25536_CR89) 2020; 101
R Dong (25536_CR8) 2016; 10
25536_CR118
25536_CR117
N Bernal (25536_CR130) 2021; 104
J Ellis (25536_CR24) 2023; 108
G Franciolini (25536_CR115) 2023; 108
G Domènech (25536_CR14) 2021; 7
25536_CR19
L Leblond (25536_CR27) 2009; 79
25536_CR110
25536_CR18
R Maji (25536_CR34) 2024; 08
I Esteban (25536_CR156) 2020; 09
M Sasaki (25536_CR5) 2018; 35
AD Dolgov (25536_CR7) 2011; 84
25536_CR11
MG Jackson (25536_CR20) 2005; 10
Y Cui (25536_CR90) 2019; 01
25536_CR99
S Antusch (25536_CR59) 2023; 108
B Barman (25536_CR116) 2022; 08
I Masina (25536_CR103) 2020; 135
S Balaji (25536_CR97) 2023; 10
R Anantua (25536_CR6) 2009; 103
YF Perez-Gonzalez (25536_CR111) 2021; 104
25536_CR101
N Aggarwal (25536_CR144) 2022; 128
25536_CR100
N Herman (25536_CR155) 2023; 108
25536_CR102
A Ghoshal (25536_CR36) 2023; 08
25536_CR105
25536_CR104
A Ito (25536_CR150) 2020; 80
P Auclair (25536_CR84) 2020; 04
G Dvali (25536_CR16) 2004; 03
DG Figueroa (25536_CR58) 2024; 132
L Sousa (25536_CR83) 2013; 88
A Ireland (25536_CR9) 2023; 107
W Buchmuller (25536_CR29) 2020; 811
References_xml – volume: 04
  start-page: 003
  year: 2005
  ident: 25536_CR21
  publication-title: JCAP
  doi: 10.1088/1475-7516/2005/04/003
– volume: 104
  year: 2021
  ident: 25536_CR127
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.123536
– ident: 25536_CR67
– volume: 79
  start-page: 1032
  year: 2019
  ident: 25536_CR152
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7542-5
– volume: 11
  start-page: 017
  year: 2019
  ident: 25536_CR15
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/11/017
– ident: 25536_CR44
– ident: 25536_CR19
  doi: 10.1103/PhysRevD.106.123515
– volume: 108
  year: 2023
  ident: 25536_CR115
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.083527
– ident: 25536_CR143
  doi: 10.1103/PhysRevLett.87.221103
– volume: 951
  start-page: L6
  year: 2023
  ident: 25536_CR45
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/acdd02
– ident: 25536_CR105
  doi: 10.1016/S0370-1573(99)00102-7
– ident: 25536_CR117
  doi: 10.1103/PhysRevD.107.095002
– volume: 03
  start-page: 053
  year: 2021
  ident: 25536_CR10
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/03/053
– volume: 849
  year: 2024
  ident: 25536_CR122
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2024.138473
– ident: 25536_CR99
– volume: 101
  year: 2008
  ident: 25536_CR148
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.101101
– volume: 01
  start-page: 097
  year: 2021
  ident: 25536_CR106
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)097
– volume: 85
  year: 2012
  ident: 25536_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.083525
– volume: 132
  year: 2024
  ident: 25536_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.171002
– ident: 25536_CR142
– ident: 25536_CR146
  doi: 10.1103/PhysRevD.95.063002
– ident: 25536_CR1
  doi: 10.1093/mnras/152.1.75
– volume: 07
  start-page: 130
  year: 2022
  ident: 25536_CR126
  publication-title: JHEP
  doi: 10.1007/JHEP07(2022)130
– volume: 109
  year: 2024
  ident: 25536_CR57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.023522
– volume: 24
  start-page: 4
  year: 2021
  ident: 25536_CR145
  publication-title: Living Rev. Rel.
  doi: 10.1007/s41114-021-00032-5
– volume: 12
  start-page: 012
  year: 2019
  ident: 25536_CR41
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/12/012
– volume: 10
  start-page: 013
  year: 2005
  ident: 25536_CR20
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/10/013
– ident: 25536_CR75
  doi: 10.1103/PhysRevD.31.3052
– ident: 25536_CR85
  doi: 10.1103/PhysRevD.64.064008
– volume: 80
  start-page: 179
  year: 2020
  ident: 25536_CR149
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7735-y
– volume: 05
  start-page: 211
  year: 2021
  ident: 25536_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)211
– ident: 25536_CR47
– ident: 25536_CR26
  doi: 10.1103/PhysRevD.47.2324
– volume: 122
  year: 2019
  ident: 25536_CR87
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.201301
– volume: 10
  start-page: 211
  year: 2024
  ident: 25536_CR64
  publication-title: Universe
  doi: 10.3390/universe10050211
– volume: 09
  start-page: 178
  year: 2020
  ident: 25536_CR156
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)178
– volume: 127
  year: 2021
  ident: 25536_CR163
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.231801
– volume: 05
  start-page: 005
  year: 2019
  ident: 25536_CR71
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/05/005
– volume: 107
  year: 2023
  ident: 25536_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.104021
– ident: 25536_CR66
  doi: 10.1088/0264-9381/32/7/074001
– ident: 25536_CR11
  doi: 10.1088/1475-7516/2021/04/062
– volume: 811
  year: 2020
  ident: 25536_CR29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135914
– volume: 856
  year: 2024
  ident: 25536_CR38
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2024.138924
– ident: 25536_CR65
– volume: 03
  start-page: 127
  year: 2023
  ident: 25536_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP03(2023)127
– volume: 08
  start-page: 001
  year: 2019
  ident: 25536_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)001
– ident: 25536_CR18
  doi: 10.1016/j.physletb.2023.137724
– volume: 08
  start-page: 068
  year: 2022
  ident: 25536_CR116
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/08/068
– volume: 101
  year: 2020
  ident: 25536_CR139
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.123533
– ident: 25536_CR154
– ident: 25536_CR110
  doi: 10.1103/PhysRevD.73.064006
– ident: 25536_CR42
– volume: 20
  start-page: 2
  year: 2017
  ident: 25536_CR109
  publication-title: Living Rev. Rel.
  doi: 10.1007/s41114-017-0004-1
– ident: 25536_CR119
  doi: 10.1103/PhysRevD.110.043528
– volume: 10
  start-page: 089
  year: 2022
  ident: 25536_CR13
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/10/089
– volume: 06
  start-page: 013
  year: 2004
  ident: 25536_CR17
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/06/013
– volume: 80
  start-page: 545
  year: 2020
  ident: 25536_CR150
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8092-6
– volume: 08
  start-page: 021
  year: 2021
  ident: 25536_CR52
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/08/021
– ident: 25536_CR78
– ident: 25536_CR129
  doi: 10.1103/PhysRevD.104.083523
– volume: 37
  year: 2020
  ident: 25536_CR98
  publication-title: Publ. Astron. Soc. Austral.
  doi: 10.1017/pasa.2019.42
– volume: 126
  year: 2021
  ident: 25536_CR147
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.021104
– volume: 10
  start-page: 007
  year: 2024
  ident: 25536_CR60
  publication-title: JCAP
  doi: 10.1088/1475-7516/2024/10/007
– volume: 108
  year: 2023
  ident: 25536_CR165
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.103019
– volume: 2
  year: 2020
  ident: 25536_CR91
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043321
– volume: 05
  start-page: 035
  year: 2018
  ident: 25536_CR107
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/05/035
– volume: 02
  start-page: 020
  year: 2024
  ident: 25536_CR123
  publication-title: JCAP
  doi: 10.1088/1475-7516/2024/02/020
– volume: 108
  year: 2023
  ident: 25536_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.103511
– volume: 7
  start-page: 398
  year: 2021
  ident: 25536_CR14
  publication-title: Universe
  doi: 10.3390/universe7110398
– volume: 04
  start-page: 009
  year: 2018
  ident: 25536_CR69
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/04/009
– volume: 01
  start-page: 057
  year: 2022
  ident: 25536_CR77
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/01/057
– volume: 35
  year: 2018
  ident: 25536_CR5
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaa7b4
– ident: 25536_CR160
  doi: 10.1103/PhysRevLett.82.2832
– ident: 25536_CR101
– ident: 25536_CR125
  doi: 10.1088/1475-7516/2023/10/001
– volume: 96
  year: 2017
  ident: 25536_CR80
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.104046
– volume: 79
  year: 2009
  ident: 25536_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.123519
– volume: 36
  start-page: 2150139
  year: 2021
  ident: 25536_CR134
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X21501396
– volume: 129
  year: 2022
  ident: 25536_CR151
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.041101
– volume: 11
  start-page: 022
  year: 2021
  ident: 25536_CR32
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/11/022
– volume: 84
  year: 2011
  ident: 25536_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.024028
– ident: 25536_CR25
  doi: 10.1016/0550-3213(82)90037-2
– volume: 103
  year: 2009
  ident: 25536_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.111303
– volume: 101
  year: 2020
  ident: 25536_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.083511
– volume: 84
  year: 2021
  ident: 25536_CR4
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ac1e31
– volume: 105
  year: 2022
  ident: 25536_CR133
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.045001
– ident: 25536_CR54
  doi: 10.1088/0034-4885/58/5/001
– volume: 778
  start-page: 392
  year: 2018
  ident: 25536_CR94
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.01.050
– ident: 25536_CR48
– volume: 11
  start-page: 020
  year: 2023
  ident: 25536_CR31
  publication-title: JCAP
  doi: 10.1088/1475-7516/2023/11/020
– ident: 25536_CR40
  doi: 10.1103/PhysRevLett.82.4168
– ident: 25536_CR157
  doi: 10.1016/j.physletb.2005.09.070
– ident: 25536_CR100
– ident: 25536_CR137
  doi: 10.1016/0370-2693(86)91126-3
– ident: 25536_CR22
  doi: 10.1103/PhysRevD.73.041301
– volume: 11
  start-page: 044
  year: 2016
  ident: 25536_CR161
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/11/044
– volume: 07
  start-page: 204
  year: 2024
  ident: 25536_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP07(2024)204
– volume: 108
  year: 2023
  ident: 25536_CR96
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.123529
– ident: 25536_CR53
  doi: 10.1088/0305-4470/9/8/029
– volume: 89
  year: 2014
  ident: 25536_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.103501
– ident: 25536_CR120
  doi: 10.1103/PhysRevD.110.115013
– ident: 25536_CR55
  doi: 10.1103/PhysRevD.68.103514
– volume: 108
  year: 2023
  ident: 25536_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.095041
– ident: 25536_CR3
  doi: 10.1016/B978-0-32-395636-9.00012-8
– volume: 97
  year: 2025
  ident: 25536_CR35
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.97.015001
– volume: 27
  start-page: 315
  year: 2021
  ident: 25536_CR132
  publication-title: Grav. Cosmol.
  doi: 10.1134/S0202289321040101
– volume: 101
  year: 2020
  ident: 25536_CR89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.103508
– volume: 52
  start-page: 419
  year: 2016
  ident: 25536_CR95
  publication-title: Rev. Mex. Astron. Astrofis.
– volume: 823
  year: 2021
  ident: 25536_CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136722
– ident: 25536_CR43
– volume: 108
  year: 2023
  ident: 25536_CR59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.095053
– ident: 25536_CR81
  doi: 10.1103/PhysRevD.54.2535
– ident: 25536_CR102
  doi: 10.1103/PhysRevD.64.023508
– ident: 25536_CR37
  doi: 10.1103/PhysRevD.108.023531
– volume: 03
  start-page: 010
  year: 2004
  ident: 25536_CR16
  publication-title: JCAP
  doi: 10.1088/1475-7516/2004/03/010
– ident: 25536_CR104
  doi: 10.1103/PhysRevD.44.376
– ident: 25536_CR113
  doi: 10.1103/PhysRevD.105.015023
– volume: 108
  year: 2023
  ident: 25536_CR155
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.124009
– volume: 01
  start-page: 024
  year: 2020
  ident: 25536_CR141
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/01/024
– volume: 105
  year: 2022
  ident: 25536_CR153
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.116011
– ident: 25536_CR108
  doi: 10.1103/PhysRevD.59.102001
– volume: 126
  year: 2021
  ident: 25536_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.041304
– ident: 25536_CR74
  doi: 10.1016/0370-2693(81)91144-8
– ident: 25536_CR138
  doi: 10.1103/PhysRevLett.102.161101
– volume: 790927
  start-page: 315
  year: 1979
  ident: 25536_CR136
  publication-title: Conf. Proc. C
– volume: 78
  year: 2008
  ident: 25536_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.065048
– volume: 10
  start-page: 041
  year: 2023
  ident: 25536_CR97
  publication-title: JCAP
  doi: 10.1088/1475-7516/2023/10/041
– volume: 106
  year: 2022
  ident: 25536_CR112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.035019
– volume: 88
  year: 2016
  ident: 25536_CR39
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.015004
– volume: 01
  start-page: 015
  year: 2024
  ident: 25536_CR62
  publication-title: JCAP
  doi: 10.1088/1475-7516/2024/01/015
– volume: 01
  start-page: 081
  year: 2019
  ident: 25536_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)081
– volume: 23
  year: 2023
  ident: 25536_CR46
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/acdfa5
– volume: 128
  year: 2022
  ident: 25536_CR128
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.031102
– volume: 04
  start-page: 034
  year: 2020
  ident: 25536_CR84
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/04/034
– volume: 109
  year: 2024
  ident: 25536_CR121
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.103001
– ident: 25536_CR2
  doi: 10.1093/mnras/168.2.399
– volume: 89
  year: 2014
  ident: 25536_CR79
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.023512
– volume: 110
  year: 2024
  ident: 25536_CR92
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.110.063549
– volume: 06
  start-page: 017
  year: 2022
  ident: 25536_CR72
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/06/017
– ident: 25536_CR76
  doi: 10.1103/PhysRevD.37.263
– ident: 25536_CR82
  doi: 10.1103/PhysRevD.65.043514
– volume: 132
  year: 2024
  ident: 25536_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.171002
– volume: 10
  start-page: 029
  year: 2020
  ident: 25536_CR162
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/10/029
– volume: 08
  start-page: 196
  year: 2023
  ident: 25536_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP08(2023)196
– volume: 135
  start-page: 552
  year: 2020
  ident: 25536_CR103
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00564-9
– ident: 25536_CR114
  doi: 10.1103/PhysRevD.102.095018
– volume: 88
  year: 2013
  ident: 25536_CR83
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.023516
– volume: 126
  year: 2021
  ident: 25536_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.041305
– volume: 109
  year: 2024
  ident: 25536_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.103538
– volume: 122
  year: 2019
  ident: 25536_CR140
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.201101
– volume: 128
  year: 2022
  ident: 25536_CR144
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.111101
– ident: 25536_CR158
  doi: 10.1016/j.physletb.2005.09.070
– volume: 104
  year: 2021
  ident: 25536_CR111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.103021
– volume: 12
  start-page: 006
  year: 2021
  ident: 25536_CR30
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/12/006
– ident: 25536_CR86
  doi: 10.1103/PhysRevD.43.1060
– volume: 10
  start-page: 034
  year: 2016
  ident: 25536_CR8
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/10/034
– ident: 25536_CR159
  doi: 10.1103/PhysRevLett.72.17
– volume: 46
  year: 2024
  ident: 25536_CR93
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2024.101667
– volume: 107
  year: 2023
  ident: 25536_CR124
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.123537
– ident: 25536_CR135
  doi: 10.1088/0264-9381/23/6/004
– ident: 25536_CR164
– volume: 08
  start-page: 060
  year: 2024
  ident: 25536_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP08(2024)060
– ident: 25536_CR118
  doi: 10.1016/j.nuclphysb.2024.116528
– volume: 104
  year: 2021
  ident: 25536_CR130
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.075007
– ident: 25536_CR131
  doi: 10.1103/PhysRevD.105.015022
SSID ssj0015190
Score 2.5309625
Snippet A bstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing...
While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA),...
Abstract While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Baryo-and Leptogenesis
Black Holes
Classical and Quantum Gravitation
Cosmology of Theories BSM
Early Universe Particle Physics
Elementary Particles
Gravitational waves
Hawking radiation
High energy physics
LIGO (observatory)
Physics
Physics and Astronomy
Pulsars
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Universe
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BChIX3oiUgvbAoZUwcffhtbmgUvWFIM0BpHKy9okqJXEaO_39zGzWKSCVE1d71xp7xjOzuzPfR8jb3EPeYDnPbBVYhhxXmQHLyMy-MJJXluU8RLIJNR6XFxfVJLVHt6mssveJ0VGv0Z6xbhuc8Mg1FnfMR9i_DcGmKKqPi6sMOaTwrDURatwlWwi8lQ_I1uTs6-TH5lQBspW8h_fJ1ejz6dEkZ7uw_Jd7ORJM_BaZIoD_H1nnXwelMf4cP_q_kj8mD1MeSg_WhvOE3PHzp-R-rAe17TPSHDbt7NLSdrXA_BBFat_Rme80ZJNm6mm6RvXc0dU0bpfAKp-C8LMGbW5KDW4NUqTfbT9Q7GKh44Px-clSX9OuoV_OTs7jZBNbaJ6T78dH3w5Ps8TNkFnQZ5dpyHOFtEWpBddMKKNdgO8bvHXKc85c5aRU2nMhWVkGATbBgoCALMsAQVHyF2Qwb-b-JaFKBCwI1VL5UsBqSBdKycI4ZU2uvGVD8r7XS20TcDnyZ0zrHnJ5rcgaFVmDIodkdzNhscbsuH3oJ1T0ZhiCbccLzfJnnf7d2pYODNc4w0smQCzI9A0rqgCvqn1V2SHZ6RVfJw_Q1jd6HpK93nRubt8iz_a_H_WKPMCRWDW-L3bIoFuu_Gtyz153l-3yTTL3X2j3Dwg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R2kpc6AOqLtDKhx5AalDWjzjhRlc8VS0cWolbZDs2QtrdoE2W38-MN6GiiAPcIsdOnJlx_Nme-QbgR-oRNzghElcEnlCOq8SiZSR2KK0SheOpCDHZhB6P86ur4nIFhn0sTPR2748k45-6D3Y7Pz26TPkuLtbVHuKCN_CWuMTIi2tEAQ7dwQECkrRn8Hna6NHkEzn6HwHL_85C4xRz_OEVnfsI6x2eZIdLA_gEK372Gd5Hv07XbEA9qpvpjWPN4pZwHj2z-cmmvjWICu3Es66MmVnFFpO47YGrdYZvn9ZkOxNmaYuPURrd5oBRNAobH44vTubmjrU1-312chEb2xgKswl_j4_-jE6TLsdC4lAvbWIQr0rlstxIYbjU1lQBhRi8q7QXgldFpZQ2XkjF8zxI1C0PEidWlQec3JT4Aquzeua_AtMykGOnUdrnElc1JtNaZbbSzqbaOz6A_V74pesIyCkPxqTsqZOXUixJiiVKcQC7Dw1ul9wbz1f9Rdp8qEak2bGgnl-X3RgsXV6hAdrKipxL7BYidsuzIuCnGl8UbgA7vS2U3UhuSmIKQFiTZcUA9nrd_7v9TH-2XlB3G9boklzBh3IHVtv5wn-Dd-6uvWnm36N53wMJ9_WQ
  priority: 102
  providerName: Springer Nature
Title Cosmic superstrings, metastable strings and ultralight primordial black holes: from NANOGrav to LIGO and beyond
URI https://link.springer.com/article/10.1007/JHEP02(2025)095
https://www.proquest.com/docview/3167238669
https://doaj.org/article/c8d4b5bdb3824d7c81bb269fcd7ae99c
Volume 2025
WOSCitedRecordID wos001422486700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMQF8VQXysoHDq1EaOpHHHNrV9sHgjRCIBUuke3YUqXdTbXJ9vcz4ySlIFVcuOTgV6xvJvE39niGkHepB97gOE-cDizBHFeJBc1I7IGwkmvHUh5isglVFPnFhS5vpfpCn7A-PHAP3L7La-hla8tzJmrlgGZZlungamW81g7_vqnSozE1nB8AL0nHQD6p2v90Oi9TtguGvtxLMZXErTUohur_g1_-dSQaV5rjp-TJQBHpYT-1Z-SeXz0nj6KrpmtfkGbWtMtLR9vNFVI3HKN9T5e-M0D07MLToYyaVU03i7iTAQY4hbctG1SHBbW4a0cxM277keIFE1ocFucna3NNu4Z-Pjs5j51tvN3yknw_nn-bnSZD2oTEAdRdYoCCCumy3AhumFDW1AEACR4g85yzWtdSAnhcSJbnQYC4WBCwVso8wHol-SuytWpWfptQJQL6ahqpfC7AUDGZUjKzIAabKu_YhHwYgazcEFMcU1ssqjEaco98hchXgPyE7N50uOrDadzd9Aglc9MM42DHAtCOatCO6l_aMSE7o1yr4eNsK7z8D0wly_SE7I2y_l19x3xe_4_5vCGPcTx0-z4QO2SrW2_8W_LQXXeX7XpKHhzNi_LrlNyfMTGNGg3PUv6EmvLsS_njF0Oy-qg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NHQhe-EYUBvgBpE0iLHOcOEFCaIxtLeuyPgxpPAXbccaktilNOsQ_xd_InZt0gDTe9sCrY0f--PnubN_dD-CFb9FuMEHgmaTgHnFceRqR4ektocMgMdwPCkc2IdM0PjlJhivws42FIbfKViY6QZ2Xhu7INyliG9VLFCXvpt88Yo2i19WWQmMBiwP74zse2aq3_Q-4vi8539s93ul5DauAZ7AntafQQhOhiWIlAsWF1CovUO0V1uTSBgHPkzwMpbKBCHkcFwJHwwuBqiSMCxTnxBKBIn9VINj9DqwO-4fDz8t3C7SH_DaBkC83P_Z2hz5f52hYbPhEYfGb7nMUAX_YtX89xToNt3f7f5ubO3CrsaXZ9gL8d2HFTu7BdefTaqr7UO6U1fjMsGo-JRuXBl29YmNbK7SI9ciypoypSc7mI3flc_q1Zjg945L2zYhput5kRCFcvWEUicPS7fRof6bOWV2yQX__yDXWLgzoAXy6ktE-hM6knNhHwKQoyKlVhdLGiIxYRVKGkc6l0b60hnfhdbvymWmSrxMHyChr00YvoJIRVDKEShfWlw2mi7wjl1d9T1BaVqOE4a6gnJ1mjfzJTJzj5tO5DmIusFt4WtE8SgocqrJJYrqw1kIra6RYlV3gqgsbLTgvPl_Sn8f__tVzuNE7Phxkg3568ARuUivygt8Sa9CpZ3P7FK6Z8_qsmj1rNheDL1eN2V8lfmDM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aNkC8cEcUBvgBpE0iNHOcOEFCaJd2K5uyCjFpb8F27DGpbUqTDvHX-HWckyYdII23PfDqxJHtfOdi-5zzAbzyLfoNJgg8kzjuEceVpxEZnt4SOgwSw_3A1WQTMk3j09NkuAI_21wYCqtsdWKtqPPC0Bl5lzK20bxEUdJ1TVjEcK__YfrNIwYpumlt6TQWEDm0P77j9q18P9jDf_2a837v8-6B1zAMeAZHVXkKvTURmihWIlBcSK1yhybQWZNLGwQ8T_IwlMoGIuRx7ATOjDuBZiWMHap2YoxA9b8mA9z0rMLaTi8dflreYaBv5LfFhHzZ_XjQG_p8g6OTsekTncVvdrCmC_jDx_3rWra2dv27__M63YM7jY_NthdCcR9W7OQB3KxjXU35EIrdohyfG1bOp-T70gKUb9jYVgo9ZT2yrGljapKz-ag-Cjr7WjFcqnFB8jRimo49GVELl-8YZeiwdDs93p-pC1YV7Giwf1x31nV60CM4uZbZPobVSTGxT4BJ4SjYVYXSxgJ3eiqSMox0Lo32pTW8A29bFGSmKcpO3CCjrC0nvYBNRrDJEDYd2Fh2mC7qkVz96g7BavkaFRKvG4rZWdbopczEOQqlznUQc4HDwl2M5lHicKrKJonpwHoLs6zRbmV2ibEObLZAvXx8xXie_vtTL-EWAjU7GqSHz-A2daLg-C2xDqvVbG6fww1zUZ2XsxeNnDH4ct2Q_QV14Glm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cosmic+superstrings%2C+metastable+strings+and+ultralight+primordial+black+holes%3A+from+NANOGrav+to+LIGO+and+beyond&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Satyabrata+Datta&rft.au=Rome+Samanta&rft.date=2025-02-14&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2025&rft.issue=2&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1007%2FJHEP02%282025%29095&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c8d4b5bdb3824d7c81bb269fcd7ae99c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon