Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling

Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based poolin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 30; číslo 6; s. 1705 - 1715
Hlavní autoři: Passalis, Nikolaos, Tefas, Anastasios
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from the bag-of-features model and can be used for learning more lightweight deep neural networks. Trainable radial basis function neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated using seven data sets and three different learning tasks (classification, regression, and retrieval).
AbstractList Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from the bag-of-features model and can be used for learning more lightweight deep neural networks. Trainable radial basis function neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated using seven data sets and three different learning tasks (classification, regression, and retrieval).
Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from the bag-of-features model and can be used for learning more lightweight deep neural networks. Trainable radial basis function neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated using seven data sets and three different learning tasks (classification, regression, and retrieval).Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from the bag-of-features model and can be used for learning more lightweight deep neural networks. Trainable radial basis function neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated using seven data sets and three different learning tasks (classification, regression, and retrieval).
Author Tefas, Anastasios
Passalis, Nikolaos
Author_xml – sequence: 1
  givenname: Nikolaos
  orcidid: 0000-0003-1177-9139
  surname: Passalis
  fullname: Passalis, Nikolaos
  email: passalis@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 2
  givenname: Anastasios
  surname: Tefas
  fullname: Tefas, Anastasios
  email: tefas@aiia.csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30369453$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0E4v0DIKFIbNik-BE79hLKU6oKEkViFznJuATSuNgJFX-PQ0sXLPDCY43OHWvu3UObjW0AoSOCB4RgdT4Zj0dPA4qJHFCZUqX4BtqlRNCYMik31-_0ZQcdev-GwxGYi0Rtox2GmVAJZ7voeeJ01VTNNBpV09d2Af0dXQHMo6FtPm3dtZVtdB2NoXM_pV1Y9-6jZ9-LLvU0tia-Ad12Dnz0aG0d-gdoy-jaw-Gq7qPJzfVkeBePHm7vhxejuEhI2saq5CVWhgtTcqmB4MQkCrOcGJbQguaCp5QRkxQ6T41ICy3KVJYm5ySHnGK2j86WY-fOfnTg22xW-QLqWjdgO59RQoUiVHER0NM_6JvtXFgsUJThlEjGVKBOVlSXz6DM5q6aafeV_foVALoECme9d2DWCMFZn0v2k0vW55Ktcgki-UdUVK3ufW2D-fX_0uOltAKA9V-SYyFowr4BKHKaMw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3042439
crossref_primary_10_1109_TITS_2020_3015530
crossref_primary_10_1109_TNNLS_2022_3190139
crossref_primary_10_1016_j_ijleo_2021_166726
crossref_primary_10_1016_j_optmat_2021_111292
crossref_primary_10_1016_j_asoc_2024_111791
crossref_primary_10_1109_JESTPE_2022_3184754
crossref_primary_10_1109_TIM_2021_3054673
crossref_primary_10_1080_23248378_2020_1795942
crossref_primary_10_1016_j_asoc_2022_109197
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_1109_TGRS_2019_2961681
crossref_primary_10_1109_TNNLS_2020_3029613
crossref_primary_10_1109_ACCESS_2024_3475380
crossref_primary_10_20965_jaciii_2023_p0165
crossref_primary_10_1109_JSTARS_2022_3233125
crossref_primary_10_3390_electronics10030255
crossref_primary_10_1109_TVT_2019_2937076
crossref_primary_10_20965_jaciii_2024_p0231
crossref_primary_10_1007_s11063_025_11741_1
crossref_primary_10_1016_j_engappai_2024_108935
crossref_primary_10_1109_TII_2021_3067321
crossref_primary_10_1109_TVT_2023_3244560
crossref_primary_10_1109_TCYB_2022_3206064
crossref_primary_10_1088_1742_6596_1550_3_032103
crossref_primary_10_1007_s00521_019_04330_6
crossref_primary_10_1016_j_sysarc_2022_102584
crossref_primary_10_1016_j_micpro_2021_104080
crossref_primary_10_1016_j_neucom_2024_128357
crossref_primary_10_1002_itl2_246
crossref_primary_10_1109_TCYB_2021_3060176
crossref_primary_10_1109_TNNLS_2020_2984665
crossref_primary_10_1007_s10489_022_03774_z
Cites_doi 10.1016/j.cviu.2016.10.014
10.1109/TNNLS.2014.2361052
10.1109/TNNLS.2017.2740224
10.1109/TPAMI.2008.138
10.1109/CVPR.2017.243
10.1109/TNNLS.2016.2582924
10.1109/CVPR.2016.41
10.1109/TPAMI.2009.132
10.1109/ICME.2018.8486586
10.1109/ICCV.2017.469
10.1109/CVPR.2016.227
10.1109/5.726791
10.1109/CVPR.2015.7299085
10.1109/ICCV.2017.614
10.18653/v1/D16-1044
10.1109/ICCV.2015.170
10.1007/s11263-015-0816-y
10.1109/TPAMI.2017.2666812
10.1109/TNNLS.2015.2508025
10.1109/CVPR.2009.5206537
10.1109/TNNLS.2017.2705222
10.1109/TNNLS.2017.2774288
10.1109/TSMC.2017.2680404
10.1109/TPAMI.2015.2389824
10.23919/EUSIPCO.2017.8081171
10.1109/ICCV.1999.790410
10.1016/j.patcog.2016.11.014
10.1109/ICCVW.2011.6130513
10.1109/CVPRW.2015.7301269
10.1145/1646396.1646452
10.1007/978-3-642-53842-1_8
10.1109/ICCV.2003.1238663
10.1017/CBO9780511809071
10.1007/978-3-642-15561-1_12
10.1109/CVPR.2006.68
10.1109/CVPR.2014.222
10.1109/TPAMI.2016.2572683
10.1007/978-3-540-88682-2_24
10.1109/TNNLS.2017.2740318
10.1109/CVPR.2015.7298947
10.1145/2911996.2912061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2872995
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1715
ExternalDocumentID 30369453
10_1109_TNNLS_2018_2872995
8506624
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 731667
  funderid: 10.13039/100010661
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-9d5d09f56fd58ae104f4903b1f342c2b657231f4cab7f67ca6d78dfb51beb203
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469335200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 01:05:41 EDT 2025
Sun Jun 29 13:20:31 EDT 2025
Wed Feb 19 02:33:20 EST 2025
Sat Nov 29 01:40:01 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:46:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-9d5d09f56fd58ae104f4903b1f342c2b657231f4cab7f67ca6d78dfb51beb203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1177-9139
PMID 30369453
PQID 2230718339
PQPubID 85436
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2018_2872995
pubmed_primary_30369453
ieee_primary_8506624
crossref_primary_10_1109_TNNLS_2018_2872995
proquest_miscellaneous_2126912956
proquest_journals_2230718339
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
clevert (ref49) 2015
li (ref61) 2016
ref56
ref59
ref52
ref55
ref54
ref17
ref19
ref18
mairal (ref25) 2009
arandjelovi? (ref37) 2016
howard (ref30) 2017
ref46
ref45
simonyan (ref10) 2014
ref48
ref47
ref42
ref41
ref44
ref43
wang (ref64) 2016
ref8
shi (ref4) 2018; 29
ref9
ref3
zhou (ref53) 2014
zagoruyko (ref11) 2016
ref6
ref5
chen (ref32) 2015
chen (ref1) 2018; 29
ref40
krizhevsky (ref58) 2009
ref34
ref31
wu (ref16) 2015
ref33
ref2
ref39
han (ref15) 2015
ref38
kingma (ref50) 2014
denil (ref14) 2013
haykin (ref12) 2009; 3
ref24
ref23
ref26
saxe (ref51) 2014
ref20
ref63
ref22
ref21
gong (ref29) 2014
ref28
ref27
he (ref7) 2015
ref60
malinowski (ref35) 2013
ref62
lin (ref36) 2014
References_xml – ident: ref45
  doi: 10.1016/j.cviu.2016.10.014
– year: 2017
  ident: ref30
  publication-title: Mobilenets Efficient convolutional neural networks for mobile vision applications
– ident: ref28
  doi: 10.1109/TNNLS.2014.2361052
– ident: ref27
  doi: 10.1109/TNNLS.2017.2740224
– ident: ref41
  doi: 10.1109/TPAMI.2008.138
– year: 2015
  ident: ref32
  publication-title: Convolutional neural network
– start-page: 1
  year: 2014
  ident: ref51
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural network
  publication-title: Proc Int Conf Learn Represent
– start-page: 2148
  year: 2013
  ident: ref14
  article-title: Predicting parameters in deep learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref60
  doi: 10.1109/CVPR.2017.243
– year: 2014
  ident: ref29
  publication-title: Compressing deep convolutional networks using vector quantization
– ident: ref24
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref40
  doi: 10.1109/CVPR.2016.41
– start-page: 1033
  year: 2009
  ident: ref25
  article-title: Supervised dictionary learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref48
  doi: 10.1109/TPAMI.2009.132
– start-page: 5297
  year: 2016
  ident: ref37
  article-title: NetVLAD: CNN architecture for weakly supervised place recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref23
  doi: 10.1109/ICME.2018.8486586
– ident: ref33
  doi: 10.1109/ICCV.2017.469
– ident: ref6
  doi: 10.1109/CVPR.2016.227
– ident: ref9
  doi: 10.1109/5.726791
– ident: ref34
  doi: 10.1109/CVPR.2015.7299085
– ident: ref21
  doi: 10.1109/ICCV.2017.614
– volume: 3
  year: 2009
  ident: ref12
  publication-title: Neural Networks and Learning Machines
– ident: ref39
  doi: 10.18653/v1/D16-1044
– ident: ref38
  doi: 10.1109/ICCV.2015.170
– year: 2015
  ident: ref16
  publication-title: Quantized convolutional neural networks for mobile devices
– ident: ref2
  doi: 10.1007/s11263-015-0816-y
– year: 2016
  ident: ref11
  publication-title: Wide residual networks
– ident: ref5
  doi: 10.1109/TPAMI.2017.2666812
– start-page: 487
  year: 2014
  ident: ref53
  article-title: Learning deep features for scene recognition using places database
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref26
  doi: 10.1109/TNNLS.2015.2508025
– start-page: 1
  year: 2013
  ident: ref35
  article-title: Learnable pooling regions for image classification
  publication-title: Proc Int Conf Learn Represent
– ident: ref54
  doi: 10.1109/CVPR.2009.5206537
– ident: ref3
  doi: 10.1109/TNNLS.2017.2705222
– year: 2016
  ident: ref64
  publication-title: A Survey on Learning to Hash
– ident: ref31
  doi: 10.1109/TNNLS.2017.2774288
– ident: ref46
  doi: 10.1109/TSMC.2017.2680404
– year: 2014
  ident: ref50
  publication-title: Adam A method for stochastic optimization
– ident: ref52
  doi: 10.1109/5.726791
– ident: ref8
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref22
  doi: 10.23919/EUSIPCO.2017.8081171
– year: 2014
  ident: ref10
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– ident: ref19
  doi: 10.1109/ICCV.1999.790410
– volume: 29
  start-page: 2872
  year: 2018
  ident: ref4
  article-title: Improving CNN performance accuracies with min-max objective
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref44
  doi: 10.1016/j.patcog.2016.11.014
– year: 2015
  ident: ref7
  publication-title: Deep residual learning for image recognition
– ident: ref55
  doi: 10.1109/ICCVW.2011.6130513
– ident: ref62
  doi: 10.1109/CVPRW.2015.7301269
– ident: ref59
  doi: 10.1145/1646396.1646452
– year: 2009
  ident: ref58
  article-title: Learning multiple layers of features from tiny images
– year: 2015
  ident: ref49
  publication-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– ident: ref43
  doi: 10.1007/978-3-642-53842-1_8
– ident: ref18
  doi: 10.1109/ICCV.2003.1238663
– ident: ref57
  doi: 10.1017/CBO9780511809071
– ident: ref42
  doi: 10.1007/978-3-642-15561-1_12
– year: 2015
  ident: ref15
  publication-title: Deep compression Compressing deep neural networks with pruning trained quantization and huffman coding
– ident: ref17
  doi: 10.1109/CVPR.2006.68
– start-page: 1
  year: 2014
  ident: ref36
  article-title: Network in network
  publication-title: Proc Int Conf Learn Represent
– ident: ref13
  doi: 10.1109/CVPR.2014.222
– start-page: 1711
  year: 2016
  ident: ref61
  article-title: Feature learning based deep supervised hashing with pairwise labels
  publication-title: Proc 25th Int Conf Artif Intell
– ident: ref20
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref56
  doi: 10.1007/978-3-540-88682-2_24
– volume: 29
  start-page: 3938
  year: 2018
  ident: ref1
  article-title: Deep manifold learning combined with convolutional neural networks for action recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2740318
– ident: ref63
  doi: 10.1109/CVPR.2015.7298947
– ident: ref47
  doi: 10.1145/2911996.2912061
SSID ssj0000605649
Score 2.4788704
Snippet Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1705
SubjectTerms Artificial neural networks
Backpropagation algorithms
Bag-of-features (BoF)
Basis functions
Computational modeling
Computer architecture
Computer vision
convolutional neural networks (CNNs)
Feature extraction
Image classification
Learning
Lightweight
lightweight neural networks
Measurement
Neural networks
pooling operators
Quantization (signal)
Radial basis function
Task analysis
Task complexity
Training
Title Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling
URI https://ieeexplore.ieee.org/document/8506624
https://www.ncbi.nlm.nih.gov/pubmed/30369453
https://www.proquest.com/docview/2230718339
https://www.proquest.com/docview/2126912956
Volume 30
WOSCitedRecordID wos000469335200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EMvTZP04TQJKvTWKrFlPY9t2pDDsgS6hb0ZW49QCHbI7qZ_PyNZayi0hZ5s8EgWmpHmG2keAB80au0uOEdV7RTlmjPaORtrvWjvOi2NDylQeKbmc71cmpsd-DTFwnjvk_OZP4-v6S7fDXYTj8ouYnY1yfgu7Colx1it6TylRFwuE9pllWSU1Wq5jZEpzcViPp99j45c-hxNBNyCxW96KBVW-TvGTLrmav__RvkSXmRMST6PQnAAO74_hP1tvQaSl-8R_FjkehBkFk3yX-lUlHz1_p5cDv1jFkLsKWbsSI_kIr4iya-AfGlv6RBoBI0bNNLJzRAL_ty-gsXVt8XlNc1lFajllVpT44QrTRAyOKFbj_ZY4KasuyrUnFnWSaEQ9AVu204FqWwrndIudMhUNMPL-jXs9UPv3wJxthOaeYsY0HOjXOuMbINgjikk57aAajvHjc0px2Pli7smmR6laRJfmsiXJvOlgI9Tm_sx4cY_qY8iAybKPPcFnGxZ2eQ1uWpY9HnHHaw2BbyfPuNqilckbe-HDdJUTBqEQEIW8GYUganvqOwNF_Xxn__5Dp7jyMzoRnYCe-uHjT-FZ_Zx_XP1cIYiu9RnSWSfAKz66Es
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_MKbgXp0636tQIvmm2Ns3no5uOibUMrHDfSpuPIYx27N47_32TNLcg6MCnFnqShpyTnN9JzgfAO-m1du-MwaI0AlNJCe6NDrVepDW95Mq6GChcibqWi4W62IIPcyyMtTY6n9mj8Brv8s2o1-Go7DhkV-OE3oP7jFKST9Fa84lK7pE5j3iXFJxgUorFJkomV8dNXVffgyuXPPJGgt-E2R-aKJZW-TfKjNrmbPf_xvkYHiVUiT5OYvAEtuzwFHY3FRtQWsB78KNJFSFQFYzyX_FcFH2y9hqdjsNtEkPfU8jZER_RSXyJomcBOuku8ehwgI1rb6ajizGU_Ll8Bs3Z5-b0HKfCCljTQqywMszkyjHuDJOd9RaZoyov-8KVlGjScyY87HNUd71wXOiOGyGN6z1bvSGel89hexgHewDI6J5JYrVHgZYqYTqjeOcYMUR4cqozKDZz3OqUdDzUvrhqo_GRqzbypQ18aRNfMng_t7meUm7cSb0XGDBTprnP4HDDyjatymVLgte738NKlcHb-bNfT-GSpBvsuPY0BeHKgyDGM9ifRGDuO6h7RVn54u__fAMPz5tvVVt9qb--hB0_SjU5lR3C9upmbV_BA327-rm8eR0F9zdsFeqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Lightweight+Deep+Convolutional+Neural+Networks+Using+Bag-of-Features+Pooling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Passalis%2C+Nikolaos&rft.au=Tefas%2C+Anastasios&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=30&rft.issue=6&rft.spage=1705&rft_id=info:doi/10.1109%2FTNNLS.2018.2872995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon