Beyond large complex structure: quantized periods and boundary data for one-modulus singularities

A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau mani...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2024; číslo 7; s. 151 - 109
Hlavní autori: Bastian, Brice, van de Heisteeg, Damian, Schlechter, Lorenz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 17.07.2024
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples.
AbstractList Abstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples.
A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples.
We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples.
ArticleNumber 151
Author Bastian, Brice
van de Heisteeg, Damian
Schlechter, Lorenz
Author_xml – sequence: 1
  givenname: Brice
  orcidid: 0000-0001-6412-8108
  surname: Bastian
  fullname: Bastian, Brice
– sequence: 2
  givenname: Damian
  orcidid: 0000-0001-7572-0473
  surname: van de Heisteeg
  fullname: van de Heisteeg, Damian
  email: dvandeheisteeg@fas.harvard.edu
  organization: Center of Mathematical Sciences and Applications, Harvard University
– sequence: 3
  givenname: Lorenz
  orcidid: 0000-0001-8299-3015
  surname: Schlechter
  fullname: Schlechter, Lorenz
  organization: Institute for Theoretical Physics, Utrecht University
BookMark eNp1kUFv1DAQhS1UJNrCmaslLnAIHSdOYnODqtCiSnCAszWxZ1deZe2t7Ugtvx4vAYGQehpr9L03T35n7CTEQIy9FPBWAIwXn6-vvsL4uoVWvhG9eMJOBbS6UXLUJ_-8n7GznHcAFdFwyvADPcTg-IxpS9zG_WGme55LWmxZEr3jdwuG4n-Q4wdKPrrMseJTXILD9MAdFuSbmHgN0-yjW-Yl8-zDdqmOvnjKz9nTDc6ZXvye5-z7x6tvl9fN7ZdPN5fvbxsrxVgaNdAGXI-TnWAaWgdaWwUW3HGSAysQtdJOgBt714-OhhEm2aKQAKSwO2c3q6-LuDOH5Pc1n4noza9FTFuDqXg7kxkmEmK0XTs5JZGksjBYIJh0PS3brnq9Wr0OKd4tlIvZxSWFGt90oFrZCSV1pfqVsinmnGhjrC9YfAwloZ-NAHNsxqzNmGMzpn571V38p_uT9nEFrIpcybCl9DfPY5KfpMGiag
CitedBy_id crossref_primary_10_1007_JHEP09_2024_178
crossref_primary_10_21468_SciPostPhys_18_6_181
crossref_primary_10_1007_JHEP08_2024_039
crossref_primary_10_1007_JHEP05_2025_150
crossref_primary_10_1007_JHEP01_2025_005
Cites_doi 10.1016/0550-3213(93)90033-L
10.1007/JHEP11(2021)032
10.4310/ATMP.1998.v2.n2.a7
10.1016/0550-3213(95)00287-3
10.1007/s00220-024-05006-6
10.1007/JHEP08(2018)143
10.1007/JHEP06(2018)052
10.1090/S0002-9947-1973-0344248-1
10.1007/JHEP02(2022)190
10.1007/s10711-008-9330-5
10.1007/JHEP10(2020)202
10.1142/S0129167X07004126
10.1215/S0012-7094-85-05219-6
10.1007/JHEP06(2019)129
10.1007/JHEP05(2023)071
10.1007/JHEP09(2016)062
10.1007/JHEP10(2023)154
10.1088/1126-6708/2008/06/084
10.1007/JHEP08(2019)044
10.1007/JHEP09(2020)061
10.1016/j.aim.2013.03.008
10.1016/j.nuclphysb.2006.10.033
10.1016/0550-3213(90)90577-Z
10.1007/BF02100589
10.1007/JHEP03(2019)016
10.1007/BF02105861
10.1007/JHEP08(2019)075
10.2307/1971333
10.1007/JHEP08(2021)077
10.4310/CNTP.2014.v8.n1.a1
10.1007/JHEP08(2022)237
10.1007/JHEP08(2021)091
10.1007/JHEP06(2021)162
10.1007/JHEP08(2016)110
10.1007/BF01389674
10.2140/pjm.1983.105.285
10.21468/SciPostPhys.15.4.146
10.1007/JHEP03(2020)020
10.1090/conm/465/09101
10.1007/JHEP08(2019)086
10.1007/JHEP06(2021)067
10.1007/JHEP09(2018)018
10.1007/BF01393374
10.4310/CNTP.2014.v8.n4.a4
10.1007/JHEP10(2016)082
10.1016/0550-3213(94)00440-P
10.1134/S0081543809010118
10.1007/JHEP05(2022)010
10.1090/pspum/033.2/546622
10.1007/BF02762074
10.4310/ATMP.2000.v4.n6.a2
10.2307/2373545
10.1007/JHEP12(2015)119
10.25358/openscience-3802
10.1007/JHEP06(2020)009
10.1515/9781400881659-007
10.1090/fic/038
10.1016/0550-3213(90)90302-T
10.1515/crll.1986.364.85
10.1016/0550-3213(91)90292-6
10.1007/BF01078777
10.33540/1380
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP07(2024)151
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 109
ExternalDocumentID oai_doaj_org_article_6be117c32bd84ae48c06c0e0b90b6423
10_1007_JHEP07_2024_151
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-86ef0d5abcb0b62d099c80c0d99c8ed0c1aa989d10d75d57de670b42a1400e8a3
IEDL.DBID C24
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:53:30 EDT 2025
Sat Oct 18 22:45:07 EDT 2025
Sat Nov 29 08:08:59 EST 2025
Tue Nov 18 20:59:13 EST 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Effective Field Theories
Superstring Vacua
Differential and Algebraic Geometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-86ef0d5abcb0b62d099c80c0d99c8ed0c1aa989d10d75d57de670b42a1400e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7572-0473
0000-0001-6412-8108
0000-0001-8299-3015
OpenAccessLink https://link.springer.com/10.1007/JHEP07(2024)151
PQID 3082431849
PQPubID 2034718
PageCount 109
ParticipantIDs doaj_primary_oai_doaj_org_article_6be117c32bd84ae48c06c0e0b90b6423
proquest_journals_3082431849
crossref_citationtrail_10_1007_JHEP07_2024_151
crossref_primary_10_1007_JHEP07_2024_151
springer_journals_10_1007_JHEP07_2024_151
PublicationCentury 2000
PublicationDate 2024-07-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-17
  day: 17
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Cattani, Kaplan (CR8) 1982; 67
Jefferson, Walcher (CR89) 2014; 08
Grimm, Palti, Valenzuela (CR39) 2018; 08
Candelas, de la Ossa, Elmi, Van Straten (CR21) 2020; 10
Graña (CR47) 2022; 08
Schimmrigk (CR24) 2020; 09
CR78
CR77
Strominger (CR52) 1995; 451
CR76
CR75
CR74
CR73
CR72
CR71
CR70
Candelas, Kuusela, McGovern (CR22) 2021; 11
Kreuzer, Skarke (CR5) 2000; 4
CR2
Alim, Scheidegger (CR33) 2014; 08
CR4
CR3
Landman (CR32) 1973; 181
CR6
Marchesano, Prieto, Wiesner (CR55) 2021; 08
Escobar, Marchesano, Staessens (CR54) 2019; 06
Cattani, Kaplan, Schmid (CR9) 1986; 123
Witten (CR1) 1993; 403
CR49
CR48
Lee, Lerche, Weigand (CR65) 2022; 02
Ooguri, Vafa (CR66) 2007; 766
CR88
Grimm, Li, Palti (CR38) 2019; 03
CR43
Bloch (CR87) 1985; 52
CR85
Schmid (CR7) 1973; 22
CR84
CR82
Bönisch, Klemm, Scheidegger, Zagier (CR27) 2024; 405
Doran, Harder, Thompson (CR69) 2017; 96
Beilinson (CR80) 1985; 30
Cynk, Meyer (CR83) 2005; 18
Grimm, Monnee, van de Heisteeg (CR51) 2022; 05
Katzarkov, Przyjalkowski (CR90) 2009; 264
Blumenhagen, Kläwer, Schlechter, Wolf (CR36) 2018; 06
Gopakumar, Vafa (CR62) 1998; 2
Cabo Bizet, Loaiza-Brito, Zavala (CR34) 2016; 10
CR19
CR18
Candelas, de la Ossa (CR60) 1990; 342
CR17
CR16
CR15
CR59
CR14
CR12
CR56
CR11
Corvilain, Grimm, Valenzuela (CR40) 2019; 08
Joshi, Klemm (CR37) 2019; 08
Hosono, Klemm, Theisen, Yau (CR31) 1995; 433
Grimm, Lanza, van Vuren (CR67) 2023; 10
Herráez, Ibáñez, Marchesano, Zoccarato (CR58) 2018; 09
CR91
Bastian, Grimm, van de Heisteeg (CR44) 2021; 06
Font, Herráez, Ibáñez (CR41) 2019; 08
Hosono, Klemm, Theisen, Yau (CR30) 1995; 167
Deligne (CR79) 1979; 33
Li, Long, Tu (CR81) 2018; 14
Blumenhagen, Herschmann, Wolf (CR35) 2016; 08
Grimm, Li (CR45) 2021; 06
Grimm, Van De Heisteeg (CR42) 2020; 03
CR29
CR28
Livné (CR92) 1995; 92
Fernandez, Cattani (CR13) 2008; 139
CR25
CR68
CR23
Ceresa, Collino (CR86) 1983; 105
Elkies, Schütt (CR93) 2013; 240
CR20
CR64
Palti (CR46) 2021; 08
CR63
Green, Griffiths, Kerr (CR10) 2007; 465
Candelas, de la Ossa, Kuusela, McGovern (CR26) 2023; 15
Huang, Klemm, Quackenbush (CR61) 2009; 757
Carta, Marchesano, Staessens, Zoccarato (CR57) 2016; 09
Erkinger, Knapp (CR50) 2023; 05
Palti, Tasinato, Ward (CR53) 2008; 06
S Bloch (23988_CR87) 1985; 52
W Schmid (23988_CR7) 1973; 22
G Ceresa (23988_CR86) 1983; 105
R Blumenhagen (23988_CR36) 2018; 06
D Erkinger (23988_CR50) 2023; 05
E Palti (23988_CR53) 2008; 06
23988_CR85
23988_CR84
23988_CR82
23988_CR88
23988_CR43
23988_CR49
23988_CR48
R Schimmrigk (23988_CR24) 2020; 09
E Palti (23988_CR46) 2021; 08
TW Grimm (23988_CR39) 2018; 08
M Graña (23988_CR47) 2022; 08
P Corvilain (23988_CR40) 2019; 08
23988_CR70
D Escobar (23988_CR54) 2019; 06
R Livné (23988_CR92) 1995; 92
23988_CR3
23988_CR74
W-CW Li (23988_CR81) 2018; 14
23988_CR2
23988_CR73
S Hosono (23988_CR31) 1995; 433
23988_CR72
23988_CR4
23988_CR71
23988_CR78
ND Elkies (23988_CR93) 2013; 240
23988_CR77
M-X Huang (23988_CR61) 2009; 757
23988_CR76
23988_CR75
P Candelas (23988_CR26) 2023; 15
TW Grimm (23988_CR67) 2023; 10
P Candelas (23988_CR60) 1990; 342
A Joshi (23988_CR37) 2019; 08
A Font (23988_CR41) 2019; 08
E Cattani (23988_CR8) 1982; 67
S Cynk (23988_CR83) 2005; 18
S Hosono (23988_CR30) 1995; 167
M Green (23988_CR10) 2007; 465
K Bönisch (23988_CR27) 2024; 405
TW Grimm (23988_CR38) 2019; 03
R Blumenhagen (23988_CR35) 2016; 08
A Herráez (23988_CR58) 2018; 09
23988_CR6
F Marchesano (23988_CR55) 2021; 08
H Ooguri (23988_CR66) 2007; 766
23988_CR63
P Candelas (23988_CR21) 2020; 10
23988_CR23
S-J Lee (23988_CR65) 2022; 02
23988_CR20
23988_CR64
R Jefferson (23988_CR89) 2014; 08
A Strominger (23988_CR52) 1995; 451
23988_CR25
23988_CR68
B Bastian (23988_CR44) 2021; 06
P Deligne (23988_CR79) 1979; 33
23988_CR29
TW Grimm (23988_CR51) 2022; 05
E Cattani (23988_CR9) 1986; 123
23988_CR28
R Gopakumar (23988_CR62) 1998; 2
TW Grimm (23988_CR42) 2020; 03
TW Grimm (23988_CR45) 2021; 06
F Carta (23988_CR57) 2016; 09
AA Beilinson (23988_CR80) 1985; 30
P Candelas (23988_CR22) 2021; 11
J Fernandez (23988_CR13) 2008; 139
23988_CR91
M Kreuzer (23988_CR5) 2000; 4
A Landman (23988_CR32) 1973; 181
CF Doran (23988_CR69) 2017; 96
L Katzarkov (23988_CR90) 2009; 264
23988_CR12
23988_CR56
23988_CR11
23988_CR16
23988_CR15
23988_CR59
E Witten (23988_CR1) 1993; 403
23988_CR14
N Cabo Bizet (23988_CR34) 2016; 10
M Alim (23988_CR33) 2014; 08
23988_CR19
23988_CR18
23988_CR17
References_xml – ident: CR70
– volume: 403
  start-page: 159
  year: 1993
  ident: CR1
  article-title: = 2
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90033-L
– volume: 11
  start-page: 032
  year: 2021
  ident: CR22
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)032
– ident: CR49
– ident: CR68
– ident: CR74
– volume: 2
  start-page: 399
  year: 1998
  ident: CR62
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a7
– ident: CR4
– volume: 451
  start-page: 96
  year: 1995
  ident: CR52
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00287-3
– ident: CR16
– volume: 405
  start-page: 134
  year: 2024
  ident: CR27
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-024-05006-6
– ident: CR12
– volume: 08
  start-page: 143
  year: 2018
  ident: CR39
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)143
– volume: 06
  start-page: 052
  year: 2018
  ident: CR36
  publication-title: JHEP
  doi: 10.1007/JHEP06(2018)052
– ident: CR29
– volume: 181
  start-page: 89
  year: 1973
  ident: CR32
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1973-0344248-1
– volume: 02
  start-page: 190
  year: 2022
  ident: CR65
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)190
– volume: 139
  start-page: 299
  year: 2008
  ident: CR13
  publication-title: Geom. Dedicata
  doi: 10.1007/s10711-008-9330-5
– volume: 10
  start-page: 202
  year: 2020
  ident: CR21
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)202
– ident: CR77
– ident: CR84
– ident: CR25
– volume: 18
  start-page: 331
  year: 2005
  ident: CR83
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X07004126
– volume: 52
  start-page: 379
  year: 1985
  ident: CR87
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-85-05219-6
– volume: 06
  start-page: 129
  year: 2019
  ident: CR54
  article-title:
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)129
– volume: 05
  start-page: 071
  year: 2023
  ident: CR50
  publication-title: JHEP
  doi: 10.1007/JHEP05(2023)071
– volume: 09
  start-page: 062
  year: 2016
  ident: CR57
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)062
– volume: 10
  start-page: 154
  year: 2023
  ident: CR67
  publication-title: JHEP
  doi: 10.1007/JHEP10(2023)154
– volume: 06
  start-page: 084
  year: 2008
  ident: CR53
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/06/084
– ident: CR71
– ident: CR19
– volume: 08
  start-page: 044
  year: 2019
  ident: CR41
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)044
– volume: 09
  start-page: 061
  year: 2020
  ident: CR24
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)061
– ident: CR75
– ident: CR15
– ident: CR88
– volume: 240
  start-page: 106
  year: 2013
  ident: CR93
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2013.03.008
– ident: CR11
– volume: 766
  start-page: 21
  year: 2007
  ident: CR66
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.033
– volume: 342
  start-page: 246
  year: 1990
  ident: CR60
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(90)90577-Z
– volume: 167
  start-page: 301
  year: 1995
  ident: CR30
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02100589
– ident: CR78
– ident: CR85
– volume: 03
  start-page: 016
  year: 2019
  ident: CR38
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)016
– volume: 30
  start-page: 2036
  year: 1985
  ident: CR80
  publication-title: J. Sov. Math.
  doi: 10.1007/BF02105861
– volume: 08
  start-page: 075
  year: 2019
  ident: CR40
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)075
– ident: CR64
– ident: CR18
– ident: CR43
– ident: CR91
– ident: CR72
– volume: 123
  start-page: 457
  year: 1986
  ident: CR9
  publication-title: Annals Math.
  doi: 10.2307/1971333
– volume: 08
  start-page: 077
  year: 2021
  ident: CR55
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)077
– volume: 08
  start-page: 1
  year: 2014
  ident: CR89
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2014.v8.n1.a1
– ident: CR14
– ident: CR2
– ident: CR82
– volume: 08
  start-page: 237
  year: 2022
  ident: CR47
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)237
– volume: 08
  start-page: 091
  year: 2021
  ident: CR46
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)091
– ident: CR6
– volume: 06
  start-page: 162
  year: 2021
  ident: CR44
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)162
– volume: 08
  start-page: 110
  year: 2016
  ident: CR35
  publication-title: JHEP
  doi: 10.1007/JHEP08(2016)110
– ident: CR56
– volume: 22
  start-page: 211
  year: 1973
  ident: CR7
  publication-title: Invent. Math.
  doi: 10.1007/BF01389674
– volume: 105
  start-page: 285
  year: 1983
  ident: CR86
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1983.105.285
– ident: CR63
– volume: 15
  start-page: 146
  year: 2023
  ident: CR26
  article-title:
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.15.4.146
– volume: 03
  start-page: 020
  year: 2020
  ident: CR42
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)020
– ident: CR23
– volume: 465
  start-page: 71
  year: 2007
  ident: CR10
  publication-title: Contemp. Math
  doi: 10.1090/conm/465/09101
– volume: 757
  start-page: 45
  year: 2009
  ident: CR61
  publication-title: Lect. Notes Phys.
– volume: 96
  start-page: 93
  year: 2017
  ident: CR69
  publication-title: Proc. Symp. Pure Math.
– volume: 08
  start-page: 086
  year: 2019
  ident: CR37
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)086
– ident: CR48
– ident: CR73
– volume: 06
  start-page: 067
  year: 2021
  ident: CR45
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)067
– volume: 09
  start-page: 018
  year: 2018
  ident: CR58
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)018
– ident: CR3
– volume: 67
  start-page: 101
  year: 1982
  ident: CR8
  publication-title: Invent. Math.
  doi: 10.1007/BF01393374
– volume: 08
  start-page: 729
  year: 2014
  ident: CR33
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2014.v8.n4.a4
– ident: CR17
– volume: 10
  start-page: 082
  year: 2016
  ident: CR34
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)082
– volume: 433
  start-page: 501
  year: 1995
  ident: CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00440-P
– volume: 264
  start-page: 87
  year: 2009
  ident: CR90
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543809010118
– volume: 05
  start-page: 010
  year: 2022
  ident: CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2022)010
– volume: 14
  start-page: 090
  year: 2018
  ident: CR81
  publication-title: SIGMA
– ident: CR59
– ident: CR76
– volume: 33
  start-page: 313
  year: 1979
  ident: CR79
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/033.2/546622
– volume: 92
  start-page: 149
  year: 1995
  ident: CR92
  article-title: (ℚ ℚ)
  publication-title: Israel J. Math.
  doi: 10.1007/BF02762074
– ident: CR28
– volume: 4
  start-page: 1209
  year: 2000
  ident: CR5
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2000.v4.n6.a2
– ident: CR20
– volume: 09
  start-page: 061
  year: 2020
  ident: 23988_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)061
– ident: 23988_CR85
  doi: 10.2307/2373545
– volume: 08
  start-page: 044
  year: 2019
  ident: 23988_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)044
– ident: 23988_CR84
– volume: 10
  start-page: 202
  year: 2020
  ident: 23988_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)202
– volume: 08
  start-page: 110
  year: 2016
  ident: 23988_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP08(2016)110
– volume: 02
  start-page: 190
  year: 2022
  ident: 23988_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)190
– volume: 06
  start-page: 052
  year: 2018
  ident: 23988_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP06(2018)052
– ident: 23988_CR17
– volume: 30
  start-page: 2036
  year: 1985
  ident: 23988_CR80
  publication-title: J. Sov. Math.
  doi: 10.1007/BF02105861
– ident: 23988_CR4
– ident: 23988_CR88
– volume: 405
  start-page: 134
  year: 2024
  ident: 23988_CR27
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-024-05006-6
– ident: 23988_CR49
– ident: 23988_CR74
– ident: 23988_CR56
  doi: 10.1007/JHEP12(2015)119
– ident: 23988_CR70
– ident: 23988_CR78
– volume: 15
  start-page: 146
  year: 2023
  ident: 23988_CR26
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.15.4.146
– ident: 23988_CR71
  doi: 10.25358/openscience-3802
– volume: 92
  start-page: 149
  year: 1995
  ident: 23988_CR92
  publication-title: Israel J. Math.
  doi: 10.1007/BF02762074
– volume: 08
  start-page: 143
  year: 2018
  ident: 23988_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)143
– volume: 139
  start-page: 299
  year: 2008
  ident: 23988_CR13
  publication-title: Geom. Dedicata
  doi: 10.1007/s10711-008-9330-5
– ident: 23988_CR12
– volume: 08
  start-page: 237
  year: 2022
  ident: 23988_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)237
– ident: 23988_CR64
– ident: 23988_CR16
– volume: 52
  start-page: 379
  year: 1985
  ident: 23988_CR87
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-85-05219-6
– ident: 23988_CR68
– volume: 167
  start-page: 301
  year: 1995
  ident: 23988_CR30
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02100589
– volume: 451
  start-page: 96
  year: 1995
  ident: 23988_CR52
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00287-3
– ident: 23988_CR23
– ident: 23988_CR75
– volume: 2
  start-page: 399
  year: 1998
  ident: 23988_CR62
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a7
– volume: 342
  start-page: 246
  year: 1990
  ident: 23988_CR60
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(90)90577-Z
– ident: 23988_CR43
  doi: 10.1007/JHEP06(2020)009
– ident: 23988_CR91
  doi: 10.1515/9781400881659-007
– volume: 10
  start-page: 154
  year: 2023
  ident: 23988_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP10(2023)154
– volume: 03
  start-page: 016
  year: 2019
  ident: 23988_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)016
– ident: 23988_CR11
– ident: 23988_CR2
– volume: 433
  start-page: 501
  year: 1995
  ident: 23988_CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00440-P
– ident: 23988_CR15
– ident: 23988_CR63
– ident: 23988_CR6
– volume: 08
  start-page: 1
  year: 2014
  ident: 23988_CR89
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2014.v8.n1.a1
– volume: 09
  start-page: 062
  year: 2016
  ident: 23988_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)062
– volume: 96
  start-page: 93
  year: 2017
  ident: 23988_CR69
  publication-title: Proc. Symp. Pure Math.
– volume: 03
  start-page: 020
  year: 2020
  ident: 23988_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)020
– ident: 23988_CR76
– volume: 14
  start-page: 090
  year: 2018
  ident: 23988_CR81
  publication-title: SIGMA
– ident: 23988_CR19
– ident: 23988_CR72
– volume: 240
  start-page: 106
  year: 2013
  ident: 23988_CR93
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2013.03.008
– volume: 67
  start-page: 101
  year: 1982
  ident: 23988_CR8
  publication-title: Invent. Math.
  doi: 10.1007/BF01393374
– ident: 23988_CR28
– volume: 181
  start-page: 89
  year: 1973
  ident: 23988_CR32
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1973-0344248-1
– volume: 08
  start-page: 075
  year: 2019
  ident: 23988_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)075
– ident: 23988_CR82
  doi: 10.1090/fic/038
– volume: 10
  start-page: 082
  year: 2016
  ident: 23988_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)082
– ident: 23988_CR59
  doi: 10.1016/0550-3213(90)90302-T
– ident: 23988_CR20
– volume: 08
  start-page: 729
  year: 2014
  ident: 23988_CR33
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2014.v8.n4.a4
– volume: 06
  start-page: 067
  year: 2021
  ident: 23988_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)067
– volume: 33
  start-page: 313
  year: 1979
  ident: 23988_CR79
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/033.2/546622
– volume: 11
  start-page: 032
  year: 2021
  ident: 23988_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)032
– ident: 23988_CR77
  doi: 10.1515/crll.1986.364.85
– volume: 4
  start-page: 1209
  year: 2000
  ident: 23988_CR5
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2000.v4.n6.a2
– volume: 105
  start-page: 285
  year: 1983
  ident: 23988_CR86
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1983.105.285
– volume: 264
  start-page: 87
  year: 2009
  ident: 23988_CR90
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543809010118
– volume: 123
  start-page: 457
  year: 1986
  ident: 23988_CR9
  publication-title: Annals Math.
  doi: 10.2307/1971333
– ident: 23988_CR14
– volume: 08
  start-page: 091
  year: 2021
  ident: 23988_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)091
– ident: 23988_CR3
  doi: 10.1016/0550-3213(91)90292-6
– ident: 23988_CR18
– volume: 06
  start-page: 162
  year: 2021
  ident: 23988_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)162
– volume: 757
  start-page: 45
  year: 2009
  ident: 23988_CR61
  publication-title: Lect. Notes Phys.
– volume: 06
  start-page: 084
  year: 2008
  ident: 23988_CR53
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/06/084
– volume: 08
  start-page: 077
  year: 2021
  ident: 23988_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)077
– ident: 23988_CR73
– ident: 23988_CR25
– volume: 08
  start-page: 086
  year: 2019
  ident: 23988_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)086
– volume: 09
  start-page: 018
  year: 2018
  ident: 23988_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)018
– volume: 18
  start-page: 331
  year: 2005
  ident: 23988_CR83
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X07004126
– volume: 403
  start-page: 159
  year: 1993
  ident: 23988_CR1
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90033-L
– volume: 22
  start-page: 211
  year: 1973
  ident: 23988_CR7
  publication-title: Invent. Math.
  doi: 10.1007/BF01389674
– volume: 465
  start-page: 71
  year: 2007
  ident: 23988_CR10
  publication-title: Contemp. Math
  doi: 10.1090/conm/465/09101
– volume: 766
  start-page: 21
  year: 2007
  ident: 23988_CR66
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.033
– ident: 23988_CR29
  doi: 10.1007/BF01078777
– ident: 23988_CR48
  doi: 10.33540/1380
– volume: 06
  start-page: 129
  year: 2019
  ident: 23988_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)129
– volume: 05
  start-page: 010
  year: 2022
  ident: 23988_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2022)010
– volume: 05
  start-page: 071
  year: 2023
  ident: 23988_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP05(2023)071
SSID ssj0015190
Score 2.4858143
Snippet A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds....
We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large...
Abstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Classical and Quantum Gravitation
Couplings
Differential and Algebraic Geometry
Effective Field Theories
Elementary Particles
Geometry
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Singularity (mathematics)
String Theory
Supergravity
Superstring Vacua
Topology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDAUv4k-cv8jBgzvUJW3apN5UNsTD2EFht5BfhcHcdHWi_vW-pK06Qbx4KrRpG15eyfclr5-H0GnBhTbOM_ZVmkTMUBdpDVEriGWYjVWi4qwIxSb4YCBGo3z4rdSXzwmr8MCV4bqZdpRyk8TaCqYcE4Zkhjiic6JBOwfOJ6ieJpiq9w9Al5AG5EN49_amNyT8DAJ91qEpXZqDAqp_SV_-2BINM01_E23UEhFfVl3bQituuo3WQqqmKXeQqn46wROfw41DSrh7xRUHdjF3F_hpAdYavzuLPcV4ZkusoLkO9ZPmb9jnhGKQqng2ddHDzC4mixL7FQOfkBr4qrvovt-7u76J6kIJkWGUP0cicwWxqdJGg1FiC6rPCGKI9UdniaFK5SK3lFie2pRbl3GiWawguiJOqGQPtabw0n2EWQIBpU6VpQlnqdWiEInihBqSx0WaFW103phOmpoi7otZTGTDP65sLb2tJdi6jc4-b3isABq_N73yY_HZzJOvwwnwB1n7g_zLH9roqBlJWX-OpfRMHlBKguVt1GlG9-vyL_05-I_-HKJ1_7wosDiPUAu8wR2jVfPyPC7nJ8FrPwBpI-_t
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvBELBfnAoT2E2okTO1wQRVtVHFYrBFJvkV9BlZZNu-lWhV_PjONsVaRy4RQpmSSOP9sz45l8A_CuVdq6QBz7piwy6UTIrEWvFY1l1MamMHnVxmITaj7XJyf1Im249SmtclwT40LtO0d75AdEq4LKTsv649l5RlWjKLqaSmjchR1iKpMT2DmczRdft3EEtE_4SOjD1cGX49mCqz10-OW-KMUNXRQp-2_YmX-FRqPGOXr0v219DA-Trck-DYPjCdwJq6dwP-Z8uv4ZmOHvFbakZHAWc8vDFRsIZTfr8IGdb7DbT38Hz4gOufM9MyhuYyGm9S9GyaUMbV7WrUL2s_Ob5aZntPVAma2RqPU5fD-afft8nKWKC5mTQl1kugot96WxznJb5R7NR6e5456OwXMnjKl17QX3qvSl8qFS3MrcoJvGgzbFC5is8KUvgckCPVNbGi8KJUtvdasLo7hwvM7bsmqn8H7s-8YlOnKqirFsRiLlAayGwGoQrCnsbW84G5g4bhc9JDC3YkShHU906x9NmpFNZYMQyhW59VqaILXjleOB2xo_HY3MKeyO4DZpXvfNNbJT2B-Hx_XlW9rz6t-Peg0PSDKLdJ27MEGcwxu45y4vTvv12zSk_wAqb_9j
  priority: 102
  providerName: ProQuest
Title Beyond large complex structure: quantized periods and boundary data for one-modulus singularities
URI https://link.springer.com/article/10.1007/JHEP07(2024)151
https://www.proquest.com/docview/3082431849
https://doaj.org/article/6be117c32bd84ae48c06c0e0b90b6423
Volume 2024
WOSCitedRecordID wos001271719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKBKX0kJRt9CVDz3AIchO7NjhVtAiWqmrqKIS5RL5Kwhpu9tuWAT8esZOQgWIQ3tJoniiODN2_MaeeQb4VEtlrA8c-1pkCbfMJ8ag14pgGUdjnek0r-NmE3I8VmdnRbkErM-FidHu_ZJk_FP3yW5fT0YllbvorPM9FpKmVwRTRWjURyHBoVs4QEBCewaf5w89GnwiR_8jYPlkLTQOMcfr_1G5N_C6w5Pkc9sA3sKSn27AaozrtM0m6DZDhUxCwDeJ8eP-hrSksYu5PyB_FqjayzvvSKA8nrmGaBQ3cbOl-S0JAaQEcS2ZTX3ya-YWk0VDwvRCiF6NZKzv4Mfx6PToJOl2VUgsZ_IqUbmvqRPaWENNnjqEiFZRS104e0ct07pQhWPUSeGEdD6X1PBUoytGvdLZFixP8aXvgfAMvU8jtGOZ5MIZVatMS8osLdJa5PUA9nt1V7ajHA87X0yqniy51VsV9Fah3gaw-_DA75Zt42XRw2C_B7FAkx1vzOYXVdfrqtx4xqTNUuMU154rS3NLPTUFfjoCyQHs9Navur7bVIHAB2GV4sUA9npr_y1-oT4f_kF2G9bCZRL5OXdgGY3uP8Ire3112cyHsHI4Gpffh7FhD-MkAR5LcY4l5Zdv5c97jCL26A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBcWIuYUsAHkNpDqJ3NDhJCLK1maDuaQ5HKyfUWVGmYtJNOofwofiPPTjJVkcqtB06REtux4y9vsZ-_B_Cy5EIb5zn2VZZEqWEu0hq9VjSWURurRMV5GZJN8NFIHBwU4yX43Z2F8WGVnUwMgtpWxq-Rb3paFVR2Ii3eHZ9EPmuU313tUmg0sNhx5z_QZavfDj_h_L6K4-2t_Y-DqM0qEJmU8dNI5K6kNlPaaKrz2KKJZAQ11Pqrs9QwpQpRWEYtz2zGrcs51Wms0BWhTqgE270ByymCXfRgeTzcG39d7FugPUQ7AiHKNz8PtsaUr8eoCDdYxi7pvpAi4JJd-9dWbNBw2_f-t29zH-62tjR534D_ASy56UO4FWJaTf0IVHM6h0x8sDsJsfPuJ2kIc-cz94aczBFWR7-cJZ7uubI1UVhch0RTs3Pig2cJ2vSkmrroe2Xnk3lN_NKKj9wNRLQr8OVaxvcYelN86RMgaYKet86UZQlPM6tFKRLFKTO0iMssL_vwuptraVq6dZ_1YyI7ougGHNKDQyI4-rC-qHDcMI1cXfSDB8-imKcIDzeq2TfZShyZa8cYN0msrUiVS4WhuaGO6gKHjkZ0H9Y6MMlWbtXyAkl92OjgePH4iv6s_rupF3B7sL-3K3eHo52ncMfXigI16Rr0cM7dM7hpzk6P6tnz9ncicHjdKP0DsChdzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3qgLBXwAqT2EtZM4dpAQAtpVS9FqDyBVXIxfQZW2m3bTBcpP49cxdpKtilRuPXCKlNhOHH-ehz3-BuB5JaSxPnDsa54luWU-MQa9VjSWURvrTKdFFZNNiPFY7u-XkxX43Z-FCWGVvUyMgtrVNqyRDwOtCio7mZfDqguLmGyN3hwdJyGDVNhp7dNptBDZ86c_0H1rXu9u4Vi_SNPR9qf3O0mXYSCxORMniSx8RR3XxhpqitShuWQltdSFq3fUMq1LWTpGneCOC-cLQU2eanRLqJc6w3avwFWBPmaYXRP-ZbmDgZYR7amEqBh-2NmeULGRokrcZJyd04IxWcA5C_evTdmo60a3_-e_dAdudRY2edtOibuw4mf34HqMdLXNfdDtmR0yDSHwJEbU-5-kpdFdzP0rcrxAsB388o4EEujaNURjcRPTT81PSQipJWjpk3rmk8PaLaaLhoQFlxDPG-lpH8DnS-nfQ1id4UvXgOQZ-uOGa8cykXNnZCUzLSiztEwrXlQDeNmPu7IdCXvIBTJVPX10CxQVgKIQKAPYWFY4avlHLi76LgBpWSwQh8cb9fyb6uSQKoxnTNgsNU7m2ufS0sJST02JXUfTegDrPbBUJ80adYaqAWz20Dx7fMH3PPp3U8_gBkJTfdwd7z2Gm6FSEvlK12EVh9w_gWv2-8lBM38a5xWBr5cN0T_jJGUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+large+complex+structure%3A+quantized+periods+and+boundary+data+for+one-modulus+singularities&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bastian%2C+Brice&rft.au=van+de+Heisteeg%2C+Damian&rft.au=Schlechter%2C+Lorenz&rft.date=2024-07-17&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282024%29151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP07_2024_151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon