An efficient optimization algorithm for quadratic programming problem and its applications to mobile robot path planning

The quadratic programming problem has broad applications in mobile robot path planning. This article presents an efficient optimization algorithm for globally solving the quadratic programming problem. By utilizing the convexity of univariate quadratic functions, we construct the linear relaxation p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced robotic systems Ročník 15; číslo 1
Hlavní autoři: Cai, Lei, Yang, Juanjuan, Zhao, Li, Wu, Lan
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England SAGE Publications 01.01.2018
Sage Publications Ltd
SAGE Publishing
Témata:
ISSN:1729-8806, 1729-8814
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The quadratic programming problem has broad applications in mobile robot path planning. This article presents an efficient optimization algorithm for globally solving the quadratic programming problem. By utilizing the convexity of univariate quadratic functions, we construct the linear relaxation programming problem of the quadratic programming problem, which can be embedded within a branch-and-bound structure without introducing new variables and constraints. In addition, a new pruning technique is inserted into the branch-and-bound framework for improving the speed of the algorithm. The global convergence of the proposed algorithm is proved. Compared with some known algorithms, numerical experiment not only demonstrates the higher computational efficiency of the proposed algorithm but also proves that the proposed algorithm is an efficient approach to solve the problems of path planning for the mobile robot.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1729-8806
1729-8814
DOI:10.1177/1729881417748445