Multiobjective Optimization of Multi-Carrier Energy System Using a Combination of ANFIS and Genetic Algorithms

This paper presents a novel method for the energy optimization of multi-carrier energy systems. The presented method combines an adaptive neuro-fuzzy inference system, to model and forecast the power demand of a plant, and a genetic algorithm to optimize its energy flow taking into account the dynam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 9; číslo 3; s. 2276 - 2283
Hlavní autoři: Kampouropoulos, Konstantinos, Andrade, Fabio, Sala, Enric, Espinosa, Antonio Garcia, Romeral, Luis
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: IEEE 01.05.2018
Institute of Electrical and Electronics Engineers (IEEE)
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a novel method for the energy optimization of multi-carrier energy systems. The presented method combines an adaptive neuro-fuzzy inference system, to model and forecast the power demand of a plant, and a genetic algorithm to optimize its energy flow taking into account the dynamics of the system and the equipment's thermal inertias. The objective of the optimization algorithm is to satisfy the total power demand of the plant and to minimize a set of optimization criteria, formulated as energy usage, monetary cost, and environmental cost. The presented method has been validated under real conditions in the car manufacturing plant of SEAT in Spain in the framework of an FP7 European research project.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2016.2609740