Beyond large complex structure: quantized periods and boundary data for one-modulus singularities
A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau mani...
Uložené v:
| Vydané v: | The journal of high energy physics Ročník 2024; číslo 7; s. 151 - 109 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
17.07.2024
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A
bstract
We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples. |
|---|---|
| AbstractList | Abstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples. A bstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples. We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large complex structure points these asymptotic periods are well understood in terms of the topological data of the mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as conifold and K-points. Using results from Hodge theory, we provide the general form of these periods in a quantized three-cycle basis. Based on these periods we compute the prepotential and related physical couplings of the underlying supergravity theory. Moreover, we elucidate the meaning of the model-dependent coefficients that appear in these expressions: these can be identified with certain topological and arithmetic numbers associated to the singular geometry at the moduli space boundary. We illustrate our findings by studying a wide set of examples. |
| ArticleNumber | 151 |
| Author | Bastian, Brice van de Heisteeg, Damian Schlechter, Lorenz |
| Author_xml | – sequence: 1 givenname: Brice orcidid: 0000-0001-6412-8108 surname: Bastian fullname: Bastian, Brice – sequence: 2 givenname: Damian orcidid: 0000-0001-7572-0473 surname: van de Heisteeg fullname: van de Heisteeg, Damian email: dvandeheisteeg@fas.harvard.edu organization: Center of Mathematical Sciences and Applications, Harvard University – sequence: 3 givenname: Lorenz orcidid: 0000-0001-8299-3015 surname: Schlechter fullname: Schlechter, Lorenz organization: Institute for Theoretical Physics, Utrecht University |
| BookMark | eNp1kUFv1DAQhS1UJNrCmaslLnAIHSdOYnODqtCiSnCAszWxZ1deZe2t7Ugtvx4vAYGQehpr9L03T35n7CTEQIy9FPBWAIwXn6-vvsL4uoVWvhG9eMJOBbS6UXLUJ_-8n7GznHcAFdFwyvADPcTg-IxpS9zG_WGme55LWmxZEr3jdwuG4n-Q4wdKPrrMseJTXILD9MAdFuSbmHgN0-yjW-Yl8-zDdqmOvnjKz9nTDc6ZXvye5-z7x6tvl9fN7ZdPN5fvbxsrxVgaNdAGXI-TnWAaWgdaWwUW3HGSAysQtdJOgBt714-OhhEm2aKQAKSwO2c3q6-LuDOH5Pc1n4noza9FTFuDqXg7kxkmEmK0XTs5JZGksjBYIJh0PS3brnq9Wr0OKd4tlIvZxSWFGt90oFrZCSV1pfqVsinmnGhjrC9YfAwloZ-NAHNsxqzNmGMzpn571V38p_uT9nEFrIpcybCl9DfPY5KfpMGiag |
| CitedBy_id | crossref_primary_10_1007_JHEP09_2024_178 crossref_primary_10_21468_SciPostPhys_18_6_181 crossref_primary_10_1007_JHEP08_2024_039 crossref_primary_10_1007_JHEP05_2025_150 crossref_primary_10_1007_JHEP01_2025_005 |
| Cites_doi | 10.1016/0550-3213(93)90033-L 10.1007/JHEP11(2021)032 10.4310/ATMP.1998.v2.n2.a7 10.1016/0550-3213(95)00287-3 10.1007/s00220-024-05006-6 10.1007/JHEP08(2018)143 10.1007/JHEP06(2018)052 10.1090/S0002-9947-1973-0344248-1 10.1007/JHEP02(2022)190 10.1007/s10711-008-9330-5 10.1007/JHEP10(2020)202 10.1142/S0129167X07004126 10.1215/S0012-7094-85-05219-6 10.1007/JHEP06(2019)129 10.1007/JHEP05(2023)071 10.1007/JHEP09(2016)062 10.1007/JHEP10(2023)154 10.1088/1126-6708/2008/06/084 10.1007/JHEP08(2019)044 10.1007/JHEP09(2020)061 10.1016/j.aim.2013.03.008 10.1016/j.nuclphysb.2006.10.033 10.1016/0550-3213(90)90577-Z 10.1007/BF02100589 10.1007/JHEP03(2019)016 10.1007/BF02105861 10.1007/JHEP08(2019)075 10.2307/1971333 10.1007/JHEP08(2021)077 10.4310/CNTP.2014.v8.n1.a1 10.1007/JHEP08(2022)237 10.1007/JHEP08(2021)091 10.1007/JHEP06(2021)162 10.1007/JHEP08(2016)110 10.1007/BF01389674 10.2140/pjm.1983.105.285 10.21468/SciPostPhys.15.4.146 10.1007/JHEP03(2020)020 10.1090/conm/465/09101 10.1007/JHEP08(2019)086 10.1007/JHEP06(2021)067 10.1007/JHEP09(2018)018 10.1007/BF01393374 10.4310/CNTP.2014.v8.n4.a4 10.1007/JHEP10(2016)082 10.1016/0550-3213(94)00440-P 10.1134/S0081543809010118 10.1007/JHEP05(2022)010 10.1090/pspum/033.2/546622 10.1007/BF02762074 10.4310/ATMP.2000.v4.n6.a2 10.2307/2373545 10.1007/JHEP12(2015)119 10.25358/openscience-3802 10.1007/JHEP06(2020)009 10.1515/9781400881659-007 10.1090/fic/038 10.1016/0550-3213(90)90302-T 10.1515/crll.1986.364.85 10.1016/0550-3213(91)90292-6 10.1007/BF01078777 10.33540/1380 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/JHEP07(2024)151 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 109 |
| ExternalDocumentID | oai_doaj_org_article_6be117c32bd84ae48c06c0e0b90b6423 10_1007_JHEP07_2024_151 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AFFHD AMVHM CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c417t-86ef0d5abcb0b62d099c80c0d99c8ed0c1aa989d10d75d57de670b42a1400e8a3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:53:30 EDT 2025 Sat Oct 18 22:45:07 EDT 2025 Sat Nov 29 08:08:59 EST 2025 Tue Nov 18 20:59:13 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Effective Field Theories Superstring Vacua Differential and Algebraic Geometry |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-86ef0d5abcb0b62d099c80c0d99c8ed0c1aa989d10d75d57de670b42a1400e8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7572-0473 0000-0001-6412-8108 0000-0001-8299-3015 |
| OpenAccessLink | https://link.springer.com/10.1007/JHEP07(2024)151 |
| PQID | 3082431849 |
| PQPubID | 2034718 |
| PageCount | 109 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6be117c32bd84ae48c06c0e0b90b6423 proquest_journals_3082431849 crossref_citationtrail_10_1007_JHEP07_2024_151 crossref_primary_10_1007_JHEP07_2024_151 springer_journals_10_1007_JHEP07_2024_151 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-17 |
| PublicationDateYYYYMMDD | 2024-07-17 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | Cattani, Kaplan (CR8) 1982; 67 Jefferson, Walcher (CR89) 2014; 08 Grimm, Palti, Valenzuela (CR39) 2018; 08 Candelas, de la Ossa, Elmi, Van Straten (CR21) 2020; 10 Graña (CR47) 2022; 08 Schimmrigk (CR24) 2020; 09 CR78 CR77 Strominger (CR52) 1995; 451 CR76 CR75 CR74 CR73 CR72 CR71 CR70 Candelas, Kuusela, McGovern (CR22) 2021; 11 Kreuzer, Skarke (CR5) 2000; 4 CR2 Alim, Scheidegger (CR33) 2014; 08 CR4 CR3 Landman (CR32) 1973; 181 CR6 Marchesano, Prieto, Wiesner (CR55) 2021; 08 Escobar, Marchesano, Staessens (CR54) 2019; 06 Cattani, Kaplan, Schmid (CR9) 1986; 123 Witten (CR1) 1993; 403 CR49 CR48 Lee, Lerche, Weigand (CR65) 2022; 02 Ooguri, Vafa (CR66) 2007; 766 CR88 Grimm, Li, Palti (CR38) 2019; 03 CR43 Bloch (CR87) 1985; 52 CR85 Schmid (CR7) 1973; 22 CR84 CR82 Bönisch, Klemm, Scheidegger, Zagier (CR27) 2024; 405 Doran, Harder, Thompson (CR69) 2017; 96 Beilinson (CR80) 1985; 30 Cynk, Meyer (CR83) 2005; 18 Grimm, Monnee, van de Heisteeg (CR51) 2022; 05 Katzarkov, Przyjalkowski (CR90) 2009; 264 Blumenhagen, Kläwer, Schlechter, Wolf (CR36) 2018; 06 Gopakumar, Vafa (CR62) 1998; 2 Cabo Bizet, Loaiza-Brito, Zavala (CR34) 2016; 10 CR19 CR18 Candelas, de la Ossa (CR60) 1990; 342 CR17 CR16 CR15 CR59 CR14 CR12 CR56 CR11 Corvilain, Grimm, Valenzuela (CR40) 2019; 08 Joshi, Klemm (CR37) 2019; 08 Hosono, Klemm, Theisen, Yau (CR31) 1995; 433 Grimm, Lanza, van Vuren (CR67) 2023; 10 Herráez, Ibáñez, Marchesano, Zoccarato (CR58) 2018; 09 CR91 Bastian, Grimm, van de Heisteeg (CR44) 2021; 06 Font, Herráez, Ibáñez (CR41) 2019; 08 Hosono, Klemm, Theisen, Yau (CR30) 1995; 167 Deligne (CR79) 1979; 33 Li, Long, Tu (CR81) 2018; 14 Blumenhagen, Herschmann, Wolf (CR35) 2016; 08 Grimm, Li (CR45) 2021; 06 Grimm, Van De Heisteeg (CR42) 2020; 03 CR29 CR28 Livné (CR92) 1995; 92 Fernandez, Cattani (CR13) 2008; 139 CR25 CR68 CR23 Ceresa, Collino (CR86) 1983; 105 Elkies, Schütt (CR93) 2013; 240 CR20 CR64 Palti (CR46) 2021; 08 CR63 Green, Griffiths, Kerr (CR10) 2007; 465 Candelas, de la Ossa, Kuusela, McGovern (CR26) 2023; 15 Huang, Klemm, Quackenbush (CR61) 2009; 757 Carta, Marchesano, Staessens, Zoccarato (CR57) 2016; 09 Erkinger, Knapp (CR50) 2023; 05 Palti, Tasinato, Ward (CR53) 2008; 06 S Bloch (23988_CR87) 1985; 52 W Schmid (23988_CR7) 1973; 22 G Ceresa (23988_CR86) 1983; 105 R Blumenhagen (23988_CR36) 2018; 06 D Erkinger (23988_CR50) 2023; 05 E Palti (23988_CR53) 2008; 06 23988_CR85 23988_CR84 23988_CR82 23988_CR88 23988_CR43 23988_CR49 23988_CR48 R Schimmrigk (23988_CR24) 2020; 09 E Palti (23988_CR46) 2021; 08 TW Grimm (23988_CR39) 2018; 08 M Graña (23988_CR47) 2022; 08 P Corvilain (23988_CR40) 2019; 08 23988_CR70 D Escobar (23988_CR54) 2019; 06 R Livné (23988_CR92) 1995; 92 23988_CR3 23988_CR74 W-CW Li (23988_CR81) 2018; 14 23988_CR2 23988_CR73 S Hosono (23988_CR31) 1995; 433 23988_CR72 23988_CR4 23988_CR71 23988_CR78 ND Elkies (23988_CR93) 2013; 240 23988_CR77 M-X Huang (23988_CR61) 2009; 757 23988_CR76 23988_CR75 P Candelas (23988_CR26) 2023; 15 TW Grimm (23988_CR67) 2023; 10 P Candelas (23988_CR60) 1990; 342 A Joshi (23988_CR37) 2019; 08 A Font (23988_CR41) 2019; 08 E Cattani (23988_CR8) 1982; 67 S Cynk (23988_CR83) 2005; 18 S Hosono (23988_CR30) 1995; 167 M Green (23988_CR10) 2007; 465 K Bönisch (23988_CR27) 2024; 405 TW Grimm (23988_CR38) 2019; 03 R Blumenhagen (23988_CR35) 2016; 08 A Herráez (23988_CR58) 2018; 09 23988_CR6 F Marchesano (23988_CR55) 2021; 08 H Ooguri (23988_CR66) 2007; 766 23988_CR63 P Candelas (23988_CR21) 2020; 10 23988_CR23 S-J Lee (23988_CR65) 2022; 02 23988_CR20 23988_CR64 R Jefferson (23988_CR89) 2014; 08 A Strominger (23988_CR52) 1995; 451 23988_CR25 23988_CR68 B Bastian (23988_CR44) 2021; 06 P Deligne (23988_CR79) 1979; 33 23988_CR29 TW Grimm (23988_CR51) 2022; 05 E Cattani (23988_CR9) 1986; 123 23988_CR28 R Gopakumar (23988_CR62) 1998; 2 TW Grimm (23988_CR42) 2020; 03 TW Grimm (23988_CR45) 2021; 06 F Carta (23988_CR57) 2016; 09 AA Beilinson (23988_CR80) 1985; 30 P Candelas (23988_CR22) 2021; 11 J Fernandez (23988_CR13) 2008; 139 23988_CR91 M Kreuzer (23988_CR5) 2000; 4 A Landman (23988_CR32) 1973; 181 CF Doran (23988_CR69) 2017; 96 L Katzarkov (23988_CR90) 2009; 264 23988_CR12 23988_CR56 23988_CR11 23988_CR16 23988_CR15 23988_CR59 E Witten (23988_CR1) 1993; 403 23988_CR14 N Cabo Bizet (23988_CR34) 2016; 10 M Alim (23988_CR33) 2014; 08 23988_CR19 23988_CR18 23988_CR17 |
| References_xml | – ident: CR70 – volume: 403 start-page: 159 year: 1993 ident: CR1 article-title: = 2 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90033-L – volume: 11 start-page: 032 year: 2021 ident: CR22 publication-title: JHEP doi: 10.1007/JHEP11(2021)032 – ident: CR49 – ident: CR68 – ident: CR74 – volume: 2 start-page: 399 year: 1998 ident: CR62 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a7 – ident: CR4 – volume: 451 start-page: 96 year: 1995 ident: CR52 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00287-3 – ident: CR16 – volume: 405 start-page: 134 year: 2024 ident: CR27 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-024-05006-6 – ident: CR12 – volume: 08 start-page: 143 year: 2018 ident: CR39 publication-title: JHEP doi: 10.1007/JHEP08(2018)143 – volume: 06 start-page: 052 year: 2018 ident: CR36 publication-title: JHEP doi: 10.1007/JHEP06(2018)052 – ident: CR29 – volume: 181 start-page: 89 year: 1973 ident: CR32 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1973-0344248-1 – volume: 02 start-page: 190 year: 2022 ident: CR65 publication-title: JHEP doi: 10.1007/JHEP02(2022)190 – volume: 139 start-page: 299 year: 2008 ident: CR13 publication-title: Geom. Dedicata doi: 10.1007/s10711-008-9330-5 – volume: 10 start-page: 202 year: 2020 ident: CR21 publication-title: JHEP doi: 10.1007/JHEP10(2020)202 – ident: CR77 – ident: CR84 – ident: CR25 – volume: 18 start-page: 331 year: 2005 ident: CR83 publication-title: Int. J. Math. doi: 10.1142/S0129167X07004126 – volume: 52 start-page: 379 year: 1985 ident: CR87 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-85-05219-6 – volume: 06 start-page: 129 year: 2019 ident: CR54 article-title: ′ publication-title: JHEP doi: 10.1007/JHEP06(2019)129 – volume: 05 start-page: 071 year: 2023 ident: CR50 publication-title: JHEP doi: 10.1007/JHEP05(2023)071 – volume: 09 start-page: 062 year: 2016 ident: CR57 publication-title: JHEP doi: 10.1007/JHEP09(2016)062 – volume: 10 start-page: 154 year: 2023 ident: CR67 publication-title: JHEP doi: 10.1007/JHEP10(2023)154 – volume: 06 start-page: 084 year: 2008 ident: CR53 publication-title: JHEP doi: 10.1088/1126-6708/2008/06/084 – ident: CR71 – ident: CR19 – volume: 08 start-page: 044 year: 2019 ident: CR41 publication-title: JHEP doi: 10.1007/JHEP08(2019)044 – volume: 09 start-page: 061 year: 2020 ident: CR24 publication-title: JHEP doi: 10.1007/JHEP09(2020)061 – ident: CR75 – ident: CR15 – ident: CR88 – volume: 240 start-page: 106 year: 2013 ident: CR93 publication-title: Adv. Math. doi: 10.1016/j.aim.2013.03.008 – ident: CR11 – volume: 766 start-page: 21 year: 2007 ident: CR66 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.033 – volume: 342 start-page: 246 year: 1990 ident: CR60 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(90)90577-Z – volume: 167 start-page: 301 year: 1995 ident: CR30 publication-title: Commun. Math. Phys. doi: 10.1007/BF02100589 – ident: CR78 – ident: CR85 – volume: 03 start-page: 016 year: 2019 ident: CR38 publication-title: JHEP doi: 10.1007/JHEP03(2019)016 – volume: 30 start-page: 2036 year: 1985 ident: CR80 publication-title: J. Sov. Math. doi: 10.1007/BF02105861 – volume: 08 start-page: 075 year: 2019 ident: CR40 publication-title: JHEP doi: 10.1007/JHEP08(2019)075 – ident: CR64 – ident: CR18 – ident: CR43 – ident: CR91 – ident: CR72 – volume: 123 start-page: 457 year: 1986 ident: CR9 publication-title: Annals Math. doi: 10.2307/1971333 – volume: 08 start-page: 077 year: 2021 ident: CR55 publication-title: JHEP doi: 10.1007/JHEP08(2021)077 – volume: 08 start-page: 1 year: 2014 ident: CR89 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2014.v8.n1.a1 – ident: CR14 – ident: CR2 – ident: CR82 – volume: 08 start-page: 237 year: 2022 ident: CR47 publication-title: JHEP doi: 10.1007/JHEP08(2022)237 – volume: 08 start-page: 091 year: 2021 ident: CR46 publication-title: JHEP doi: 10.1007/JHEP08(2021)091 – ident: CR6 – volume: 06 start-page: 162 year: 2021 ident: CR44 publication-title: JHEP doi: 10.1007/JHEP06(2021)162 – volume: 08 start-page: 110 year: 2016 ident: CR35 publication-title: JHEP doi: 10.1007/JHEP08(2016)110 – ident: CR56 – volume: 22 start-page: 211 year: 1973 ident: CR7 publication-title: Invent. Math. doi: 10.1007/BF01389674 – volume: 105 start-page: 285 year: 1983 ident: CR86 publication-title: Pacific J. Math. doi: 10.2140/pjm.1983.105.285 – ident: CR63 – volume: 15 start-page: 146 year: 2023 ident: CR26 article-title: ℤ publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.15.4.146 – volume: 03 start-page: 020 year: 2020 ident: CR42 publication-title: JHEP doi: 10.1007/JHEP03(2020)020 – ident: CR23 – volume: 465 start-page: 71 year: 2007 ident: CR10 publication-title: Contemp. Math doi: 10.1090/conm/465/09101 – volume: 757 start-page: 45 year: 2009 ident: CR61 publication-title: Lect. Notes Phys. – volume: 96 start-page: 93 year: 2017 ident: CR69 publication-title: Proc. Symp. Pure Math. – volume: 08 start-page: 086 year: 2019 ident: CR37 publication-title: JHEP doi: 10.1007/JHEP08(2019)086 – ident: CR48 – ident: CR73 – volume: 06 start-page: 067 year: 2021 ident: CR45 publication-title: JHEP doi: 10.1007/JHEP06(2021)067 – volume: 09 start-page: 018 year: 2018 ident: CR58 publication-title: JHEP doi: 10.1007/JHEP09(2018)018 – ident: CR3 – volume: 67 start-page: 101 year: 1982 ident: CR8 publication-title: Invent. Math. doi: 10.1007/BF01393374 – volume: 08 start-page: 729 year: 2014 ident: CR33 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2014.v8.n4.a4 – ident: CR17 – volume: 10 start-page: 082 year: 2016 ident: CR34 publication-title: JHEP doi: 10.1007/JHEP10(2016)082 – volume: 433 start-page: 501 year: 1995 ident: CR31 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00440-P – volume: 264 start-page: 87 year: 2009 ident: CR90 publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543809010118 – volume: 05 start-page: 010 year: 2022 ident: CR51 publication-title: JHEP doi: 10.1007/JHEP05(2022)010 – volume: 14 start-page: 090 year: 2018 ident: CR81 publication-title: SIGMA – ident: CR59 – ident: CR76 – volume: 33 start-page: 313 year: 1979 ident: CR79 publication-title: Proc. Symp. Pure Math. doi: 10.1090/pspum/033.2/546622 – volume: 92 start-page: 149 year: 1995 ident: CR92 article-title: (ℚ ℚ) publication-title: Israel J. Math. doi: 10.1007/BF02762074 – ident: CR28 – volume: 4 start-page: 1209 year: 2000 ident: CR5 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2000.v4.n6.a2 – ident: CR20 – volume: 09 start-page: 061 year: 2020 ident: 23988_CR24 publication-title: JHEP doi: 10.1007/JHEP09(2020)061 – ident: 23988_CR85 doi: 10.2307/2373545 – volume: 08 start-page: 044 year: 2019 ident: 23988_CR41 publication-title: JHEP doi: 10.1007/JHEP08(2019)044 – ident: 23988_CR84 – volume: 10 start-page: 202 year: 2020 ident: 23988_CR21 publication-title: JHEP doi: 10.1007/JHEP10(2020)202 – volume: 08 start-page: 110 year: 2016 ident: 23988_CR35 publication-title: JHEP doi: 10.1007/JHEP08(2016)110 – volume: 02 start-page: 190 year: 2022 ident: 23988_CR65 publication-title: JHEP doi: 10.1007/JHEP02(2022)190 – volume: 06 start-page: 052 year: 2018 ident: 23988_CR36 publication-title: JHEP doi: 10.1007/JHEP06(2018)052 – ident: 23988_CR17 – volume: 30 start-page: 2036 year: 1985 ident: 23988_CR80 publication-title: J. Sov. Math. doi: 10.1007/BF02105861 – ident: 23988_CR4 – ident: 23988_CR88 – volume: 405 start-page: 134 year: 2024 ident: 23988_CR27 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-024-05006-6 – ident: 23988_CR49 – ident: 23988_CR74 – ident: 23988_CR56 doi: 10.1007/JHEP12(2015)119 – ident: 23988_CR70 – ident: 23988_CR78 – volume: 15 start-page: 146 year: 2023 ident: 23988_CR26 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.15.4.146 – ident: 23988_CR71 doi: 10.25358/openscience-3802 – volume: 92 start-page: 149 year: 1995 ident: 23988_CR92 publication-title: Israel J. Math. doi: 10.1007/BF02762074 – volume: 08 start-page: 143 year: 2018 ident: 23988_CR39 publication-title: JHEP doi: 10.1007/JHEP08(2018)143 – volume: 139 start-page: 299 year: 2008 ident: 23988_CR13 publication-title: Geom. Dedicata doi: 10.1007/s10711-008-9330-5 – ident: 23988_CR12 – volume: 08 start-page: 237 year: 2022 ident: 23988_CR47 publication-title: JHEP doi: 10.1007/JHEP08(2022)237 – ident: 23988_CR64 – ident: 23988_CR16 – volume: 52 start-page: 379 year: 1985 ident: 23988_CR87 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-85-05219-6 – ident: 23988_CR68 – volume: 167 start-page: 301 year: 1995 ident: 23988_CR30 publication-title: Commun. Math. Phys. doi: 10.1007/BF02100589 – volume: 451 start-page: 96 year: 1995 ident: 23988_CR52 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00287-3 – ident: 23988_CR23 – ident: 23988_CR75 – volume: 2 start-page: 399 year: 1998 ident: 23988_CR62 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a7 – volume: 342 start-page: 246 year: 1990 ident: 23988_CR60 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(90)90577-Z – ident: 23988_CR43 doi: 10.1007/JHEP06(2020)009 – ident: 23988_CR91 doi: 10.1515/9781400881659-007 – volume: 10 start-page: 154 year: 2023 ident: 23988_CR67 publication-title: JHEP doi: 10.1007/JHEP10(2023)154 – volume: 03 start-page: 016 year: 2019 ident: 23988_CR38 publication-title: JHEP doi: 10.1007/JHEP03(2019)016 – ident: 23988_CR11 – ident: 23988_CR2 – volume: 433 start-page: 501 year: 1995 ident: 23988_CR31 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00440-P – ident: 23988_CR15 – ident: 23988_CR63 – ident: 23988_CR6 – volume: 08 start-page: 1 year: 2014 ident: 23988_CR89 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2014.v8.n1.a1 – volume: 09 start-page: 062 year: 2016 ident: 23988_CR57 publication-title: JHEP doi: 10.1007/JHEP09(2016)062 – volume: 96 start-page: 93 year: 2017 ident: 23988_CR69 publication-title: Proc. Symp. Pure Math. – volume: 03 start-page: 020 year: 2020 ident: 23988_CR42 publication-title: JHEP doi: 10.1007/JHEP03(2020)020 – ident: 23988_CR76 – volume: 14 start-page: 090 year: 2018 ident: 23988_CR81 publication-title: SIGMA – ident: 23988_CR19 – ident: 23988_CR72 – volume: 240 start-page: 106 year: 2013 ident: 23988_CR93 publication-title: Adv. Math. doi: 10.1016/j.aim.2013.03.008 – volume: 67 start-page: 101 year: 1982 ident: 23988_CR8 publication-title: Invent. Math. doi: 10.1007/BF01393374 – ident: 23988_CR28 – volume: 181 start-page: 89 year: 1973 ident: 23988_CR32 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1973-0344248-1 – volume: 08 start-page: 075 year: 2019 ident: 23988_CR40 publication-title: JHEP doi: 10.1007/JHEP08(2019)075 – ident: 23988_CR82 doi: 10.1090/fic/038 – volume: 10 start-page: 082 year: 2016 ident: 23988_CR34 publication-title: JHEP doi: 10.1007/JHEP10(2016)082 – ident: 23988_CR59 doi: 10.1016/0550-3213(90)90302-T – ident: 23988_CR20 – volume: 08 start-page: 729 year: 2014 ident: 23988_CR33 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2014.v8.n4.a4 – volume: 06 start-page: 067 year: 2021 ident: 23988_CR45 publication-title: JHEP doi: 10.1007/JHEP06(2021)067 – volume: 33 start-page: 313 year: 1979 ident: 23988_CR79 publication-title: Proc. Symp. Pure Math. doi: 10.1090/pspum/033.2/546622 – volume: 11 start-page: 032 year: 2021 ident: 23988_CR22 publication-title: JHEP doi: 10.1007/JHEP11(2021)032 – ident: 23988_CR77 doi: 10.1515/crll.1986.364.85 – volume: 4 start-page: 1209 year: 2000 ident: 23988_CR5 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2000.v4.n6.a2 – volume: 105 start-page: 285 year: 1983 ident: 23988_CR86 publication-title: Pacific J. Math. doi: 10.2140/pjm.1983.105.285 – volume: 264 start-page: 87 year: 2009 ident: 23988_CR90 publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543809010118 – volume: 123 start-page: 457 year: 1986 ident: 23988_CR9 publication-title: Annals Math. doi: 10.2307/1971333 – ident: 23988_CR14 – volume: 08 start-page: 091 year: 2021 ident: 23988_CR46 publication-title: JHEP doi: 10.1007/JHEP08(2021)091 – ident: 23988_CR3 doi: 10.1016/0550-3213(91)90292-6 – ident: 23988_CR18 – volume: 06 start-page: 162 year: 2021 ident: 23988_CR44 publication-title: JHEP doi: 10.1007/JHEP06(2021)162 – volume: 757 start-page: 45 year: 2009 ident: 23988_CR61 publication-title: Lect. Notes Phys. – volume: 06 start-page: 084 year: 2008 ident: 23988_CR53 publication-title: JHEP doi: 10.1088/1126-6708/2008/06/084 – volume: 08 start-page: 077 year: 2021 ident: 23988_CR55 publication-title: JHEP doi: 10.1007/JHEP08(2021)077 – ident: 23988_CR73 – ident: 23988_CR25 – volume: 08 start-page: 086 year: 2019 ident: 23988_CR37 publication-title: JHEP doi: 10.1007/JHEP08(2019)086 – volume: 09 start-page: 018 year: 2018 ident: 23988_CR58 publication-title: JHEP doi: 10.1007/JHEP09(2018)018 – volume: 18 start-page: 331 year: 2005 ident: 23988_CR83 publication-title: Int. J. Math. doi: 10.1142/S0129167X07004126 – volume: 403 start-page: 159 year: 1993 ident: 23988_CR1 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90033-L – volume: 22 start-page: 211 year: 1973 ident: 23988_CR7 publication-title: Invent. Math. doi: 10.1007/BF01389674 – volume: 465 start-page: 71 year: 2007 ident: 23988_CR10 publication-title: Contemp. Math doi: 10.1090/conm/465/09101 – volume: 766 start-page: 21 year: 2007 ident: 23988_CR66 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.033 – ident: 23988_CR29 doi: 10.1007/BF01078777 – ident: 23988_CR48 doi: 10.33540/1380 – volume: 06 start-page: 129 year: 2019 ident: 23988_CR54 publication-title: JHEP doi: 10.1007/JHEP06(2019)129 – volume: 05 start-page: 010 year: 2022 ident: 23988_CR51 publication-title: JHEP doi: 10.1007/JHEP05(2022)010 – volume: 05 start-page: 071 year: 2023 ident: 23988_CR50 publication-title: JHEP doi: 10.1007/JHEP05(2023)071 |
| SSID | ssj0015190 |
| Score | 2.4858143 |
| Snippet | A
bstract
We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds.... We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near large... Abstract We study periods in an integral basis near all possible singularities in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds.... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Classical and Quantum Gravitation Couplings Differential and Algebraic Geometry Effective Field Theories Elementary Particles Geometry Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Singularity (mathematics) String Theory Supergravity Superstring Vacua Topology |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDAUv4k-cv8jBgzvUJW3apN5UNsTD2EFht5BfhcHcdHWi_vW-pK06Qbx4KrRpG15eyfclr5-H0GnBhTbOM_ZVmkTMUBdpDVEriGWYjVWi4qwIxSb4YCBGo3z4rdSXzwmr8MCV4bqZdpRyk8TaCqYcE4Zkhjiic6JBOwfOJ6ieJpiq9w9Al5AG5EN49_amNyT8DAJ91qEpXZqDAqp_SV_-2BINM01_E23UEhFfVl3bQituuo3WQqqmKXeQqn46wROfw41DSrh7xRUHdjF3F_hpAdYavzuLPcV4ZkusoLkO9ZPmb9jnhGKQqng2ddHDzC4mixL7FQOfkBr4qrvovt-7u76J6kIJkWGUP0cicwWxqdJGg1FiC6rPCGKI9UdniaFK5SK3lFie2pRbl3GiWawguiJOqGQPtabw0n2EWQIBpU6VpQlnqdWiEInihBqSx0WaFW103phOmpoi7otZTGTDP65sLb2tJdi6jc4-b3isABq_N73yY_HZzJOvwwnwB1n7g_zLH9roqBlJWX-OpfRMHlBKguVt1GlG9-vyL_05-I_-HKJ1_7wosDiPUAu8wR2jVfPyPC7nJ8FrPwBpI-_t priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvBELBfnAoT2E2okTO1wQRVtVHFYrBFJvkV9BlZZNu-lWhV_PjONsVaRy4RQpmSSOP9sz45l8A_CuVdq6QBz7piwy6UTIrEWvFY1l1MamMHnVxmITaj7XJyf1Im249SmtclwT40LtO0d75AdEq4LKTsv649l5RlWjKLqaSmjchR1iKpMT2DmczRdft3EEtE_4SOjD1cGX49mCqz10-OW-KMUNXRQp-2_YmX-FRqPGOXr0v219DA-Trck-DYPjCdwJq6dwP-Z8uv4ZmOHvFbakZHAWc8vDFRsIZTfr8IGdb7DbT38Hz4gOufM9MyhuYyGm9S9GyaUMbV7WrUL2s_Ob5aZntPVAma2RqPU5fD-afft8nKWKC5mTQl1kugot96WxznJb5R7NR6e5456OwXMnjKl17QX3qvSl8qFS3MrcoJvGgzbFC5is8KUvgckCPVNbGi8KJUtvdasLo7hwvM7bsmqn8H7s-8YlOnKqirFsRiLlAayGwGoQrCnsbW84G5g4bhc9JDC3YkShHU906x9NmpFNZYMQyhW59VqaILXjleOB2xo_HY3MKeyO4DZpXvfNNbJT2B-Hx_XlW9rz6t-Peg0PSDKLdJ27MEGcwxu45y4vTvv12zSk_wAqb_9j priority: 102 providerName: ProQuest |
| Title | Beyond large complex structure: quantized periods and boundary data for one-modulus singularities |
| URI | https://link.springer.com/article/10.1007/JHEP07(2024)151 https://www.proquest.com/docview/3082431849 https://doaj.org/article/6be117c32bd84ae48c06c0e0b90b6423 |
| Volume | 2024 |
| WOSCitedRecordID | wos001271719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKBKX0kJRt9CVDz3AIchO7NjhVtAiWqmrqKIS5RL5Kwhpu9tuWAT8esZOQgWIQ3tJoniiODN2_MaeeQb4VEtlrA8c-1pkCbfMJ8ag14pgGUdjnek0r-NmE3I8VmdnRbkErM-FidHu_ZJk_FP3yW5fT0YllbvorPM9FpKmVwRTRWjURyHBoVs4QEBCewaf5w89GnwiR_8jYPlkLTQOMcfr_1G5N_C6w5Pkc9sA3sKSn27AaozrtM0m6DZDhUxCwDeJ8eP-hrSksYu5PyB_FqjayzvvSKA8nrmGaBQ3cbOl-S0JAaQEcS2ZTX3ya-YWk0VDwvRCiF6NZKzv4Mfx6PToJOl2VUgsZ_IqUbmvqRPaWENNnjqEiFZRS104e0ct07pQhWPUSeGEdD6X1PBUoytGvdLZFixP8aXvgfAMvU8jtGOZ5MIZVatMS8osLdJa5PUA9nt1V7ajHA87X0yqniy51VsV9Fah3gaw-_DA75Zt42XRw2C_B7FAkx1vzOYXVdfrqtx4xqTNUuMU154rS3NLPTUFfjoCyQHs9Navur7bVIHAB2GV4sUA9npr_y1-oT4f_kF2G9bCZRL5OXdgGY3uP8Ire3112cyHsHI4Gpffh7FhD-MkAR5LcY4l5Zdv5c97jCL26A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBcWIuYUsAHkNpDqJ3NDhJCLK1maDuaQ5HKyfUWVGmYtJNOofwofiPPTjJVkcqtB06REtux4y9vsZ-_B_Cy5EIb5zn2VZZEqWEu0hq9VjSWURurRMV5GZJN8NFIHBwU4yX43Z2F8WGVnUwMgtpWxq-Rb3paFVR2Ii3eHZ9EPmuU313tUmg0sNhx5z_QZavfDj_h_L6K4-2t_Y-DqM0qEJmU8dNI5K6kNlPaaKrz2KKJZAQ11Pqrs9QwpQpRWEYtz2zGrcs51Wms0BWhTqgE270ByymCXfRgeTzcG39d7FugPUQ7AiHKNz8PtsaUr8eoCDdYxi7pvpAi4JJd-9dWbNBw2_f-t29zH-62tjR534D_ASy56UO4FWJaTf0IVHM6h0x8sDsJsfPuJ2kIc-cz94aczBFWR7-cJZ7uubI1UVhch0RTs3Pig2cJ2vSkmrroe2Xnk3lN_NKKj9wNRLQr8OVaxvcYelN86RMgaYKet86UZQlPM6tFKRLFKTO0iMssL_vwuptraVq6dZ_1YyI7ougGHNKDQyI4-rC-qHDcMI1cXfSDB8-imKcIDzeq2TfZShyZa8cYN0msrUiVS4WhuaGO6gKHjkZ0H9Y6MMlWbtXyAkl92OjgePH4iv6s_rupF3B7sL-3K3eHo52ncMfXigI16Rr0cM7dM7hpzk6P6tnz9ncicHjdKP0DsChdzQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3qgLBXwAqT2EtZM4dpAQAtpVS9FqDyBVXIxfQZW2m3bTBcpP49cxdpKtilRuPXCKlNhOHH-ehz3-BuB5JaSxPnDsa54luWU-MQa9VjSWURvrTKdFFZNNiPFY7u-XkxX43Z-FCWGVvUyMgtrVNqyRDwOtCio7mZfDqguLmGyN3hwdJyGDVNhp7dNptBDZ86c_0H1rXu9u4Vi_SNPR9qf3O0mXYSCxORMniSx8RR3XxhpqitShuWQltdSFq3fUMq1LWTpGneCOC-cLQU2eanRLqJc6w3avwFWBPmaYXRP-ZbmDgZYR7amEqBh-2NmeULGRokrcZJyd04IxWcA5C_evTdmo60a3_-e_dAdudRY2edtOibuw4mf34HqMdLXNfdDtmR0yDSHwJEbU-5-kpdFdzP0rcrxAsB388o4EEujaNURjcRPTT81PSQipJWjpk3rmk8PaLaaLhoQFlxDPG-lpH8DnS-nfQ1id4UvXgOQZ-uOGa8cykXNnZCUzLSiztEwrXlQDeNmPu7IdCXvIBTJVPX10CxQVgKIQKAPYWFY4avlHLi76LgBpWSwQh8cb9fyb6uSQKoxnTNgsNU7m2ufS0sJST02JXUfTegDrPbBUJ80adYaqAWz20Dx7fMH3PPp3U8_gBkJTfdwd7z2Gm6FSEvlK12EVh9w_gWv2-8lBM38a5xWBr5cN0T_jJGUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+large+complex+structure%3A+quantized+periods+and+boundary+data+for+one-modulus+singularities&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bastian%2C+Brice&rft.au=van+de+Heisteeg%2C+Damian&rft.au=Schlechter%2C+Lorenz&rft.date=2024-07-17&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282024%29151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP07_2024_151 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |