PathoSeq-QC: a decision support bioinformatics workflow for robust genomic surveillance
Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health...
Saved in:
| Published in: | Bioinformatics (Oxford, England) Vol. 41; no. 4 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
29.03.2025
|
| Subjects: | |
| ISSN: | 1367-4811, 1367-4803, 1367-4811 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs.
We present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: (i) evaluates the quality of the raw data; (ii) assesses whether the analysed sample is composed by single or multiple lineages; (iii) produces robust variant calling results via multi-tool comparison; (iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension.
PathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc. |
|---|---|
| AbstractList | Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs.
We present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: (i) evaluates the quality of the raw data; (ii) assesses whether the analysed sample is composed by single or multiple lineages; (iii) produces robust variant calling results via multi-tool comparison; (iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension.
PathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc. Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs.MOTIVATIONRecommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs.We present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: (i) evaluates the quality of the raw data; (ii) assesses whether the analysed sample is composed by single or multiple lineages; (iii) produces robust variant calling results via multi-tool comparison; (iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension.RESULTSWe present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: (i) evaluates the quality of the raw data; (ii) assesses whether the analysed sample is composed by single or multiple lineages; (iii) produces robust variant calling results via multi-tool comparison; (iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension.PathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc.AVAILABILITY AND IMPLEMENTATIONPathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc. |
| Author | Wiesenthal, Tobias Leoni, Gabriele Ruiz-Serra, Victoria Querci, Maddalena Coecke, Sandra Petrillo, Mauro |
| Author_xml | – sequence: 1 givenname: Gabriele orcidid: 0000-0002-4899-5284 surname: Leoni fullname: Leoni, Gabriele – sequence: 2 givenname: Mauro orcidid: 0000-0002-6782-4704 surname: Petrillo fullname: Petrillo, Mauro – sequence: 3 givenname: Victoria orcidid: 0000-0003-3991-0514 surname: Ruiz-Serra fullname: Ruiz-Serra, Victoria – sequence: 4 givenname: Maddalena surname: Querci fullname: Querci, Maddalena – sequence: 5 givenname: Sandra surname: Coecke fullname: Coecke, Sandra – sequence: 6 givenname: Tobias surname: Wiesenthal fullname: Wiesenthal, Tobias |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40053686$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtLxDAQDrLiro-_ID16qSbbbdqKILL4AkFFxWOYpBONts1ukir-e7O4iuvFwzDD5HuQbzbJoLMdErLL6D6jVXYgjTWdtq6FYJQ_kAE0o-M1MmIZL9JJydjg1zwkm96_UEpzmvMNMpzEKeMlH5HHGwjP9g7n6e30MIGkRmW8sV3i-9nMupCsGiXv1r3qxr4ncZU4K3sfkifsbGtUpLg3NE0DncJtsq6h8biz7Fvk4ez0fnqRXl2fX05PrlI1YUVIIcMJcABaVkrWXJacyaKuSg1VzqliWufIKBZa66qOOAm5LDLItCoRECHbIsdfurNetlgr7IKDRsycacF9CAtGrL505lk82TfBWMUXFRX2lgrOznv0QbTGK1x8A23vRcaKnBbj8TiP0N3fZj8u33FGwNEXQDnrvUMtlAkxOLvwNo1gVCyuJ1ZDFcvrRTr_Q_92-If4CVH9q6w |
| CitedBy_id | crossref_primary_10_12688_openreseurope_20934_1 |
| Cites_doi | 10.1093/gigascience/giab008 10.1038/s41579-023-00878-2 10.1016/j.bsheal.2023.01.002 10.1038/s41576-021-00360-w 10.7717/peerj.13821 10.1093/bioinformatics/btac306 10.1038/s41586-020-2008-3 10.1093/bioinformatics/bty560 10.1093/ve/veab064 10.1101/gr.268110.120 10.1093/gigascience/giae065 10.7717/peerj.13300 10.1016/j.virol.2023.109860 10.1016/j.trecan.2023.08.011 10.1371/journal.pcbi.1006468 10.3390/v16030430 10.3390/v14020185 10.3389/fmicb.2023.1190133 10.1109/ACCESS.2020.3015016 10.1186/s13059-022-02609-x 10.46234/ccdcw2021.255 10.1038/ng.806 10.1093/nar/gkab417 10.3389/fmed.2022.911861 10.3389/fonc.2019.00851 10.1038/s41586-022-05049-6 10.1038/s41586-020-2012-7 10.1186/s13059-018-1618-7 10.1128/jcm.00944-21 10.1093/nar/gks918 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/bioinformatics/btaf102 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | PMC11961196 40053686 10_1093_bioinformatics_btaf102 |
| Genre | Journal Article |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c417t-a3e4a6aa089cbd6b861b7d98fa9560c1ff5e10e7fff9d6aaba5b73a3fc8eaeea3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456198900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Thu Aug 21 18:39:51 EDT 2025 Thu Jul 10 18:10:16 EDT 2025 Mon Jul 21 05:22:29 EDT 2025 Tue Nov 18 22:32:58 EST 2025 Sat Nov 29 08:01:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c417t-a3e4a6aa089cbd6b861b7d98fa9560c1ff5e10e7fff9d6aaba5b73a3fc8eaeea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3991-0514 0000-0002-6782-4704 0000-0002-4899-5284 |
| OpenAccessLink | http://dx.doi.org/10.1093/bioinformatics/btaf102 |
| PMID | 40053686 |
| PQID | 3175072225 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11961196 proquest_miscellaneous_3175072225 pubmed_primary_40053686 crossref_citationtrail_10_1093_bioinformatics_btaf102 crossref_primary_10_1093_bioinformatics_btaf102 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Mar-29 |
| PublicationDateYYYYMMDD | 2025-03-29 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Grubaugh (2025041602165674300_btaf102-B14) 2019; 20 Expósito (2025041602165674300_btaf102-B10) 2020; 8 Garcia-Prieto (2025041602165674300_btaf102-B13) 2022; 38 Oliveira (2025041602165674300_btaf102-B24) 2022; 10 Danecek (2025041602165674300_btaf102-B7) 2021; 10 Erickson (2025041602165674300_btaf102-B9) 2018; 14 Petrackova (2025041602165674300_btaf102-B27) 2019; 9 Liao (2025041602165674300_btaf102-B21) 2022; 23 Parker (2025041602165674300_btaf102-B26) 2021; 31 Zhou (2025041602165674300_btaf102-B35) 2020; 579 Foster (2025041602165674300_btaf102-B11) 2022; 14 Khare (2025041602165674300_btaf102-B19) 2021; 3 Zufan (2025041602165674300_btaf102-B36) 2023; 9 Connor (2025041602165674300_btaf102-B5) 2024; 16 Chen (2025041602165674300_btaf102-B3) 2018; 34 DePristo (2025041602165674300_btaf102-B8) 2011; 43 Wu (2025041602165674300_btaf102-B32) 2020; 579 Jacot (2025041602165674300_btaf102-B16) 2021; 59 Dai (2025041602165674300_btaf102-B6) 2022; 9 Boscolo Bielo (2025041602165674300_btaf102-B1) 2023; 9 Xiaoli (2025041602165674300_btaf102-B33) 2022; 10 Poplin (2025041602165674300_btaf102-B28) 1178 Youk (2025041602165674300_btaf102-B34) 2023; 587 WHO (2025041602165674300_btaf102-B30) 2023 O’Toole (2025041602165674300_btaf102-B25) 2021; 7 Wilm (2025041602165674300_btaf102-B31) 2012; 40 WHO (2025041602165674300_btaf102-B29) 2022 Cen (2025041602165674300_btaf102-B2) 2023; 5 Mercer (2025041602165674300_btaf102-B23) 2021; 22 Jalal (2025041602165674300_btaf102-B17) 2023; 14 Karthikeyan (2025041602165674300_btaf102-B18) 2022; 609 Markov (2025041602165674300_btaf102-B22) 2023; 21 Fuhrmann (2025041602165674300_btaf102-B12) 2024; 13 Harrison (2025041602165674300_btaf102-B15) 2021; 49 Chen (2025041602165674300_btaf102-B4) 2022; 10 |
| References_xml | – volume: 10 start-page: giab008 year: 2021 ident: 2025041602165674300_btaf102-B7 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 21 start-page: 361 year: 2023 ident: 2025041602165674300_btaf102-B22 article-title: The evolution of SARS-CoV-2 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-023-00878-2 – volume: 5 start-page: 78 year: 2023 ident: 2025041602165674300_btaf102-B2 article-title: Towards precision medicine: omics approach for COVID-19 publication-title: Biosaf Health doi: 10.1016/j.bsheal.2023.01.002 – volume: 22 start-page: 415 year: 2021 ident: 2025041602165674300_btaf102-B23 article-title: Testing at scale during the COVID-19 pandemic publication-title: Nat Rev Genet doi: 10.1038/s41576-021-00360-w – year: 1178 ident: 2025041602165674300_btaf102-B28 – volume-title: Guiding Principles for Pathogen Genome Data Sharing year: 2022 ident: 2025041602165674300_btaf102-B29 – volume: 10 start-page: e13821 year: 2022 ident: 2025041602165674300_btaf102-B33 article-title: Benchmark datasets for SARS-CoV-2 surveillance bioinformatics publication-title: PeerJ doi: 10.7717/peerj.13821 – volume: 38 start-page: 3181 year: 2022 ident: 2025041602165674300_btaf102-B13 article-title: Detection of oncogenic and clinically actionable mutations in cancer genomes critically depends on variant calling tools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac306 – volume: 579 start-page: 265 year: 2020 ident: 2025041602165674300_btaf102-B32 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 34 start-page: i884 year: 2018 ident: 2025041602165674300_btaf102-B3 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 7 start-page: veab064 year: 2021 ident: 2025041602165674300_btaf102-B25 article-title: Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool publication-title: Virus Evol doi: 10.1093/ve/veab064 – volume: 31 start-page: 645 year: 2021 ident: 2025041602165674300_btaf102-B26 article-title: Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data publication-title: Genome Res doi: 10.1101/gr.268110.120 – volume: 13 start-page: giae065 year: 2024 ident: 2025041602165674300_btaf102-B12 article-title: V-pipe 3.0: a sustainable pipeline for within-sample viral genetic diversity estimation publication-title: Gigascience doi: 10.1093/gigascience/giae065 – volume: 10 start-page: e13300 year: 2022 ident: 2025041602165674300_btaf102-B24 article-title: PipeCoV: a pipeline for SARS-CoV-2 genome assembly, annotation and variant identification publication-title: PeerJ doi: 10.7717/peerj.13300 – volume: 587 start-page: 109860 year: 2023 ident: 2025041602165674300_btaf102-B34 article-title: H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: introductions into the United States and reassortments, December 2021–April 2022 publication-title: Virology doi: 10.1016/j.virol.2023.109860 – volume: 9 start-page: 1058 year: 2023 ident: 2025041602165674300_btaf102-B1 article-title: Variant allele frequency: a decision-making tool in precision oncology? publication-title: Trends Cancer doi: 10.1016/j.trecan.2023.08.011 – volume: 14 start-page: e1006468 year: 2018 ident: 2025041602165674300_btaf102-B9 article-title: Wrangling distributed computing for high-throughput environmental science: an introduction to HTCondor publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006468 – volume: 16 start-page: 430 year: 2024 ident: 2025041602165674300_btaf102-B5 article-title: Recommendations for uniform variant calling of SARS-CoV-2 genome sequence across bioinformatic workflows publication-title: Viruses doi: 10.3390/v16030430 – volume: 14 start-page: 185 year: 2022 ident: 2025041602165674300_btaf102-B11 article-title: Assessment of inter-laboratory differences in SARS-CoV-2 consensus genome assemblies between public health laboratories in Australia publication-title: Viruses doi: 10.3390/v14020185 – volume: 14 start-page: 1190133 year: 2023 ident: 2025041602165674300_btaf102-B17 article-title: Genomic characterization of SARS-CoV-2 in Egypt: insights into spike protein thermodynamic stability publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1190133 – volume: 8 start-page: 146075 year: 2020 ident: 2025041602165674300_btaf102-B10 article-title: SeQual: big data tool to perform quality control and data preprocessing of large NGS datasets publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015016 – volume: 23 start-page: 38 year: 2022 ident: 2025041602165674300_btaf102-B21 article-title: VirStrain: a strain identification tool for RNA viruses publication-title: Genome Biol doi: 10.1186/s13059-022-02609-x – volume: 3 start-page: 1049 year: 2021 ident: 2025041602165674300_btaf102-B19 article-title: GISAID’s role in pandemic response publication-title: China CDC Wkly doi: 10.46234/ccdcw2021.255 – volume: 10 start-page: e00182 year: 2022 ident: 2025041602165674300_btaf102-B4 article-title: Profiling of SARS-CoV-2 subgenomic RNAs in clinical specimens publication-title: Microbiol Spectr – volume: 43 start-page: 491 year: 2011 ident: 2025041602165674300_btaf102-B8 article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data publication-title: Nat Genet doi: 10.1038/ng.806 – volume: 49 start-page: W619 year: 2021 ident: 2025041602165674300_btaf102-B15 article-title: The COVID-19 data portal: accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab417 – volume: 9 start-page: 911861 year: 2022 ident: 2025041602165674300_btaf102-B6 article-title: Advances and trends in omics technology development publication-title: Front. Med doi: 10.3389/fmed.2022.911861 – volume: 9 start-page: 851 year: 2019 ident: 2025041602165674300_btaf102-B27 article-title: Standardization of sequencing coverage depth in NGS: recommendation for detection of clonal and subclonal mutations in cancer diagnostics publication-title: Front Oncol doi: 10.3389/fonc.2019.00851 – volume: 609 start-page: 101 year: 2022 ident: 2025041602165674300_btaf102-B18 article-title: Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission publication-title: Nature doi: 10.1038/s41586-022-05049-6 – volume: 579 start-page: 270 year: 2020 ident: 2025041602165674300_btaf102-B35 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 9 start-page: 001146 year: 2023 ident: 2025041602165674300_btaf102-B36 article-title: Bioinformatic investigation of discordant sequence data for SARS-CoV-2: insights for robust genomic analysis during pandemic surveillance publication-title: Microb Genom – volume: 20 start-page: 8 year: 2019 ident: 2025041602165674300_btaf102-B14 article-title: An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar publication-title: Genome Biol doi: 10.1186/s13059-018-1618-7 – volume: 59 start-page: e0094421 year: 2021 ident: 2025041602165674300_btaf102-B16 article-title: Assessment of SARS-CoV-2 genome sequencing: quality criteria and low-frequency variants publication-title: J Clin Microbiol doi: 10.1128/jcm.00944-21 – volume-title: Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential 2022–2032: Progress Report on the First Year of Implementation year: 2023 ident: 2025041602165674300_btaf102-B30 – volume: 40 start-page: 11189 year: 2012 ident: 2025041602165674300_btaf102-B31 article-title: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gks918 |
| SSID | ssj0005056 |
| Score | 2.4767804 |
| Snippet | Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Applications Note Computational Biology - methods COVID-19 - epidemiology COVID-19 - virology Decision Support Techniques Genomics - methods High-Throughput Nucleotide Sequencing - methods Humans SARS-CoV-2 - genetics Software Workflow |
| Title | PathoSeq-QC: a decision support bioinformatics workflow for robust genomic surveillance |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40053686 https://www.proquest.com/docview/3175072225 https://pubmed.ncbi.nlm.nih.gov/PMC11961196 |
| Volume | 41 |
| WOSCitedRecordID | wos001456198900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEG_KozIStyqq0yS1ww2teBxg2RUFeovsxBaRqqSbJt3CT-JX4onttFlWwB44NKrceGJlpjNjz-ND6EUYhSLgYeZp5z31Ql9OPSGzFDIBuAgI1xaUtGAT9PiYLRbxyWDw09XCbJa0KNh2G6_-K6v1mGY2lM5egd0dUT2gv2um66tmu77-E-NPtE9XfpJn3umRqWTOLIzOeN2swNsei7y0_VLbHs2QmqWW5XmbcViVolnXAKwM5cp6SrWRAEzkZMPFf_skoGfp1qXJW1yQvTOG97JskaPGb7mooKJ9p5DrKrfRnw-8qcou_tPkPzytx1oUpPGXHEILeWdBThvAiTKTMsiINhDg7vRiGkH6ln28UbgB9F1nVuHKS8asljbtsaw0hpcqf9MYq_8OYaDmyifTncFzQf4LdrDLTjRx-SDpU0osnQN0bUqjGNIH5x8Xu3Qi0iIFd2t31ehxMOnTmVg6fUfot93NxSTdPa9nfhvdstsV_MqI2R00kMVddMMAmH6_h77uCdtLzLETNWxFDfcXhZ2oYT2EjahhK2p4X9Tuo89vXs-P3nkWqsNLQ5_WHg9kyGecExanIpsJNvMFzWKmOOy_U1-pSPpEUqVUnOn7BI8EDXigUia5lDx4gA6LspCPECZatynGWSBJFmaMcGgx52cp0QRplPpDFLn3lqS2jz3AqSyTP_NtiCbdvJXp5PLXGc8dWxKtdCGSxgtZNusEnG5C4ahkiB4aNnU0Q7BrMzYbItZjYHcDNHTv_1Lk39rG7r42h_B5fOWlPkE3d_-up-iwrhr5DF1PN3W-rkbogC7YqD1uGrVS-wuUvdX- |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PathoSeq-QC%3A+a+decision+support+bioinformatics+workflow+for+robust+genomic+surveillance&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Leoni%2C+Gabriele&rft.au=Petrillo%2C+Mauro&rft.au=Ruiz-Serra%2C+Victoria&rft.au=Querci%2C+Maddalena&rft.date=2025-03-29&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=4&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |