Grey wolf optimizer: a review of recent variants and applications

Grey wolf optimizer (GWO) is one of recent metaheuristics swarm intelligence methods. It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods: it has very few parameters, and no derivation information is requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 30; H. 2; S. 413 - 435
Hauptverfasser: Faris, Hossam, Aljarah, Ibrahim, Al-Betar, Mohammed Azmi, Mirjalili, Seyedali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.07.2018
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Grey wolf optimizer (GWO) is one of recent metaheuristics swarm intelligence methods. It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods: it has very few parameters, and no derivation information is required in the initial search. Also it is simple, easy to use, flexible, scalable, and has a special capability to strike the right balance between the exploration and exploitation during the search which leads to favourable convergence. Therefore, the GWO has recently gained a very big research interest with tremendous audiences from several domains in a very short time. Thus, in this review paper, several research publications using GWO have been overviewed and summarized. Initially, an introductory information about GWO is provided which illustrates the natural foundation context and its related optimization conceptual framework. The main operations of GWO are procedurally discussed, and the theoretical foundation is described. Furthermore, the recent versions of GWO are discussed in detail which are categorized into modified, hybridized and paralleled versions. The main applications of GWO are also thoroughly described. The applications belong to the domains of global optimization, power engineering, bioinformatics, environmental applications, machine learning, networking and image processing, etc. The open source software of GWO is also provided. The review paper is ended by providing a summary conclusion of the main foundation of GWO and suggests several possible future directions that can be further investigated.
AbstractList Grey wolf optimizer (GWO) is one of recent metaheuristics swarm intelligence methods. It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods: it has very few parameters, and no derivation information is required in the initial search. Also it is simple, easy to use, flexible, scalable, and has a special capability to strike the right balance between the exploration and exploitation during the search which leads to favourable convergence. Therefore, the GWO has recently gained a very big research interest with tremendous audiences from several domains in a very short time. Thus, in this review paper, several research publications using GWO have been overviewed and summarized. Initially, an introductory information about GWO is provided which illustrates the natural foundation context and its related optimization conceptual framework. The main operations of GWO are procedurally discussed, and the theoretical foundation is described. Furthermore, the recent versions of GWO are discussed in detail which are categorized into modified, hybridized and paralleled versions. The main applications of GWO are also thoroughly described. The applications belong to the domains of global optimization, power engineering, bioinformatics, environmental applications, machine learning, networking and image processing, etc. The open source software of GWO is also provided. The review paper is ended by providing a summary conclusion of the main foundation of GWO and suggests several possible future directions that can be further investigated.
Author Al-Betar, Mohammed Azmi
Faris, Hossam
Aljarah, Ibrahim
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Hossam
  surname: Faris
  fullname: Faris, Hossam
  organization: Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan
– sequence: 2
  givenname: Ibrahim
  surname: Aljarah
  fullname: Aljarah, Ibrahim
  organization: Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan
– sequence: 3
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University
– sequence: 4
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: seyedali.mirjalili@griffithuni.edu.au
  organization: Institute for Integrated and Intelligent Systems, Griffith University
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6v53A9vpWgVBC96DsnuRFK2u2uSttRfb-oKgqCnGZj3mXnnnaFJ13eA0CUl15SQ4iYQIhnNCC0yzgqWyRM0pYLzjBNZTtCUVCJNc8HP0CyENSFE5KWcosXKwwHv-9bifohu4z7A32KNPewc7HFvU1dDF_FOe6e7GLDuGqyHoXW1jq7vwjk6tboNcPFd5-j1_u5l-ZA9Pa8el4unrBa0iFnJtU1OpWlqClbqxmohLTCbg6lyW9YlNZXgwuaGlo2oDDAGoK0xBirZAJ-jq3Hv4Pv3LYSo1v3Wd-mkYkQKKgQp86Sio6r2fQgerBq822h_UJSoY1JqTEqlpNQxKSUTU_xiahe_noteu_Zfko1kSFe6N_A_nv6GPgEqen_v
CitedBy_id crossref_primary_10_1007_s11235_025_01343_6
crossref_primary_10_1007_s13369_025_10452_y
crossref_primary_10_1016_j_egyr_2023_08_084
crossref_primary_10_1080_10916466_2024_2304788
crossref_primary_10_1038_s41598_022_21490_z
crossref_primary_10_3390_sym14091871
crossref_primary_10_1002_oca_2921
crossref_primary_10_1016_j_eswa_2019_112824
crossref_primary_10_1016_j_asoc_2019_02_037
crossref_primary_10_3390_w16060859
crossref_primary_10_1080_23080477_2023_2225957
crossref_primary_10_1038_s41598_023_45685_0
crossref_primary_10_1016_j_asoc_2021_107154
crossref_primary_10_1177_16878132231219620
crossref_primary_10_1007_s10489_022_04090_2
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1109_ACCESS_2023_3243164
crossref_primary_10_3233_JIFS_201412
crossref_primary_10_1007_s00500_024_09772_2
crossref_primary_10_1016_j_egyr_2021_11_010
crossref_primary_10_1080_02648725_2023_2199232
crossref_primary_10_1007_s10115_025_02481_8
crossref_primary_10_1016_j_future_2019_05_070
crossref_primary_10_1016_j_jestch_2021_01_011
crossref_primary_10_3390_su151511837
crossref_primary_10_46465_endustrimuhendisligi_1232511
crossref_primary_10_1007_s12652_020_02636_1
crossref_primary_10_1038_s41598_024_69365_9
crossref_primary_10_1007_s43926_024_00089_y
crossref_primary_10_1016_j_eswa_2023_119643
crossref_primary_10_1007_s11600_023_01072_x
crossref_primary_10_3390_math12233778
crossref_primary_10_3390_su17010266
crossref_primary_10_1016_j_bspc_2023_105503
crossref_primary_10_1007_s00170_023_12905_w
crossref_primary_10_1007_s00607_023_01168_8
crossref_primary_10_1007_s10115_025_02360_2
crossref_primary_10_1016_j_swevo_2024_101748
crossref_primary_10_1007_s12065_025_01021_1
crossref_primary_10_1007_s13369_024_09589_z
crossref_primary_10_1080_15325008_2023_2276843
crossref_primary_10_1088_2632_2153_ad55a5
crossref_primary_10_1109_TCSVT_2024_3512600
crossref_primary_10_3390_buildings14113695
crossref_primary_10_1109_TVT_2024_3452966
crossref_primary_10_1016_j_ins_2019_07_026
crossref_primary_10_1017_aer_2024_68
crossref_primary_10_3390_electronics12183787
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1111_jfs_13112
crossref_primary_10_1016_j_jksuci_2023_101689
crossref_primary_10_1080_17509653_2024_2381742
crossref_primary_10_1016_j_suscom_2022_100770
crossref_primary_10_1007_s10586_025_05364_3
crossref_primary_10_1186_s40537_025_01206_6
crossref_primary_10_1016_j_fuel_2024_132273
crossref_primary_10_3390_automation6030040
crossref_primary_10_1080_23080477_2023_2208398
crossref_primary_10_3390_sym14122554
crossref_primary_10_1016_j_engappai_2021_104653
crossref_primary_10_1007_s11042_022_12452_8
crossref_primary_10_1016_j_yofte_2019_101965
crossref_primary_10_1080_0305215X_2024_2390130
crossref_primary_10_3390_su13041639
crossref_primary_10_3390_math12081249
crossref_primary_10_1016_j_powtec_2022_117669
crossref_primary_10_1038_s41598_024_75743_0
crossref_primary_10_1007_s00521_023_08701_y
crossref_primary_10_1007_s12530_025_09686_w
crossref_primary_10_1007_s00500_025_10670_4
crossref_primary_10_1007_s11831_024_10189_1
crossref_primary_10_1186_s12976_020_00130_x
crossref_primary_10_1109_ACCESS_2023_3285815
crossref_primary_10_1080_15715124_2019_1680557
crossref_primary_10_1016_j_ins_2021_06_062
crossref_primary_10_1016_j_oceaneng_2022_113487
crossref_primary_10_1177_16878132221085324
crossref_primary_10_1016_j_bspc_2025_108035
crossref_primary_10_1049_joe_2019_1045
crossref_primary_10_1016_j_knosys_2022_109100
crossref_primary_10_3390_a18030119
crossref_primary_10_3390_app13085160
crossref_primary_10_1109_JIOT_2024_3425614
crossref_primary_10_1038_s41598_024_67424_9
crossref_primary_10_3390_su142114385
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_3390_photonics9100688
crossref_primary_10_1007_s12530_019_09318_0
crossref_primary_10_1080_10916466_2022_2092507
crossref_primary_10_1109_JAS_2021_1003835
crossref_primary_10_1515_jisys_2017_0641
crossref_primary_10_1016_j_est_2022_105795
crossref_primary_10_1007_s12065_019_00251_4
crossref_primary_10_1016_j_ijepes_2020_106627
crossref_primary_10_1111_exsy_13620
crossref_primary_10_3390_electronics10212718
crossref_primary_10_1002_mma_10346
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_1038_s41598_025_98012_0
crossref_primary_10_1007_s42044_024_00183_y
crossref_primary_10_1016_j_jhydrol_2022_129034
crossref_primary_10_1007_s42044_023_00163_8
crossref_primary_10_1016_j_jer_2024_10_011
crossref_primary_10_1371_journal_pone_0289173
crossref_primary_10_7717_peerj_cs_1735
crossref_primary_10_1080_00207543_2025_2550455
crossref_primary_10_1007_s00500_023_09087_8
crossref_primary_10_1016_j_asoc_2022_109791
crossref_primary_10_1109_ACCESS_2019_2955993
crossref_primary_10_1007_s11219_025_09714_7
crossref_primary_10_1007_s11069_022_05424_6
crossref_primary_10_1016_j_measen_2024_101030
crossref_primary_10_3390_ai6080167
crossref_primary_10_3390_app15105252
crossref_primary_10_1016_j_ymssp_2024_112041
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_3390_universe10010011
crossref_primary_10_1016_j_rico_2025_100604
crossref_primary_10_3390_su14031367
crossref_primary_10_1007_s10489_022_03478_4
crossref_primary_10_7717_peerj_cs_217
crossref_primary_10_1109_TIM_2025_3547095
crossref_primary_10_1016_j_measurement_2024_114759
crossref_primary_10_1080_21642583_2019_1708829
crossref_primary_10_3390_fractalfract8040217
crossref_primary_10_1007_s00521_021_05980_1
crossref_primary_10_1016_j_asoc_2024_111776
crossref_primary_10_1016_j_est_2023_109079
crossref_primary_10_1109_ACCESS_2019_2943546
crossref_primary_10_1016_j_jestch_2025_101982
crossref_primary_10_32604_cmc_2023_036020
crossref_primary_10_1016_j_advengsoft_2024_103831
crossref_primary_10_1186_s43088_020_00064_w
crossref_primary_10_1007_s00500_023_08077_0
crossref_primary_10_1007_s12517_019_4697_1
crossref_primary_10_3390_diagnostics13172848
crossref_primary_10_1007_s00034_024_02821_z
crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_1109_ACCESS_2019_2917502
crossref_primary_10_1016_j_istruc_2025_109567
crossref_primary_10_3233_IDT_230547
crossref_primary_10_1016_j_chemer_2023_126036
crossref_primary_10_3390_biomimetics9100595
crossref_primary_10_1145_3706059
crossref_primary_10_3390_biomimetics8020141
crossref_primary_10_3390_pr9030442
crossref_primary_10_1155_2023_5952072
crossref_primary_10_1177_1369433220921000
crossref_primary_10_1016_j_engfailanal_2022_106829
crossref_primary_10_3390_fractalfract8040225
crossref_primary_10_3390_pr10020197
crossref_primary_10_1016_j_egyai_2025_100589
crossref_primary_10_1016_j_swevo_2025_101874
crossref_primary_10_3389_fpubh_2022_925901
crossref_primary_10_1371_journal_pntd_0009756
crossref_primary_10_1109_ACCESS_2020_3005182
crossref_primary_10_1007_s00500_022_07767_5
crossref_primary_10_1007_s10878_023_01057_y
crossref_primary_10_1016_j_asoc_2020_106602
crossref_primary_10_1016_j_knosys_2022_110148
crossref_primary_10_1007_s10825_020_01464_y
crossref_primary_10_1016_j_measurement_2025_118711
crossref_primary_10_3390_pr10010036
crossref_primary_10_1007_s41207_024_00618_9
crossref_primary_10_1016_j_ces_2025_121214
crossref_primary_10_1016_j_jpowsour_2024_235217
crossref_primary_10_1016_j_ijepes_2025_110774
crossref_primary_10_34248_bsengineering_1613222
crossref_primary_10_1016_j_eswa_2023_120112
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_3390_electronics11182895
crossref_primary_10_1049_elp2_12135
crossref_primary_10_1155_2019_7189653
crossref_primary_10_1016_j_ijmecsci_2025_110689
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_1109_ACCESS_2020_3047942
crossref_primary_10_1016_j_ymssp_2020_106880
crossref_primary_10_1007_s11629_023_8388_8
crossref_primary_10_1007_s00521_025_11160_2
crossref_primary_10_1109_ACCESS_2025_3577667
crossref_primary_10_1016_j_jics_2021_100287
crossref_primary_10_1016_j_ins_2021_04_063
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1007_s41315_020_00129_0
crossref_primary_10_1016_j_energy_2025_136265
crossref_primary_10_1007_s10586_024_04888_4
crossref_primary_10_1016_j_asoc_2022_109235
crossref_primary_10_3390_en18143638
crossref_primary_10_1016_j_oceaneng_2023_115977
crossref_primary_10_1007_s12559_017_9542_9
crossref_primary_10_1177_09544062231208526
crossref_primary_10_3390_s23073714
crossref_primary_10_1007_s10462_023_10602_4
crossref_primary_10_1080_15567036_2019_1668880
crossref_primary_10_3390_electronics12183954
crossref_primary_10_1002_suco_202100682
crossref_primary_10_3390_wevj15110523
crossref_primary_10_1080_0952813X_2021_1960627
crossref_primary_10_1109_OJCOMS_2025_3578727
crossref_primary_10_1016_j_jhydrol_2024_131767
crossref_primary_10_2166_ws_2025_007
crossref_primary_10_1038_s41598_024_68281_2
crossref_primary_10_32604_cmc_2022_028942
crossref_primary_10_1109_ACCESS_2019_2906757
crossref_primary_10_1109_ACCESS_2020_3013706
crossref_primary_10_1016_j_knosys_2025_114471
crossref_primary_10_1088_1748_0221_17_08_P08034
crossref_primary_10_3390_rs13061196
crossref_primary_10_1007_s10479_024_06370_1
crossref_primary_10_3390_math11071745
crossref_primary_10_1016_j_apenergy_2022_119969
crossref_primary_10_3390_math10060999
crossref_primary_10_1109_ACCESS_2024_3457682
crossref_primary_10_1007_s42235_022_00327_5
crossref_primary_10_2478_pomr_2025_0029
crossref_primary_10_1007_s11600_023_01028_1
crossref_primary_10_1016_j_engappai_2022_105118
crossref_primary_10_1109_ACCESS_2020_3006469
crossref_primary_10_1007_s12083_024_01864_y
crossref_primary_10_1155_2023_9641673
crossref_primary_10_1177_09596518211048035
crossref_primary_10_1007_s11227_025_07374_9
crossref_primary_10_3390_pr13082506
crossref_primary_10_1007_s42235_021_0049_4
crossref_primary_10_1016_j_advengsoft_2020_102870
crossref_primary_10_1109_ACCESS_2024_3413586
crossref_primary_10_32604_cmc_2023_033382
crossref_primary_10_1007_s42044_023_00135_y
crossref_primary_10_3390_act14030137
crossref_primary_10_1007_s13198_022_01837_5
crossref_primary_10_1016_j_ipm_2022_103217
crossref_primary_10_1007_s00170_024_13734_1
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1038_s41598_024_53688_8
crossref_primary_10_1016_j_oceaneng_2025_120448
crossref_primary_10_1038_s41598_024_53873_9
crossref_primary_10_1016_j_apenergy_2024_123386
crossref_primary_10_1155_2022_4826388
crossref_primary_10_1007_s11227_022_04931_4
crossref_primary_10_1007_s12652_022_03872_3
crossref_primary_10_1016_j_compag_2025_110577
crossref_primary_10_1155_2021_9564583
crossref_primary_10_1007_s12008_024_01934_8
crossref_primary_10_1016_j_istruc_2024_108138
crossref_primary_10_1007_s42243_021_00673_4
crossref_primary_10_1016_j_compag_2024_109167
crossref_primary_10_1515_jisys_2018_0129
crossref_primary_10_70322_hee_2025_10006
crossref_primary_10_1016_j_eswa_2019_112913
crossref_primary_10_1177_14759217251319513
crossref_primary_10_1007_s00500_021_05886_z
crossref_primary_10_1007_s10586_024_04623_z
crossref_primary_10_1002_cpe_8109
crossref_primary_10_1016_j_cie_2018_12_061
crossref_primary_10_1016_j_enconman_2022_115590
crossref_primary_10_1007_s00521_021_05960_5
crossref_primary_10_3390_s23249878
crossref_primary_10_1016_j_energy_2022_124935
crossref_primary_10_1109_ACCESS_2023_3341507
crossref_primary_10_1080_15397734_2024_2321971
crossref_primary_10_1109_ACCESS_2023_3292792
crossref_primary_10_1007_s11042_022_13260_w
crossref_primary_10_1088_1742_6596_3031_1_012017
crossref_primary_10_1016_j_rser_2022_112285
crossref_primary_10_1007_s00500_023_09226_1
crossref_primary_10_1007_s00521_023_09292_4
crossref_primary_10_3390_s21186240
crossref_primary_10_3390_w15050856
crossref_primary_10_1007_s10489_024_05725_2
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1016_j_jup_2025_101929
crossref_primary_10_3390_w13010091
crossref_primary_10_1016_j_compeleceng_2025_110539
crossref_primary_10_1080_02626667_2021_1985123
crossref_primary_10_1007_s12652_024_04756_4
crossref_primary_10_3390_e25111488
crossref_primary_10_1109_ACCESS_2019_2926155
crossref_primary_10_53759_7669_jmc202505202
crossref_primary_10_1038_s41598_023_49025_0
crossref_primary_10_1371_journal_pone_0298373
crossref_primary_10_3390_eng4020075
crossref_primary_10_1155_2024_3293579
crossref_primary_10_1007_s11042_023_15436_4
crossref_primary_10_1007_s13369_018_3098_1
crossref_primary_10_1007_s13042_018_00913_2
crossref_primary_10_3390_land14061199
crossref_primary_10_1016_j_asoc_2025_113184
crossref_primary_10_1109_ACCESS_2020_3021527
crossref_primary_10_1007_s42835_024_01900_0
crossref_primary_10_1016_j_asoc_2023_110791
crossref_primary_10_1016_j_energy_2022_123863
crossref_primary_10_1371_journal_pone_0316536
crossref_primary_10_3233_JIFS_212729
crossref_primary_10_1007_s11269_019_02472_9
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1007_s10586_022_03675_3
crossref_primary_10_1007_s11042_023_14473_3
crossref_primary_10_3390_math12223447
crossref_primary_10_3390_axioms13050335
crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1002_suco_202100250
crossref_primary_10_61325_ser_v1i13_171
crossref_primary_10_1108_ECAM_12_2022_1176
crossref_primary_10_1016_j_anucene_2020_107703
crossref_primary_10_1080_02286203_2024_2414951
crossref_primary_10_1371_journal_pone_0275104
crossref_primary_10_1080_10106049_2022_2160832
crossref_primary_10_1016_j_eswa_2024_124707
crossref_primary_10_1016_j_eswa_2022_118700
crossref_primary_10_3390_su15043312
crossref_primary_10_3390_math11092079
crossref_primary_10_3233_JIFS_230894
crossref_primary_10_1007_s12665_023_11222_5
crossref_primary_10_3390_drones9090613
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1080_10298436_2021_2005056
crossref_primary_10_3390_computers14030107
crossref_primary_10_1016_j_phycom_2023_102110
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_1109_ACCESS_2022_3203998
crossref_primary_10_1109_LES_2022_3230364
crossref_primary_10_1007_s13042_019_01027_z
crossref_primary_10_1016_j_asoc_2021_107717
crossref_primary_10_1038_s41598_024_65547_7
crossref_primary_10_1371_journal_pone_0306166
crossref_primary_10_1038_s41598_024_84934_8
crossref_primary_10_3390_app15020489
crossref_primary_10_1016_j_jclepro_2023_140054
crossref_primary_10_1109_TMTT_2021_3132892
crossref_primary_10_1007_s12530_019_09291_8
crossref_primary_10_1088_1742_6596_1883_1_012036
crossref_primary_10_1007_s42452_021_04598_1
crossref_primary_10_3390_app151810266
crossref_primary_10_1007_s11227_024_05930_3
crossref_primary_10_1038_s41598_025_98226_2
crossref_primary_10_1142_S219688882150007X
crossref_primary_10_3390_drones9040246
crossref_primary_10_1016_j_est_2023_109891
crossref_primary_10_1080_0952813X_2025_2515578
crossref_primary_10_1016_j_compag_2023_108454
crossref_primary_10_1007_s00500_024_09878_7
crossref_primary_10_1016_j_asoc_2019_105800
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_1109_ACCESS_2021_3105581
crossref_primary_10_3390_su15065470
crossref_primary_10_1155_2024_1953277
crossref_primary_10_1016_j_apacoust_2024_110463
crossref_primary_10_3390_biomimetics10070445
crossref_primary_10_1007_s00500_022_07604_9
crossref_primary_10_1007_s11042_022_13937_2
crossref_primary_10_1080_00207721_2024_2367079
crossref_primary_10_1080_0305215X_2019_1634702
crossref_primary_10_1007_s00521_019_04368_6
crossref_primary_10_1016_j_mlwa_2025_100709
crossref_primary_10_1016_j_eswa_2023_122349
crossref_primary_10_1007_s10668_022_02238_1
crossref_primary_10_1007_s12559_022_09998_y
crossref_primary_10_12677_airr_2024_133055
crossref_primary_10_1007_s13042_025_02686_x
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1061_PPSCFX_SCENG_1321
crossref_primary_10_1016_j_cobeha_2022_101173
crossref_primary_10_1007_s10845_024_02377_4
crossref_primary_10_1007_s12559_025_10406_4
crossref_primary_10_1002_2050_7038_12609
crossref_primary_10_1155_2022_3603607
crossref_primary_10_31854_1813_324X_2025_11_3_7_24
crossref_primary_10_3390_math11061421
crossref_primary_10_1007_s00521_021_06885_9
crossref_primary_10_1038_s41598_025_99837_5
crossref_primary_10_3390_app15126416
crossref_primary_10_1016_j_eswa_2022_116971
crossref_primary_10_3390_math13081236
crossref_primary_10_1016_j_compeleceng_2024_109683
crossref_primary_10_1016_j_jnca_2021_103141
crossref_primary_10_1038_s41598_025_15359_0
crossref_primary_10_1016_j_jhydrol_2024_132452
crossref_primary_10_1016_j_eswa_2023_121194
crossref_primary_10_1016_j_measurement_2023_113336
crossref_primary_10_3390_sym14061227
crossref_primary_10_3390_mi13071104
crossref_primary_10_1134_S1054661820040100
crossref_primary_10_1007_s11269_020_02656_8
crossref_primary_10_1016_j_jenvman_2024_120091
crossref_primary_10_1007_s00366_020_01131_7
crossref_primary_10_1016_j_microc_2024_111557
crossref_primary_10_3390_ijerph17030853
crossref_primary_10_1080_17517575_2021_2023764
crossref_primary_10_1109_ACCESS_2021_3051452
crossref_primary_10_3390_su13020457
crossref_primary_10_1109_ACCESS_2021_3109630
crossref_primary_10_1007_s40313_020_00600_0
crossref_primary_10_1016_j_jsse_2019_10_005
crossref_primary_10_1007_s42452_023_05552_z
crossref_primary_10_3390_computers12020035
crossref_primary_10_1007_s11356_020_08792_3
crossref_primary_10_1016_j_aichem_2023_100021
crossref_primary_10_1002_cpe_6204
crossref_primary_10_3390_buildings11020049
crossref_primary_10_1016_j_asoc_2018_11_047
crossref_primary_10_1080_17538947_2024_2378819
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1016_j_resourpol_2022_102780
crossref_primary_10_1016_j_trgeo_2024_101233
crossref_primary_10_3390_pr10030616
crossref_primary_10_7717_peerj_cs_2031
crossref_primary_10_3390_en18112934
crossref_primary_10_1007_s00521_025_11454_5
crossref_primary_10_1007_s13198_025_02857_7
crossref_primary_10_1007_s00034_022_02130_3
crossref_primary_10_1016_j_jksuci_2024_102261
crossref_primary_10_1109_TIA_2022_3147151
crossref_primary_10_1155_2020_4516132
crossref_primary_10_1007_s00521_019_04103_1
crossref_primary_10_1007_s10973_020_09895_2
crossref_primary_10_1016_j_eswa_2019_113134
crossref_primary_10_1016_j_ijleo_2021_167973
crossref_primary_10_1016_j_rineng_2025_104748
crossref_primary_10_1088_1402_4896_add810
crossref_primary_10_1016_j_asoc_2025_113453
crossref_primary_10_1016_j_mtcomm_2024_108832
crossref_primary_10_1109_ACCESS_2023_3311751
crossref_primary_10_1016_j_asoc_2020_106480
crossref_primary_10_1155_2021_6636873
crossref_primary_10_32604_cmc_2023_043239
crossref_primary_10_1109_ACCESS_2022_3227712
crossref_primary_10_1007_s40997_023_00604_6
crossref_primary_10_1016_j_ins_2021_11_051
crossref_primary_10_1177_14759217221138464
crossref_primary_10_3390_s20051377
crossref_primary_10_1007_s00521_019_04422_3
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1016_j_eswa_2024_125720
crossref_primary_10_1007_s00521_024_10910_y
crossref_primary_10_1007_s00521_022_07262_w
crossref_primary_10_1007_s11269_024_03935_4
crossref_primary_10_1016_j_enconman_2023_117891
crossref_primary_10_3390_diagnostics15121449
crossref_primary_10_3390_s23146645
crossref_primary_10_1016_j_matcom_2022_10_007
crossref_primary_10_1109_ACCESS_2020_3033451
crossref_primary_10_1088_1757_899X_928_2_022006
crossref_primary_10_1016_j_asoc_2023_110031
crossref_primary_10_1007_s10999_025_09769_1
crossref_primary_10_1016_j_eswa_2022_117864
crossref_primary_10_1007_s10462_025_11279_7
crossref_primary_10_1016_j_mechmachtheory_2022_105169
crossref_primary_10_1016_j_jclepro_2022_130900
crossref_primary_10_1007_s00521_021_05844_8
crossref_primary_10_1007_s10845_020_01732_5
crossref_primary_10_1061__ASCE_PS_1949_1204_0000597
crossref_primary_10_1007_s12652_020_01919_x
crossref_primary_10_1007_s40430_023_04391_8
crossref_primary_10_1007_s41324_025_00627_y
crossref_primary_10_1016_j_jhydrol_2022_128001
crossref_primary_10_3390_app142311116
crossref_primary_10_1109_ACCESS_2020_3015892
crossref_primary_10_3390_math10030464
crossref_primary_10_1016_j_yofte_2024_104023
crossref_primary_10_1088_1742_6596_1581_1_012014
crossref_primary_10_3389_fsufs_2023_1172522
crossref_primary_10_1155_2024_5097056
crossref_primary_10_3390_pr12040783
crossref_primary_10_1007_s00500_023_09472_3
crossref_primary_10_1007_s13202_025_02048_x
crossref_primary_10_3390_coatings11121458
crossref_primary_10_1049_iet_gtd_2020_0805
crossref_primary_10_1109_ACCESS_2019_2934994
crossref_primary_10_3390_math11102259
crossref_primary_10_1088_1757_899X_1043_4_042036
crossref_primary_10_1007_s11042_023_17081_3
crossref_primary_10_3390_s22010130
crossref_primary_10_1007_s13369_022_07285_4
crossref_primary_10_1016_j_apm_2023_08_043
crossref_primary_10_1364_AO_444593
crossref_primary_10_3390_math10030351
crossref_primary_10_1007_s11227_023_05423_9
crossref_primary_10_1007_s12652_023_04655_0
crossref_primary_10_1016_j_cie_2020_106280
crossref_primary_10_1007_s00366_019_00837_7
crossref_primary_10_1007_s00521_022_07704_5
crossref_primary_10_1016_j_applthermaleng_2025_125615
crossref_primary_10_1371_journal_pone_0276943
crossref_primary_10_48084_etasr_10964
crossref_primary_10_1109_JSYST_2020_2986647
crossref_primary_10_1007_s41403_025_00523_9
crossref_primary_10_32604_cmc_2021_019047
crossref_primary_10_1007_s10791_025_09685_0
crossref_primary_10_1109_ACCESS_2022_3190508
crossref_primary_10_1155_2021_6667210
crossref_primary_10_1177_09544062221096557
crossref_primary_10_1016_j_saa_2025_125767
crossref_primary_10_1108_COMPEL_07_2022_0229
crossref_primary_10_1109_ACCESS_2023_3241240
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_3390_mi16060701
crossref_primary_10_1007_s00500_023_08575_1
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_1007_s41742_025_00814_7
crossref_primary_10_1007_s00521_021_06513_6
crossref_primary_10_1007_s11831_022_09843_3
crossref_primary_10_1007_s11540_024_09755_8
crossref_primary_10_3390_en12122274
crossref_primary_10_1109_ACCESS_2023_3269292
crossref_primary_10_1002_nag_4020
crossref_primary_10_1007_s10115_025_02389_3
crossref_primary_10_3390_electronics13244995
crossref_primary_10_1016_j_ces_2025_121911
crossref_primary_10_1016_j_conbuildmat_2020_118633
crossref_primary_10_1177_00037028221141728
crossref_primary_10_1088_1361_6501_acd5f3
crossref_primary_10_1007_s00366_018_0668_5
crossref_primary_10_3390_s22186730
crossref_primary_10_1007_s10115_025_02354_0
crossref_primary_10_3233_JIFS_211034
crossref_primary_10_3390_math11102356
crossref_primary_10_1016_j_renene_2024_121745
crossref_primary_10_1007_s12597_023_00721_5
crossref_primary_10_1016_j_cma_2023_116307
crossref_primary_10_1016_j_jclepro_2020_120419
crossref_primary_10_1109_TSMC_2024_3401412
crossref_primary_10_3390_drones8090467
crossref_primary_10_1002_nme_6573
crossref_primary_10_1007_s00500_025_10904_5
crossref_primary_10_3390_s24175821
crossref_primary_10_3390_rs16213978
crossref_primary_10_1002_int_22263
crossref_primary_10_3390_rs17060961
crossref_primary_10_1016_j_knosys_2022_108701
crossref_primary_10_1007_s40808_024_02040_0
crossref_primary_10_1002_cpe_7512
crossref_primary_10_1016_j_enconman_2023_117057
crossref_primary_10_1038_s41598_024_79128_1
crossref_primary_10_3390_w12113015
crossref_primary_10_1515_ijeeps_2020_0008
crossref_primary_10_3390_app13031259
crossref_primary_10_1108_WJE_10_2020_0527
crossref_primary_10_1007_s11269_023_03478_0
crossref_primary_10_1016_j_jfca_2025_107738
crossref_primary_10_1016_j_knosys_2021_107034
crossref_primary_10_3389_feart_2023_1122937
crossref_primary_10_1016_j_eswa_2021_115198
crossref_primary_10_3390_en13010215
crossref_primary_10_1088_1402_4896_ad8486
crossref_primary_10_1007_s10668_025_06635_0
crossref_primary_10_1007_s10586_023_04090_y
crossref_primary_10_1016_j_eswa_2019_07_031
crossref_primary_10_1016_j_apenergy_2019_04_119
crossref_primary_10_1177_18758967251358114
crossref_primary_10_1109_ACCESS_2024_3361936
crossref_primary_10_1109_ACCESS_2024_3454669
crossref_primary_10_1364_AO_391731
crossref_primary_10_3389_fenrg_2024_1350076
crossref_primary_10_1007_s10586_025_05468_w
crossref_primary_10_1016_j_jii_2022_100368
crossref_primary_10_3389_fenrg_2024_1301700
crossref_primary_10_1007_s10462_020_09911_9
crossref_primary_10_1063_5_0054894
crossref_primary_10_1109_TGRS_2023_3324043
crossref_primary_10_1155_etep_7726984
crossref_primary_10_1007_s11760_023_02846_y
crossref_primary_10_1016_j_nucengdes_2022_111776
crossref_primary_10_1002_app_55068
crossref_primary_10_3390_su152115634
crossref_primary_10_1016_j_asoc_2022_109925
crossref_primary_10_1109_TIM_2021_3126006
crossref_primary_10_1007_s00521_019_04284_9
crossref_primary_10_1007_s12530_025_09710_z
crossref_primary_10_1016_j_measen_2022_100431
crossref_primary_10_3233_JIFS_179601
crossref_primary_10_1007_s12145_024_01300_y
crossref_primary_10_1109_TCBB_2024_3385402
crossref_primary_10_1016_j_eswa_2018_07_022
crossref_primary_10_1007_s40435_024_01502_8
crossref_primary_10_1109_TASE_2025_3570709
crossref_primary_10_1016_j_swevo_2025_102009
crossref_primary_10_1016_j_apenergy_2023_122503
crossref_primary_10_1016_j_energy_2024_133372
crossref_primary_10_1007_s00521_020_04866_y
crossref_primary_10_1016_j_asoc_2021_108322
crossref_primary_10_1016_j_icheatmasstransfer_2025_109496
crossref_primary_10_1109_ACCESS_2021_3063723
crossref_primary_10_1016_j_egyr_2022_09_015
crossref_primary_10_1007_s42979_024_03489_7
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1007_s11042_023_16964_9
crossref_primary_10_1016_j_asoc_2018_07_040
crossref_primary_10_1016_j_eswa_2021_114920
crossref_primary_10_1016_j_jobe_2025_113577
crossref_primary_10_1007_s00521_020_05431_3
crossref_primary_10_1016_j_eswa_2023_121917
crossref_primary_10_1007_s40430_021_03125_y
crossref_primary_10_1007_s00521_022_07969_w
crossref_primary_10_1007_s12652_020_02514_w
crossref_primary_10_1109_TIA_2020_2990584
crossref_primary_10_1155_2023_2017167
crossref_primary_10_3390_robotics7040067
crossref_primary_10_1016_j_oceaneng_2022_111449
crossref_primary_10_1155_2023_4577581
crossref_primary_10_1002_cpe_6603
crossref_primary_10_1007_s00477_024_02776_2
crossref_primary_10_3390_math10193563
crossref_primary_10_1002_2050_7038_13113
crossref_primary_10_3390_computers11120170
crossref_primary_10_1155_2022_5880959
crossref_primary_10_1016_j_asoc_2021_107328
crossref_primary_10_1080_23080477_2019_1630057
crossref_primary_10_3390_act12060220
crossref_primary_10_1007_s00521_022_07836_8
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1080_15325008_2023_2280109
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_1109_ACCESS_2020_3005711
crossref_primary_10_1371_journal_pone_0275727
crossref_primary_10_1016_j_rineng_2025_106530
crossref_primary_10_1007_s11665_025_11112_w
crossref_primary_10_1016_j_knosys_2025_113753
crossref_primary_10_1007_s12652_021_03320_8
crossref_primary_10_1007_s00500_021_06282_3
crossref_primary_10_1016_j_apr_2023_101916
crossref_primary_10_1007_s00521_021_06050_2
crossref_primary_10_1007_s00521_025_10982_4
crossref_primary_10_3390_biomimetics9010054
crossref_primary_10_1016_j_isci_2025_112419
crossref_primary_10_3390_s24113573
crossref_primary_10_1109_ACCESS_2020_2990338
crossref_primary_10_1016_j_colsurfa_2024_135906
crossref_primary_10_1016_j_pnucene_2021_103769
crossref_primary_10_1080_02626667_2021_1981544
crossref_primary_10_1177_14759217251334315
crossref_primary_10_1109_JIOT_2023_3291367
crossref_primary_10_3390_app15031031
crossref_primary_10_1007_s11042_023_15146_x
crossref_primary_10_1007_s11831_022_09853_1
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1016_j_rser_2021_111327
crossref_primary_10_1016_j_actatropica_2025_107657
crossref_primary_10_1038_s41598_025_85561_7
crossref_primary_10_55546_jmm_1660142
crossref_primary_10_1016_j_cscm_2024_e03869
crossref_primary_10_3390_a18050240
crossref_primary_10_1109_JSEN_2024_3508742
crossref_primary_10_1007_s00521_018_3822_5
Cites_doi 10.1108/IJESM-09-2014-0003
10.1007/s10489-014-0645-7
10.1109/ICELMACH.2016.7732627
10.1109/VTCFall.2014.6966100
10.1016/j.enconman.2016.10.062
10.1109/ICITEED.2015.7408911
10.1007/s00521-015-1870-7
10.1109/SOCPAR.2015.7492781
10.1016/j.jocs.2015.03.011
10.1007/s00521-014-1806-7
10.1109/MHS.1995.494215
10.1109/ICEC.1997.592258
10.1002/qre.2107
10.1016/j.procs.2015.09.006
10.1109/TSTE.2015.2482120
10.1109/72.788640
10.1016/j.asoc.2017.03.048
10.1016/j.ijepes.2015.06.005
10.1016/j.soildyn.2015.04.004
10.1016/j.knosys.2015.07.006
10.1155/2016/1205970
10.1063/1.4950945
10.1109/2.485891
10.1049/iet-gtd.2015.0429
10.1080/23311916.2016.1256083
10.1016/j.epsr.2015.12.019
10.1002/9780470512517
10.1007/978-1-4757-2440-0
10.1109/ICEEOT.2016.7755160
10.1109/TEC.2016.2633722
10.1016/j.renene.2017.04.036
10.1887/0750308958
10.1155/2016/7950348
10.1016/j.advengsoft.2013.12.007
10.1063/1.4973255
10.1109/CEC.2016.7744183
10.1109/JSEE.2015.00037
10.1088/1757-899X/83/1/012014
10.1016/j.asoc.2015.09.045
10.1007/978-3-319-26690-9_22
10.1108/COMPEL-09-2015-0337
10.3390/a9010004
10.1109/ICPES.2016.7584086
10.1504/IJETP.2015.069821
10.1016/j.advengsoft.2015.01.010
10.1007/978-981-10-0135-2_13
10.1109/ACCESS.2016.2613940
10.3390/en10040459
10.1109/LPT.2015.2464332
10.1002/cpe.4044
10.1007/s00521-015-1996-7
10.1016/j.advengsoft.2016.05.015
10.1162/NECO_a_00684
10.1007/978-3-642-04944-6_14
10.13189/ujcn.2015.030101
10.1109/ICENCO.2015.7416358
10.1109/4235.585892
10.1007/BF01593790
10.1016/j.ijleo.2016.11.173
10.1109/IJCNN.2015.7280704
10.1080/15325008.2015.1041625
10.15866/iremos.v7i5.2799
10.1007/s00521-015-1962-4
10.1007/s40313-017-0305-3
10.1023/A:1008202821328
10.1016/j.ijepes.2015.07.031
10.1007/978-3-319-47054-2_25
10.1109/ICSECS.2015.7333107
10.1016/j.asoc.2015.03.041
10.1109/ICACCI.2016.7732343
10.1109/ICRITO.2015.7359368
10.1109/ICACCI.2015.7275611
10.1016/j.ifacol.2016.07.089
10.1080/15325008.2017.1292567
10.1007/s00521-015-1920-1
10.1007/978-3-319-26690-9_27
10.1016/j.eswa.2017.04.029
10.1080/1448837X.2015.1092933
10.1109/ACCESS.2017.2726586
10.1049/iet-gtd.2015.1141
10.1007/978-3-319-26690-9_21
10.1016/j.ifacol.2016.03.151
10.1515/jisys-2014-0137
10.1007/s00521-016-2644-6
10.5220/0006048201710177
10.1007/978-981-10-0448-3_87
10.1109/ICCIC.2015.7435714
10.1109/ICSEC.2014.6978196
10.1007/s11042-016-4312-3
10.1109/TIE.2016.2607698
10.1504/IJDMB.2016.078151
10.1016/j.neucom.2015.06.083
10.1016/j.eswa.2015.10.039
10.1016/j.energy.2016.05.105
10.1109/ICIEV.2015.7334054
10.1109/ICSCTI.2015.7489575
10.1109/ISCBI.2016.7743266
10.1016/j.advengsoft.2016.06.004
10.1016/j.knosys.2015.12.022
10.1109/TEVC.2008.919004
10.1080/23311916.2016.1151612
10.1016/j.enconman.2015.04.005
10.1016/j.energy.2016.05.128
10.1049/iet-gtd.2015.0726
10.1016/j.supflu.2016.04.006
10.1109/PECON.2014.7062431
10.1145/2480741.2480752
10.1016/j.procs.2016.07.329
10.1007/978-3-540-30217-9_29
10.1016/j.atmosenv.2016.03.056
10.1109/ICCKE.2015.7365818
10.1016/j.ijepes.2016.04.034
10.14311/NNW.2016.26.023
10.1155/2017/9512741
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2016.12.022
10.1016/j.cnsns.2012.05.010
10.1016/j.engappai.2016.10.013
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Natural Computing Applications Forum 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00521-017-3272-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 435
ExternalDocumentID 10_1007_s00521_017_3272_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c417t-83af1005bdc1ef5adfa45fe2f6eb96f8c81b9434f6b18d49be22eeafbbbe95de3
IEDL.DBID RSV
ISICitedReferencesCount 686
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435110800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 16:32:59 EST 2025
Sat Nov 29 07:51:15 EST 2025
Tue Nov 18 20:45:27 EST 2025
Fri Feb 21 02:35:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Metaheuristics
Optimization
GWO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-83af1005bdc1ef5adfa45fe2f6eb96f8c81b9434f6b18d49be22eeafbbbe95de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1443-9458
OpenAccessLink http://hdl.handle.net/10072/408429
PQID 2054144086
PQPubID 2043988
PageCount 23
ParticipantIDs proquest_journals_2054144086
crossref_primary_10_1007_s00521_017_3272_5
crossref_citationtrail_10_1007_s00521_017_3272_5
springer_journals_10_1007_s00521_017_3272_5
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-gaussian radial basis functional-link nets. In: 2014 international computer science and engineering conference (ICSEC), pp 209–214
LiSXWangJSDynamic modeling of steam condenser and design of pi controller based on grey wolf optimizerMath Probl Eng201520159
MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell201543115016110.1007/s10489-014-0645-7
MahdadBSrairiKBlackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithmsEnergy Convers Manag20159841142910.1016/j.enconman.2015.04.005
Mostafa A, Fouad A, Houseni M, Allam N, Hassanien AE, Hefny H, Aslanishvili I (2016) A hybrid grey wolf based segmentation with statistical image for ct liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 846–855
KozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
Chaman-MotlaghASuperdefect photonic crystal filter optimization using grey wolf optimizerIEEE Photonics Technol Lett201527222355235810.1109/LPT.2015.2464332
MohantySSubudhiBRayPKA grey wolf-assisted perturb observe MPPT algorithm for a PV systemIEEE Trans Energy Convers20163234034710.1109/TEC.2016.2633722
Sangwan V, Kumar R, Rathore AK (2016) Estimation of battery parameters of the equivalent circuit model using grey wolf optimization. In: 2016 IEEE 6th international conference on power systems (ICPS). IEEE, pp 1–6
EmaryEZawbaaHMGrosanCHassenianAEFeature subset selection approach by gray-wolf optimization2015ChamSpringer113
KomakiGMKayvanfarVGrey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release timeJ Comput Sci2015810912010.1016/j.jocs.2015.03.011
GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul2012171248314845296027910.1016/j.cnsns.2012.05.0101266.65092
SanjayRJayabarathiTRaghunathanTRameshVMithulananthanNOptimal allocation of distributed generation using hybrid grey wolf optimizerIEEE Access20175148071481810.1109/ACCESS.2017.2726586
MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
KhairuzzamanAKMChaudhurySMultilevel thresholding using grey wolf optimizer for image segmentationExpert Syst Appl201786647610.1016/j.eswa.2017.04.029
Sweidan AH, El-Bendary N, Hassanien AE, Hegazy OM, Mohamed A-K (2016) Grey wolf optimizer and case-based reasoning model for water quality assessment. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. Springer, pp. 229–239
Elhariri E, El-Bendary N, Hassanien AE, Abraham A (2015) Grey wolf optimization for one-against-one multi-class support vector machines. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 7–12
SongXTangLZhaoSZhangXLiLHuangJCaiWGrey wolf optimizer for parameter estimation in surface wavesSoil Dyn Earthq Eng20157514715710.1016/j.soildyn.2015.04.004
LiLSunLKangWGuoJChongHLiSFuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregationIEEE Access201646438645010.1109/ACCESS.2016.2613940
LiLSunLGuoJQiJXuBLiSModified discrete grey wolf optimizer algorithm for multilevel image thresholdingComput Intell Neurosci2017201716
EngelbrechtAPComputational intelligence: an introduction2007HobokenWiley10.1002/9780470512517
SulaimanMHMustaffaZMohamedMRAlimanOUsing the gray wolf optimizer for solving optimal reactive power dispatch problemAppl Soft Comput20153228629210.1016/j.asoc.2015.03.041
Al-Aboody NA, Al-Raweshidy HS (2016) Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In: 2016 4th international symposium on computational and business intelligence (ISCBI). IEEE, pp 101–107
DorigoMGambardellaLMAnt colony system: a cooperative learning approach to the traveling salesman problemIEEE Trans Evol Comput199711536610.1109/4235.585892
MittalNSinghUSohiBSModified grey wolf optimizer for global engineering optimizationAppl Comput Intell Soft Comput20162016810.1155/2016/7950348
Hai Phong Private Universty (2016) Estimation localization in wireless sensor network based on multi-objective grey wolf optimizer. In: Advances in information and communication technology: proceedings of the international conference, ICTA 2016, vol 538. Springer, p 228
ČrepinšekMLiuS-HMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.68251
JayapriyaJArockMAligning two molecular sequences using genetic operators in grey wolf optimiser techniqueInt J Data Min Bioinf201615432834910.1504/IJDMB.2016.078151
RazmjooyNRamezaniMNamadchianAA new lqr optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizerMajlesi J Electr Eng201610353
EmaryEZawbaaHMHassanienAEBinary grey wolf optimization approaches for feature selectionNeurocomputing201617237138110.1016/j.neucom.2015.06.083
RameshkumarJGanesanSAbiramiMSubramanianSCost, emission and reserve pondered pre-dispatch of thermal power generating units coordinated with real coded grey wolf optimisationIET Gener Trans Distrib201610497298510.1049/iet-gtd.2015.0726
ZhouJZhuWZhengYLiCPrecise equivalent model of small hydro generator cluster and its parameter identification using improved grey wolf optimiserIET Gener Transm Distrib20161092108211710.1049/iet-gtd.2015.1141
KumarAPantSRamMSystem reliability optimization using gray wolf optimizer algorithmQual Reliab Eng Int2016331327133510.1002/qre.2107
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135
PrecupREDavidRCPetriuEMSzedlak-StineanAIClaudia-AdinaB-DGrey wolf optimizer-based approach to the tuning of pi-fuzzy controllers with a reduced process parametric sensitivityIFAC-PapersOnLine2016495556010.1016/j.ifacol.2016.07.089
Wong LI, Sulaiman MH, Mohamed MR, Hong MS (2014) Grey wolf optimizer for solving economic dispatch problems. In: 2014 IEEE international conference on power and energy (PECon). IEEE, pp 150–154
KambojVKA novel hybrid pso-gwo approach for unit commitment problemNeural Comput Appl20162761643165510.1007/s00521-015-1962-4
Korayem L, Khorsid M, Kassem SS (2015) Using grey wolf algorithm to solve the capacitated vehicle routing problem. In: IOP conference series: materials science and engineering, vol 83. IOP Publishing, p 012014
ZhangSZhouYLiZPanWGrey wolf optimizer for unmanned combat aerial vehicle path planningAdv Eng Softw20169912113610.1016/j.advengsoft.2016.05.015
Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: International conference on parallel problem solving from nature. Springer, pp 282–291
JayakumarNSubramanianSGanesanSElanchezhianEBCombined heat and power dispatch by grey wolf optimizationInt J Energy Sect Manag20159452354610.1108/IJESM-09-2014-0003
RodríguezLCastilloOSoriaJMelinPValdezFGonzalezCIMartinezGESotoJA fuzzy hierarchical operator in the grey wolf optimizer algorithmAppl Soft Comput20175731532810.1016/j.asoc.2017.03.048
SaxenaPKothariAOptimal pattern synthesis of linear antenna array using grey wolf optimization algorithmInt J Antennas Propag201620161110.1155/2016/1205970
VermaSKYadavSNagarSKOptimization of fractional order pid controller using grey wolf optimizerJ Control Autom Electr Syst2017281910.1007/s40313-017-0305-3
FathyAAbdelazizAYGrey wolf optimizer for optimal sizing and siting of energy storage system in electric distribution networkElectric Power Compon Syst20174511410.1080/15325008.2017.1292567
AliMElhameedMAFarahatMAEffective parameters identification for polymer electrolyte membrane fuel cell models using grey wolf optimizerRenew Energy201711145546210.1016/j.renene.2017.04.036
EngelbrechtAPFundamentals of computational swarm intelligence2006HobokenWiley
NiuMWangYSunSLiYA novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term pm 2.5 concentration forecastingAtmos Environ201613416818010.1016/j.atmosenv.2016.03.056
YadavSVermaSKNagarSKOptimized pid controller for magnetic levitation systemIFAC-PapersOnLine201649177878210.1016/j.ifacol.2016.03.151
Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214
MadadiAMotlaghMMOptimal control of dc motor using grey wolf optimizer algorithmTJEAS Journal-2014-4-04/373-37920144437379
VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-00833.62008
PrecupREDavidRCPetriuEMGrey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivityIEEE Trans Industr Electron201764152753410.1109/TIE.2016.2607698
Vosooghifard M, Ebrahimpour H (2015) Applying grey wolf optimizer-based decision tree classifer for cancer classification on gene expression data. In: 2015 5th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 147–151
Tsai PW, Dao TK, et al (2016) Robot path planning optimization based on multiobjective grey wolf optimizer. In: International conference on genetic and evolutionary computing. Springer, pp 166–173
Dao TK (2016) Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks. In: Genetic and evolutionary computing: proceedings of the tenth international conference on genetic and evolutionary computing, November 7–9, 2016 Fuzhou City, Fujian Province, China, vol 536. Springer, p 174
DudaniARChudasamaKPartial discharge detection in transformer using ad
J Jayapriya (3272_CR46) 2016; 15
M Niu (3272_CR95) 2016; 134
AP Engelbrecht (3272_CR23) 2006
S Mirjalili (3272_CR84) 2016; 47
S Mirjalili (3272_CR76) 2015; 83
S Mirjalili (3272_CR81) 2016; 95
W Long (3272_CR67) 2016; 28
VK Kamboj (3272_CR49) 2015; 27
YL Karnavas (3272_CR52) 2016; 6
3272_CR45
Q Luo (3272_CR70) 2015; 9
3272_CR124
3272_CR47
RE Precup (3272_CR100) 2017; 64
S Mirjalili (3272_CR82) 2016; 27
M Črepinšek (3272_CR8) 2013; 45
MR Mosavi (3272_CR90) 2016; 26
3272_CR125
E Gupta (3272_CR32) 2016; 3
A Kumar (3272_CR60) 2016; 33
3272_CR129
3272_CR50
3272_CR51
S Saremi (3272_CR111) 2015; 26
D Simon (3272_CR116) 2008; 12
3272_CR131
J Rameshkumar (3272_CR103) 2016; 10
3272_CR133
3272_CR56
3272_CR58
AR Dudani (3272_CR14) 2016; 3
J Rameshkumar (3272_CR102) 2015; 13
S Mohanty (3272_CR88) 2016; 32
N Razmjooy (3272_CR104) 2016; 10
H Yang (3272_CR136) 2015; 5
MR Shakarami (3272_CR113) 2016; 133
S Eswaramoorthy (3272_CR25) 2016; 35
AA El-Fergany (3272_CR16) 2015; 43
SX Li (3272_CR66) 2015; 2015
V Kumar (3272_CR61) 2017; 26
S Zhang (3272_CR141) 2016; 99
AP Engelbrecht (3272_CR24) 2007
3272_CR26
B Mahdad (3272_CR72) 2015; 98
N Jayakumar (3272_CR43) 2015; 9
S Mirjalili (3272_CR78) 2015; 89
3272_CR28
S Zhang (3272_CR139) 2015; 2015
S Sharma (3272_CR114) 2016; 10
A Madadi (3272_CR71) 2014; 4
L Rodríguez (3272_CR107) 2017; 57
3272_CR106
3272_CR105
3272_CR109
L Li (3272_CR63) 2017; 2017
3272_CR30
M Pradhan (3272_CR99) 2016; 83
HM Song (3272_CR118) 2014; 7
3272_CR33
3272_CR34
A Zhu (3272_CR143) 2015; 26
3272_CR35
C Lu (3272_CR69) 2016; 99
3272_CR37
DK Lal (3272_CR62) 2016; 92
B Yang (3272_CR134) 2016; 133
3272_CR38
X Song (3272_CR119) 2015; 75
3272_CR39
U Sultana (3272_CR123) 2016; 111
A Sahoo (3272_CR108) 2017; 52
A Chaman-Motlagh (3272_CR6) 2015; 27
S Yadav (3272_CR132) 2016; 49
N Jayakumar (3272_CR44) 2016; 74
P Berkhin (3272_CR4) 2006
M Ali (3272_CR2) 2017; 111
E Emary (3272_CR22) 2016; 172
AAM El-Gaafary (3272_CR17) 2015; 3
MJD Powell (3272_CR98) 1977; 12
A Noshadi (3272_CR96) 2016; 27
S Zhang (3272_CR140) 2017; 130
E Emary (3272_CR20) 2015; 65
K Sujatha (3272_CR121) 2017
N Mittal (3272_CR85) 2016; 2016
L Wang (3272_CR130) 2017; 10
3272_CR86
Y Sharma (3272_CR115) 2015; 73
3272_CR89
S Mohanty (3272_CR87) 2016; 7
S Mirjalili (3272_CR83) 2014; 69
AH Gandomi (3272_CR29) 2012; 17
A Khalili (3272_CR54) 2017
G Sodeifian (3272_CR117) 2016; 114
AK Jain (3272_CR40) 1996; 29
SA Medjahed (3272_CR75) 2016; 40
S Mirjalili (3272_CR79) 2016; 27
S Mirjalili (3272_CR77) 2015; 43
V Vapnik (3272_CR127) 1999; 5
M Dorigo (3272_CR13) 1997; 1
N Jayakumar (3272_CR42) 2015; 11
3272_CR91
3272_CR92
L Li (3272_CR64) 2016; 4
3272_CR93
3272_CR94
GM Komaki (3272_CR57) 2015; 8
3272_CR97
3272_CR10
3272_CR11
MH Sulaiman (3272_CR122) 2015; 32
3272_CR15
3272_CR18
JR Koza (3272_CR59) 1992
3272_CR19
EM Devi (3272_CR12) 2017; 7
3272_CR1
R Storn (3272_CR120) 1997; 11
3272_CR137
A Fathy (3272_CR27) 2017; 45
MJ Hadidian-Moghaddam (3272_CR36) 2016; 8
3272_CR138
S Gholizadeh (3272_CR31) 2015; 5
T Jayabarathi (3272_CR41) 2016; 111
R Sanjay (3272_CR110) 2017; 5
B Yang (3272_CR135) 2017; 133
V Vapnik (3272_CR126) 1995
P Saxena (3272_CR112) 2016; 2016
T Bäck (3272_CR3) 1997
J Zhou (3272_CR142) 2016; 10
C Lu (3272_CR68) 2017; 57
S Mirjalili (3272_CR80) 2016; 96
E Emary (3272_CR21) 2015
Q Li (3272_CR65) 2017; 2017
S Khalilpourazari (3272_CR55) 2016
AKM Khairuzzaman (3272_CR53) 2017; 86
3272_CR73
3272_CR74
VK Kamboj (3272_CR48) 2016; 27
3272_CR7
SK Verma (3272_CR128) 2017; 28
3272_CR5
RE Precup (3272_CR101) 2016; 49
3272_CR9
References_xml – reference: EswaramoorthySSivakumaranNSekaranSGrey wolf optimization based parameter selection for support vector machinesCOMPEL-The Int J Comput Math Electr Electron Eng20163551513152310.1108/COMPEL-09-2015-0337
– reference: LiLSunLGuoJQiJXuBLiSModified discrete grey wolf optimizer algorithm for multilevel image thresholdingComput Intell Neurosci2017201716
– reference: ZhuAXuCLiZWuJLiuZHybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3d stacked socJ Syst Eng Electron201526231732810.1109/JSEE.2015.00037
– reference: KhairuzzamanAKMChaudhurySMultilevel thresholding using grey wolf optimizer for image segmentationExpert Syst Appl201786647610.1016/j.eswa.2017.04.029
– reference: Malik MRS, Mohideen ER, Ali L (2015) Weighted distance grey wolf optimizer for global optimization problems. In: 2015 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE, pp 1–6
– reference: NoshadiAShiJLeeWSShiPKalamAOptimal pid-type fuzzy logic controller for a multi-input multi-output active magnetic bearing systemNeural Comput Appl20162772031204610.1007/s00521-015-1996-7
– reference: Karnavas YL, Chasiotis ID (2016) PMDC coreless micro-motor parameters estimation through grey wolf optimizer. In: 2016 XXII international conference on electrical machines (ICEM). IEEE, pp 865–870
– reference: MohantySSubudhiBRayPKA grey wolf-assisted perturb observe MPPT algorithm for a PV systemIEEE Trans Energy Convers20163234034710.1109/TEC.2016.2633722
– reference: Malik MRS, Mohideen ER, Ali L, Raziuddin S (2016) Weighted distance grey wolf optimizer to control air pollution of delhi thermal power plant. J Ind Pollut Control 32(1). http://www.icontrolpollution.com/articles/weighted-distance-grey-wolf-optimizer-to-control-air-pollution-of-delhi-thermal-power-plant-.php?aid=75885
– reference: LalDKBarisalAKTripathyMGrey wolf optimizer algorithm based fuzzy PID controller for AGC of multi-area power system with TCPsProcedia Comput Sci2016929910510.1016/j.procs.2016.07.329
– reference: Yamany W, Emary E, Hassanien AE (2016) New rough set attribute reduction algorithm based on grey wolf optimization. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. Springer, pp 241–251
– reference: NiuMWangYSunSLiYA novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term pm 2.5 concentration forecastingAtmos Environ201613416818010.1016/j.atmosenv.2016.03.056
– reference: Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43
– reference: RodríguezLCastilloOSoriaJMelinPValdezFGonzalezCIMartinezGESotoJA fuzzy hierarchical operator in the grey wolf optimizer algorithmAppl Soft Comput20175731532810.1016/j.asoc.2017.03.048
– reference: LuoQZhangSLiZZhouYA novel complex-valued encoding grey wolf optimization algorithmAlgorithms2015914349074710.3390/a9010004
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: SharmaYSaikiaLCAutomatic generation control of a multi-area ST thermal power system using grey wolf optimizer algorithm based classical controllersInt J Electr Power Energy Syst20157385386210.1016/j.ijepes.2015.06.005
– reference: VapnikVAn overview of statistical learning theoryIEEE Trans Neural Netw1999598899910.1109/72.788640
– reference: Ghazzai H, Yaacoub E, Alouini MS (2014) Optimized lte cell planning for multiple user density subareas using meta-heuristic algorithms. In: 2014 IEEE 80th vehicular technology conference (VTC2014-Fall). IEEE, pp 1–6
– reference: LongWLiangXCaiSJiaoJZhangWA modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problemsNeural Comput Appl201628Suppl 1S421S438
– reference: DorigoMGambardellaLMAnt colony system: a cooperative learning approach to the traveling salesman problemIEEE Trans Evol Comput199711536610.1109/4235.585892
– reference: Fouad MM, Hafez AI, Hassanien AE, Snasel V (2015) Grey wolves optimizer-based localization approach in WSNs. In: 2015 11th international computer engineering conference (ICENCO). IEEE, pp 256–260
– reference: Das KR, Das D, Das J (2015) Optimal tuning of pid controller using gwo algorithm for speed control in dc motor. In: 2015 international conference on soft computing techniques and implementations (ICSCTI). IEEE, pp 108–112
– reference: SongXTangLZhaoSZhangXLiLHuangJCaiWGrey wolf optimizer for parameter estimation in surface wavesSoil Dyn Earthq Eng20157514715710.1016/j.soildyn.2015.04.004
– reference: PrecupREDavidRCPetriuEMSzedlak-StineanAIClaudia-AdinaB-DGrey wolf optimizer-based approach to the tuning of pi-fuzzy controllers with a reduced process parametric sensitivityIFAC-PapersOnLine2016495556010.1016/j.ifacol.2016.07.089
– reference: JayapriyaJArockMAligning two molecular sequences using genetic operators in grey wolf optimiser techniqueInt J Data Min Bioinf201615432834910.1504/IJDMB.2016.078151
– reference: Korayem L, Khorsid M, Kassem SS (2015) Using grey wolf algorithm to solve the capacitated vehicle routing problem. In: IOP conference series: materials science and engineering, vol 83. IOP Publishing, p 012014
– reference: Faris H, Aljarah I, Mirjalili S, Castillo PA, Merelo JJ (2016) Evolopy: an open-source nature-inspired optimization framework in python. In: IJCCI 2016—proceedings of the 8th International joint conference on computational intelligence, vol 1, pp 171–177
– reference: Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214
– reference: Hadidian-MoghaddamMJArabi-NowdehSBigdeliMOptimal sizing of a stand-alone hybrid photovoltaic/wind system using new grey wolf optimizer considering reliabilityJ Renew Sustain Energy20168303590310.1063/1.4950945
– reference: Bhensdadia V, Tejani G (2016) Grey wolf optimizer (GWO) algorithm for minimum weight planer frame design subjected to AISC-LRFD. In: Proceedings of international conference on ICT for sustainable development. Springer, pp 143–151
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169612013310.1016/j.knosys.2015.12.022
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: KhaliliABabamirSMOptimal scheduling workflows in cloud computing environment using pareto-based grey wolf optimizerPract Exp Concurr Comput2017
– reference: JayakumarNSubramanianSElanchezhianEBGanesanSAn application of grey wolf optimisation for combined heat and power dispatchInt J Energy Technol Policy201511218320610.1504/IJETP.2015.069821
– reference: El-GaafaryAAMMohamedYSHemeidaAMMohamedAAAGrey wolf optimization for multi input multi output systemUniv J Commun Netw2015311610.13189/ujcn.2015.030101
– reference: ShakaramiMRDavoudkhaniIFWide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delayElectr Power Syst Res201613314915910.1016/j.epsr.2015.12.019
– reference: Elhariri E, El-Bendary N, Hassanien AE (2016) A hybrid classification model for EMG signals using grey wolf optimizer and SVMs. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. Springer, pp 297–307
– reference: MittalNSinghUSohiBSModified grey wolf optimizer for global engineering optimizationAppl Comput Intell Soft Comput20162016810.1155/2016/7950348
– reference: Gupta P, Kumar V, Rana KPS, Mishra P (2015) Comparative study of some optimization techniques applied to jacketed cstr control. In: 015 4th international conference on reliability, infocom technologies and optimization (ICRITO)(trends and future directions). IEEE, pp 1–6
– reference: Mustaffa Z, Sulaiman MH, Kahar MNM (2015) LS-SVM hyper-parameters optimization based on GWO algorithm for time series forecasting. In: 2015 4th international conference on software engineering and computer systems (ICSECS). IEEE, pp 183–188
– reference: KambojVKA novel hybrid pso-gwo approach for unit commitment problemNeural Comput Appl20162761643165510.1007/s00521-015-1962-4
– reference: YangHLiuJA hybrid clustering algorithm based on grey wolf optimizer and k-means algorithmJ Jiangxi Univ Sci Technol20155015
– reference: YangBZhangXYuTShuHZihaoFGrouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbineEnergy Convers Manag201713342744310.1016/j.enconman.2016.10.062
– reference: Gupta S, Deep K, Chamola BP, Kumari P (2017) Performance of grey wolf optimizer on large scale problems. In: AIP conference proceedings, vol 1802. AIP Publishing, p 020005
– reference: KumarAPantSRamMSystem reliability optimization using gray wolf optimizer algorithmQual Reliab Eng Int2016331327133510.1002/qre.2107
– reference: Rodríguez L, Castillo O, Soria J (2016) Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 3116–3123
– reference: JayakumarNSubramanianSGanesanSElanchezhianEBCombined heat and power dispatch by grey wolf optimizationInt J Energy Sect Manag20159452354610.1108/IJESM-09-2014-0003
– reference: Höhfeld M, Rudolph G (1997) Towards a theory of population-based incremental learning. In In: Proceedings of the 4th IEEE conference on evolutionary computation. Citeseer
– reference: SujathaKPunithavathaniDSOptimized ensemble decision-based multi-focus imagefusion using binary genetic grey-wolf optimizer in camera sensor networksMultimed Tools Appl2017
– reference: Kishor A, Singh, PK (2016) Empirical study of grey wolf optimizer. In: Proceedings of fifth international conference on soft computing for problem solving. Springer, pp 1037–1049
– reference: LiLSunLKangWGuoJChongHLiSFuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregationIEEE Access201646438645010.1109/ACCESS.2016.2613940
– reference: ZhangSZhouYLiZPanWGrey wolf optimizer for unmanned combat aerial vehicle path planningAdv Eng Softw20169912113610.1016/j.advengsoft.2016.05.015
– reference: Elhariri E, El-Bendary N, Hassanien AE, Abraham A (2015) Grey wolf optimization for one-against-one multi-class support vector machines. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 7–12
– reference: MosaviMRKhisheMGhamgosarAClassification of sonar data set using neural network trained by gray wolf optimizationNeural Netw World201626439310.14311/NNW.2016.26.023
– reference: MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell201543115016110.1007/s10489-014-0645-7
– reference: SongHMSulaimanMHMohamedMRAn application of grey wolf optimizer for solving combined economic emission dispatch problemsInt Rev Model Simul (IREMOS)20147583884410.15866/iremos.v7i5.2799
– reference: BerkhinPA survey of clustering data mining techniques2006BerlinSpringer2571
– reference: DudaniARChudasamaKPartial discharge detection in transformer using adaptive grey wolf optimizer based acoustic emission techniqueCogent Eng201631125608310.1080/23311916.2016.1256083
– reference: Gupta P, Rana KPS, Kumar V, Mishra P, Kumar J, Nair SS (2015) Development of a grey wolf optimizer toolkit in labview. In: 2015 international conference on futuristic trends on computational analysis and knowledge management (ABLAZE). IEEE, pp 107–113
– reference: RameshkumarJGanesanSSubramanianSAbiramiMShort-term unit consignment solution using real-coded grey wolf algorithmAust J Electr Electron Eng2015131546610.1080/1448837X.2015.1092933
– reference: YadavSVermaSKNagarSKOptimized pid controller for magnetic levitation systemIFAC-PapersOnLine201649177878210.1016/j.ifacol.2016.03.151
– reference: KhalilpourazariSKhalilpourazarySOptimization of production time in the multi-pass milling process via a robust grey wolf optimizerNeural Comput Appl2016
– reference: PradhanMRoyPKPalTGrey wolf optimization applied to economic load dispatch problemsInt J Electr Power Energy Syst20168332533410.1016/j.ijepes.2016.04.034
– reference: VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-00833.62008
– reference: ZhouJZhuWZhengYLiCPrecise equivalent model of small hydro generator cluster and its parameter identification using improved grey wolf optimiserIET Gener Transm Distrib20161092108211710.1049/iet-gtd.2015.1141
– reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul2012171248314845296027910.1016/j.cnsns.2012.05.0101266.65092
– reference: PrecupREDavidRCPetriuEMGrey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivityIEEE Trans Industr Electron201764152753410.1109/TIE.2016.2607698
– reference: Hai Phong Private Universty (2016) Estimation localization in wireless sensor network based on multi-objective grey wolf optimizer. In: Advances in information and communication technology: proceedings of the international conference, ICTA 2016, vol 538. Springer, p 228
– reference: Davis L (ed) (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York
– reference: Jitkongchuen D (2015) A hybrid differential evolution with grey wolf optimizer for continuous global optimization. In: 2015 7th international conference on information technology and electrical engineering (ICITEE). IEEE, pp 51–54
– reference: JayabarathiTRaghunathanTAdarshBRSuganthanPNEconomic dispatch using hybrid grey wolf optimizerEnergy201611163064110.1016/j.energy.2016.05.105
– reference: GholizadehSOptimal design of double layer grids considering nonlinear behaviour by sequential grey wolf algorithmJ Optim Civ Eng201554511523
– reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004
– reference: Vosooghifard M, Ebrahimpour H (2015) Applying grey wolf optimizer-based decision tree classifer for cancer classification on gene expression data. In: 2015 5th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 147–151
– reference: KozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
– reference: Pan TS, Dao TK, Chu SC, et al (2015) A communication strategy for paralleling grey wolf optimizer. In: International conference on genetic and evolutionary computing. Springer, pp 253–262
– reference: SahooAChandraSMulti-objective grey wolf optimizer for improved cervix lesion classificationAppl Soft Comput201752648010.1016/j.asoc.2016.12.022
– reference: RazmjooyNRamezaniMNamadchianAA new lqr optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizerMajlesi J Electr Eng201610353
– reference: MahdadBSrairiKBlackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithmsEnergy Convers Manag20159841142910.1016/j.enconman.2015.04.005
– reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl20162741053107310.1007/s00521-015-1920-1
– reference: JainAKMaoJMohiuddinKMartificial neural networks: a tutorialComputer1996293314410.1109/2.485891
– reference: El-FerganyAAHasanienHMSingle and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithmsElectric Power Compon Syst201543131548155910.1080/15325008.2015.1041625
– reference: Mustaffa Z, Sulaiman MH, Kahar MNM (2015) Training lssvm with gwo for price forecasting. In: 2015 international conference on informatics, electronics & vision (ICIEV). IEEE, pp 1–6
– reference: Sweidan AH, El-Bendary N, Hassanien AE, Hegazy OM, Mohamed A-K (2016) Grey wolf optimizer and case-based reasoning model for water quality assessment. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. Springer, pp. 229–239
– reference: MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
– reference: Tsai PW, Dao TK, et al (2016) Robot path planning optimization based on multiobjective grey wolf optimizer. In: International conference on genetic and evolutionary computing. Springer, pp 166–173
– reference: SaxenaPKothariAOptimal pattern synthesis of linear antenna array using grey wolf optimization algorithmInt J Antennas Propag201620161110.1155/2016/1205970
– reference: LuCXiaoSLiXGaoLAn effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding productionAdv Eng Softw20169916117610.1016/j.advengsoft.2016.06.004
– reference: EmaryEZawbaaHMHassanienAEBinary grey wolf optimization approaches for feature selectionNeurocomputing201617237138110.1016/j.neucom.2015.06.083
– reference: LiQChenHHuangHZhaoXCaiZNTongCLiuWTianXAn enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosisComput Math Methods Med2017201715
– reference: SanjayRJayabarathiTRaghunathanTRameshVMithulananthanNOptimal allocation of distributed generation using hybrid grey wolf optimizerIEEE Access20175148071481810.1109/ACCESS.2017.2726586
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, technical report-tr06, Erciyes University, engineering faculty, computer engineering department,
– reference: Chandra M, Agrawal A, Kishor A, Niyogi R (2016) Web service selection with global constraints using modified gray wolf optimizer. In: 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1989–1994
– reference: KomakiGMKayvanfarVGrey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release timeJ Comput Sci2015810912010.1016/j.jocs.2015.03.011
– reference: SodeifianGArdestaniNSSajadianSAGhorbandoostSApplication of supercritical carbon dioxide to extract essential oil from cleome coluteoides boiss: Experimental, response surface and grey wolf optimization methodologyJ Supercrit Fluids2016114556310.1016/j.supflu.2016.04.006
– reference: Jayapriya J, Arock M (2015) A parallel gwo technique for aligning multiple molecular sequences. In: 2015 International conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 210–215
– reference: JayakumarNSubramanianSGanesanSElanchezhianEBGrey wolf optimization for combined heat and power dispatch with cogeneration systemsInt J Electr Power Energy Syst20167425226410.1016/j.ijepes.2015.07.031
– reference: Wong LI, Sulaiman MH, Mohamed MR, Hong MS (2014) Grey wolf optimizer for solving economic dispatch problems. In: 2014 IEEE international conference on power and energy (PECon). IEEE, pp 150–154
– reference: DeviEMSugantheRCFeature selection in intrusion detection grey wolf optimizerAsian J Res Soc Sci Hum201773671682
– reference: FathyAAbdelazizAYGrey wolf optimizer for optimal sizing and siting of energy storage system in electric distribution networkElectric Power Compon Syst20174511410.1080/15325008.2017.1292567
– reference: Mohamed AAA, El-Gaafary AAM, Mohamed YS, Hemeida AM (2015) Design static var compensator controller using artificial neural network optimized by modify grey wolf optimization. In: 2015 international joint conference on neural networks (IJCNN). IEEE, pp 1–7
– reference: Al-Aboody NA, Al-Raweshidy HS (2016) Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In: 2016 4th international symposium on computational and business intelligence (ISCBI). IEEE, pp 101–107
– reference: EmaryEYamanyWHassanienAESnaselVMulti-objective gray-wolf optimization for attribute reductionProcedia Comput Sci20156562363210.1016/j.procs.2015.09.006
– reference: Mostafa A, Fouad A, Houseni M, Allam N, Hassanien AE, Hefny H, Aslanishvili I (2016) A hybrid grey wolf based segmentation with statistical image for ct liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 846–855
– reference: VermaSKYadavSNagarSKOptimization of fractional order pid controller using grey wolf optimizerJ Control Autom Electr Syst2017281910.1007/s40313-017-0305-3
– reference: EmaryEZawbaaHMGrosanCHassenianAEFeature subset selection approach by gray-wolf optimization2015ChamSpringer113
– reference: Chaman-MotlaghASuperdefect photonic crystal filter optimization using grey wolf optimizerIEEE Photonics Technol Lett201527222355235810.1109/LPT.2015.2464332
– reference: BäckTFogelDBMichalewiczZHandbook of evolutionary computation1997New YorkOxford University Press10.1887/07503089580883.68001
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135
– reference: RameshkumarJGanesanSAbiramiMSubramanianSCost, emission and reserve pondered pre-dispatch of thermal power generating units coordinated with real coded grey wolf optimisationIET Gener Trans Distrib201610497298510.1049/iet-gtd.2015.0726
– reference: AliMElhameedMAFarahatMAEffective parameters identification for polymer electrolyte membrane fuel cell models using grey wolf optimizerRenew Energy201711145546210.1016/j.renene.2017.04.036
– reference: SharmaSBhattacharjeeSBhattacharyaAGrey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgridIET Gener Trans Distrib201610362563710.1049/iet-gtd.2015.0429
– reference: WangLYueJSuYLuFSunQA novel remaining useful life prediction approach for superbuck converter circuits based on modified grey wolf optimizer-support vector regressionEnergies201710445910.3390/en10040459
– reference: KumarVChhabraJKKumarDGrey wolf algorithm-based clustering techniqueJ Intell Syst20172611531683605261
– reference: LuCGaoLLiXXiaoSA hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industryEng Appl Artif Intell201757617910.1016/j.engappai.2016.10.013
– reference: Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: International conference on parallel problem solving from nature. Springer, pp 282–291
– reference: GuptaESaxenaAGrey wolf optimizer based regulator design for automatic generation control of interconnected power systemCogent Eng2016311151612
– reference: Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178
– reference: KambojVKBathSKDhillonJSSolution of non-convex economic load dispatch problem using grey wolf optimizerNeural Comput Appl20152711610.1162/NECO_a_00684
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl201627249551310.1007/s00521-015-1870-7
– reference: ZhangSZhouYTemplate matching using grey wolf optimizer with lateral inhibitionOptik20171301229124310.1016/j.ijleo.2016.11.173
– reference: MirjaliliSSaremiSMirjaliliSMCoelhoLSMulti-objective grey wolf optimizer: a novel algorithm for multi-criterion optimizationExpert Syst Appl20164710611910.1016/j.eswa.2015.10.039
– reference: Sangwan V, Kumar R, Rathore AK (2016) Estimation of battery parameters of the equivalent circuit model using grey wolf optimization. In: 2016 IEEE 6th international conference on power systems (ICPS). IEEE, pp 1–6
– reference: SulaimanMHMustaffaZMohamedMRAlimanOUsing the gray wolf optimizer for solving optimal reactive power dispatch problemAppl Soft Comput20153228629210.1016/j.asoc.2015.03.041
– reference: SultanaUKhairuddin AzharBMokhtarASZareenNBeenishSGrey wolf optimizer based placement and sizing of multiple distributed generation in the distribution systemEnergy201611152553610.1016/j.energy.2016.05.128
– reference: MadadiAMotlaghMMOptimal control of dc motor using grey wolf optimizer algorithmTJEAS Journal-2014-4-04/373-37920144437379
– reference: MohantySSubudhiBRayPKA new mppt design using grey wolf optimization technique for photovoltaic system under partial shading conditionsIEEE Trans Sustain Energy20167118118810.1109/TSTE.2015.2482120
– reference: SaremiSMirjaliliSZMirjaliliSMEvolutionary population dynamics and grey wolf optimizerNeural Comput Appl20152651257126310.1007/s00521-014-1806-7
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006
– reference: Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-gaussian radial basis functional-link nets. In: 2014 international computer science and engineering conference (ICSEC), pp 209–214
– reference: Mallick RK, Debnath MK, Haque F, Rout RR (2016) Application of grey wolves-based optimization technique in multi-area automatic generation control. In: International conference on electrical, electronics, and optimization techniques (ICEEOT)
– reference: MedjahedSAAitSTBenyettouAOualiMGray wolf optimizer for hyperspectral band selectionAppl Soft Comput20164017818610.1016/j.asoc.2015.09.045
– reference: ČrepinšekMLiuS-HMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.68251
– reference: KarnavasYLChasiotisIDPeponakisELPermanent magnet synchronous motor design using grey wolf optimizer algorithmInt J Electr Comput Eng (IJECE)2016632016
– reference: EngelbrechtAPComputational intelligence: an introduction2007HobokenWiley10.1002/9780470512517
– reference: ZhangSZhouYGrey wolf optimizer based on Powell local optimization method for clustering analysisDiscret Dyn Nat Soc2015201517
– reference: YangBZhangXYuTShuHFangZGrouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbineEnergy Convers Manag201613342744310.1016/j.enconman.2016.10.062
– reference: Dao TK (2016) Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks. In: Genetic and evolutionary computing: proceedings of the tenth international conference on genetic and evolutionary computing, November 7–9, 2016 Fuzhou City, Fujian Province, China, vol 536. Springer, p 174
– reference: PowellMJDRestart procedures for the conjugate gradient methodMath Program197712124125447862210.1007/BF015937900396.90072
– reference: Rodríguez L, Castillo O, Soria J (2017) A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic. In: Nature-inspired design of hybrid intelligent systems. Springer, pp 371–390
– reference: LiSXWangJSDynamic modeling of steam condenser and design of pi controller based on grey wolf optimizerMath Probl Eng201520159
– reference: EngelbrechtAPFundamentals of computational swarm intelligence2006HobokenWiley
– volume: 9
  start-page: 523
  issue: 4
  year: 2015
  ident: 3272_CR43
  publication-title: Int J Energy Sect Manag
  doi: 10.1108/IJESM-09-2014-0003
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 3272_CR77
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0645-7
– volume: 2015
  start-page: 17
  year: 2015
  ident: 3272_CR139
  publication-title: Discret Dyn Nat Soc
– ident: 3272_CR51
  doi: 10.1109/ICELMACH.2016.7732627
– ident: 3272_CR30
  doi: 10.1109/VTCFall.2014.6966100
– volume: 133
  start-page: 427
  year: 2017
  ident: 3272_CR135
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.10.062
– start-page: 25
  volume-title: A survey of clustering data mining techniques
  year: 2006
  ident: 3272_CR4
– ident: 3272_CR47
  doi: 10.1109/ICITEED.2015.7408911
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 3272_CR82
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– ident: 3272_CR19
  doi: 10.1109/SOCPAR.2015.7492781
– volume: 8
  start-page: 109
  year: 2015
  ident: 3272_CR57
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.03.011
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 3272_CR111
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1806-7
– ident: 3272_CR39
– ident: 3272_CR15
  doi: 10.1109/MHS.1995.494215
– ident: 3272_CR38
  doi: 10.1109/ICEC.1997.592258
– volume: 33
  start-page: 1327
  year: 2016
  ident: 3272_CR60
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2107
– ident: 3272_CR125
– volume: 65
  start-page: 623
  year: 2015
  ident: 3272_CR20
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.09.006
– volume: 7
  start-page: 181
  issue: 1
  year: 2016
  ident: 3272_CR87
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2482120
– volume: 5
  start-page: 988
  year: 1999
  ident: 3272_CR127
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– volume: 6
  start-page: 2016
  issue: 3
  year: 2016
  ident: 3272_CR52
  publication-title: Int J Electr Comput Eng (IJECE)
– volume: 57
  start-page: 315
  year: 2017
  ident: 3272_CR107
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.048
– volume: 73
  start-page: 853
  year: 2015
  ident: 3272_CR115
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.06.005
– volume: 75
  start-page: 147
  year: 2015
  ident: 3272_CR119
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2015.04.004
– start-page: 1
  volume-title: Feature subset selection approach by gray-wolf optimization
  year: 2015
  ident: 3272_CR21
– volume: 89
  start-page: 228
  year: 2015
  ident: 3272_CR78
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 2016
  start-page: 11
  year: 2016
  ident: 3272_CR112
  publication-title: Int J Antennas Propag
  doi: 10.1155/2016/1205970
– ident: 3272_CR91
– volume: 8
  start-page: 035903
  issue: 3
  year: 2016
  ident: 3272_CR36
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4950945
– volume: 29
  start-page: 31
  issue: 3
  year: 1996
  ident: 3272_CR40
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 10
  start-page: 625
  issue: 3
  year: 2016
  ident: 3272_CR114
  publication-title: IET Gener Trans Distrib
  doi: 10.1049/iet-gtd.2015.0429
– volume: 3
  start-page: 1256083
  issue: 1
  year: 2016
  ident: 3272_CR14
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2016.1256083
– volume: 133
  start-page: 149
  year: 2016
  ident: 3272_CR113
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2015.12.019
– volume-title: Computational intelligence: an introduction
  year: 2007
  ident: 3272_CR24
  doi: 10.1002/9780470512517
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 3272_CR126
  doi: 10.1007/978-1-4757-2440-0
– ident: 3272_CR74
  doi: 10.1109/ICEEOT.2016.7755160
– volume: 32
  start-page: 340
  year: 2016
  ident: 3272_CR88
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2016.2633722
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 3272_CR59
– volume: 111
  start-page: 455
  year: 2017
  ident: 3272_CR2
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.036
– volume-title: Handbook of evolutionary computation
  year: 1997
  ident: 3272_CR3
  doi: 10.1887/0750308958
– volume: 2016
  start-page: 8
  year: 2016
  ident: 3272_CR85
  publication-title: Appl Comput Intell Soft Comput
  doi: 10.1155/2016/7950348
– volume: 69
  start-page: 46
  year: 2014
  ident: 3272_CR83
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 3272_CR35
  doi: 10.1063/1.4973255
– ident: 3272_CR105
  doi: 10.1109/CEC.2016.7744183
– volume: 26
  start-page: 317
  issue: 2
  year: 2015
  ident: 3272_CR143
  publication-title: J Syst Eng Electron
  doi: 10.1109/JSEE.2015.00037
– ident: 3272_CR58
  doi: 10.1088/1757-899X/83/1/012014
– volume: 40
  start-page: 178
  year: 2016
  ident: 3272_CR75
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.045
– ident: 3272_CR133
  doi: 10.1007/978-3-319-26690-9_22
– volume: 35
  start-page: 1513
  issue: 5
  year: 2016
  ident: 3272_CR25
  publication-title: COMPEL-The Int J Comput Math Electr Electron Eng
  doi: 10.1108/COMPEL-09-2015-0337
– volume: 9
  start-page: 4
  issue: 1
  year: 2015
  ident: 3272_CR70
  publication-title: Algorithms
  doi: 10.3390/a9010004
– volume: 5
  start-page: 015
  year: 2015
  ident: 3272_CR136
  publication-title: J Jiangxi Univ Sci Technol
– ident: 3272_CR109
  doi: 10.1109/ICPES.2016.7584086
– ident: 3272_CR50
– volume: 11
  start-page: 183
  issue: 2
  year: 2015
  ident: 3272_CR42
  publication-title: Int J Energy Technol Policy
  doi: 10.1504/IJETP.2015.069821
– volume: 83
  start-page: 80
  year: 2015
  ident: 3272_CR76
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: 3272_CR5
  doi: 10.1007/978-981-10-0135-2_13
– volume: 4
  start-page: 6438
  year: 2016
  ident: 3272_CR64
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2613940
– volume: 10
  start-page: 459
  issue: 4
  year: 2017
  ident: 3272_CR130
  publication-title: Energies
  doi: 10.3390/en10040459
– volume: 10
  start-page: 53
  issue: 3
  year: 2016
  ident: 3272_CR104
  publication-title: Majlesi J Electr Eng
– ident: 3272_CR9
– volume: 27
  start-page: 2355
  issue: 22
  year: 2015
  ident: 3272_CR6
  publication-title: IEEE Photonics Technol Lett
  doi: 10.1109/LPT.2015.2464332
– year: 2017
  ident: 3272_CR54
  publication-title: Pract Exp Concurr Comput
  doi: 10.1002/cpe.4044
– volume: 2015
  start-page: 9
  year: 2015
  ident: 3272_CR66
  publication-title: Math Probl Eng
– volume: 27
  start-page: 2031
  issue: 7
  year: 2016
  ident: 3272_CR96
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1996-7
– volume: 99
  start-page: 121
  year: 2016
  ident: 3272_CR141
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.05.015
– ident: 3272_CR97
– volume: 27
  start-page: 1
  year: 2015
  ident: 3272_CR49
  publication-title: Neural Comput Appl
  doi: 10.1162/NECO_a_00684
– ident: 3272_CR137
  doi: 10.1007/978-3-642-04944-6_14
– volume: 3
  start-page: 1
  issue: 1
  year: 2015
  ident: 3272_CR17
  publication-title: Univ J Commun Netw
  doi: 10.13189/ujcn.2015.030101
– ident: 3272_CR28
  doi: 10.1109/ICENCO.2015.7416358
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 3272_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– volume: 12
  start-page: 241
  issue: 1
  year: 1977
  ident: 3272_CR98
  publication-title: Math Program
  doi: 10.1007/BF01593790
– volume: 130
  start-page: 1229
  year: 2017
  ident: 3272_CR140
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.11.173
– volume: 133
  start-page: 427
  year: 2016
  ident: 3272_CR134
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.10.062
– ident: 3272_CR86
  doi: 10.1109/IJCNN.2015.7280704
– volume: 7
  start-page: 671
  issue: 3
  year: 2017
  ident: 3272_CR12
  publication-title: Asian J Res Soc Sci Hum
– volume: 43
  start-page: 1548
  issue: 13
  year: 2015
  ident: 3272_CR16
  publication-title: Electric Power Compon Syst
  doi: 10.1080/15325008.2015.1041625
– volume: 7
  start-page: 838
  issue: 5
  year: 2014
  ident: 3272_CR118
  publication-title: Int Rev Model Simul (IREMOS)
  doi: 10.15866/iremos.v7i5.2799
– volume: 27
  start-page: 1643
  issue: 6
  year: 2016
  ident: 3272_CR48
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1962-4
– volume: 28
  start-page: 1
  year: 2017
  ident: 3272_CR128
  publication-title: J Control Autom Electr Syst
  doi: 10.1007/s40313-017-0305-3
– volume: 4
  start-page: 373
  issue: 4
  year: 2014
  ident: 3272_CR71
  publication-title: TJEAS Journal-2014-4-04/373-379
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 3272_CR120
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– ident: 3272_CR138
– volume: 74
  start-page: 252
  year: 2016
  ident: 3272_CR44
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.07.031
– ident: 3272_CR106
  doi: 10.1007/978-3-319-47054-2_25
– ident: 3272_CR93
  doi: 10.1109/ICSECS.2015.7333107
– volume: 32
  start-page: 286
  year: 2015
  ident: 3272_CR122
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.041
– ident: 3272_CR7
  doi: 10.1109/ICACCI.2016.7732343
– ident: 3272_CR33
  doi: 10.1109/ICRITO.2015.7359368
– ident: 3272_CR45
  doi: 10.1109/ICACCI.2015.7275611
– volume: 49
  start-page: 55
  issue: 5
  year: 2016
  ident: 3272_CR101
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.089
– volume: 2017
  start-page: 16
  year: 2017
  ident: 3272_CR63
  publication-title: Comput Intell Neurosci
– volume: 45
  start-page: 1
  year: 2017
  ident: 3272_CR27
  publication-title: Electric Power Compon Syst
  doi: 10.1080/15325008.2017.1292567
– ident: 3272_CR89
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 3272_CR79
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– ident: 3272_CR18
  doi: 10.1007/978-3-319-26690-9_27
– volume: 86
  start-page: 64
  year: 2017
  ident: 3272_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.029
– volume: 28
  start-page: S421
  issue: Suppl 1
  year: 2016
  ident: 3272_CR67
  publication-title: Neural Comput Appl
– volume: 13
  start-page: 54
  issue: 1
  year: 2015
  ident: 3272_CR102
  publication-title: Aust J Electr Electron Eng
  doi: 10.1080/1448837X.2015.1092933
– volume: 5
  start-page: 14807
  year: 2017
  ident: 3272_CR110
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2726586
– volume: 10
  start-page: 2108
  issue: 9
  year: 2016
  ident: 3272_CR142
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2015.1141
– ident: 3272_CR124
  doi: 10.1007/978-3-319-26690-9_21
– volume: 49
  start-page: 778
  issue: 1
  year: 2016
  ident: 3272_CR132
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.03.151
– volume: 26
  start-page: 153
  issue: 1
  year: 2017
  ident: 3272_CR61
  publication-title: J Intell Syst
  doi: 10.1515/jisys-2014-0137
– year: 2016
  ident: 3272_CR55
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2644-6
– ident: 3272_CR11
– ident: 3272_CR26
  doi: 10.5220/0006048201710177
– ident: 3272_CR56
  doi: 10.1007/978-981-10-0448-3_87
– ident: 3272_CR73
  doi: 10.1109/ICCIC.2015.7435714
– ident: 3272_CR92
  doi: 10.1109/ICSEC.2014.6978196
– year: 2017
  ident: 3272_CR121
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-4312-3
– volume: 64
  start-page: 527
  issue: 1
  year: 2017
  ident: 3272_CR100
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/TIE.2016.2607698
– volume: 15
  start-page: 328
  issue: 4
  year: 2016
  ident: 3272_CR46
  publication-title: Int J Data Min Bioinf
  doi: 10.1504/IJDMB.2016.078151
– volume: 172
  start-page: 371
  year: 2016
  ident: 3272_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 47
  start-page: 106
  year: 2016
  ident: 3272_CR84
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 111
  start-page: 630
  year: 2016
  ident: 3272_CR41
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.105
– ident: 3272_CR94
  doi: 10.1109/ICIEV.2015.7334054
– volume-title: Fundamentals of computational swarm intelligence
  year: 2006
  ident: 3272_CR23
– ident: 3272_CR10
  doi: 10.1109/ICSCTI.2015.7489575
– ident: 3272_CR1
  doi: 10.1109/ISCBI.2016.7743266
– volume: 99
  start-page: 161
  year: 2016
  ident: 3272_CR69
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.06.004
– volume: 96
  start-page: 120
  year: 2016
  ident: 3272_CR80
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 3272_CR116
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
– volume: 3
  start-page: 1151612
  issue: 1
  year: 2016
  ident: 3272_CR32
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2016.1151612
– volume: 98
  start-page: 411
  year: 2015
  ident: 3272_CR72
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.04.005
– volume: 111
  start-page: 525
  year: 2016
  ident: 3272_CR123
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.128
– volume: 10
  start-page: 972
  issue: 4
  year: 2016
  ident: 3272_CR103
  publication-title: IET Gener Trans Distrib
  doi: 10.1049/iet-gtd.2015.0726
– volume: 114
  start-page: 55
  year: 2016
  ident: 3272_CR117
  publication-title: J Supercrit Fluids
  doi: 10.1016/j.supflu.2016.04.006
– ident: 3272_CR131
  doi: 10.1109/PECON.2014.7062431
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 3272_CR8
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2480741.2480752
– volume: 92
  start-page: 99
  year: 2016
  ident: 3272_CR62
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.329
– ident: 3272_CR37
  doi: 10.1007/978-3-540-30217-9_29
– volume: 134
  start-page: 168
  year: 2016
  ident: 3272_CR95
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.03.056
– ident: 3272_CR129
  doi: 10.1109/ICCKE.2015.7365818
– volume: 83
  start-page: 325
  year: 2016
  ident: 3272_CR99
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.04.034
– volume: 26
  start-page: 393
  issue: 4
  year: 2016
  ident: 3272_CR90
  publication-title: Neural Netw World
  doi: 10.14311/NNW.2016.26.023
– volume: 2017
  start-page: 15
  year: 2017
  ident: 3272_CR65
  publication-title: Comput Math Methods Med
  doi: 10.1155/2017/9512741
– volume: 95
  start-page: 51
  year: 2016
  ident: 3272_CR81
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 52
  start-page: 64
  year: 2017
  ident: 3272_CR108
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.022
– volume: 5
  start-page: 511
  issue: 4
  year: 2015
  ident: 3272_CR31
  publication-title: J Optim Civ Eng
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 3272_CR29
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– ident: 3272_CR34
– volume: 57
  start-page: 61
  year: 2017
  ident: 3272_CR68
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.10.013
SSID ssj0004685
Score 2.657796
SecondaryResourceType review_article
Snippet Grey wolf optimizer (GWO) is one of recent metaheuristics swarm intelligence methods. It has been widely tailored for a wide variety of optimization problems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 413
SubjectTerms Artificial Intelligence
Bioinformatics
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Global optimization
Image processing
Image Processing and Computer Vision
Machine learning
Probability and Statistics in Computer Science
Review
Swarm intelligence
Title Grey wolf optimizer: a review of recent variants and applications
URI https://link.springer.com/article/10.1007/s00521-017-3272-5
https://www.proquest.com/docview/2054144086
Volume 30
WOSCitedRecordID wos000435110800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5s68GL9YnVWnLwpCxs95n1VqXVUyn1QfGy5DGBQt2Vtlbw15vso62igt4WNhvCJJP5ZufxAZxpTG4zB5nFw8i2PCrQojxwLSFdbf2jgAahyMgmwn6fjkbRoKjjnpXZ7mVIMrupl8Vu5g-mcX21Ujih9qAqUNPWjhptHN49rhVDZjyc2m0xKT2eW4Yyv5viszFaIcwvQdHM1vTq_1rlDmwX0JJ08rOwCxuY7EG9pG0ghRbvQ-dGbx95SyeKpPrCeB6_4_SSMJJXsZBU6SeTs0kW2o82aTKEJZKsR7oP4KHXvb--tQomBUt47XBuUZcpvTyfS9FG5TOpmOcrdFSAPAoUFRq8mkZxKuBtKr2Io-MgMsU5x8iX6B5CNUkTPALCJJVUOTKSCj0ZaYSmhI0qsD3ho2yzBtilSGNRtBk3bBeTeNkgORNRrEUUGxHFfgPOl5-85D02fhvcLPcpLtRtFju2YTP3tHvWgItyX1avf5zs-E-jT2BLwyWaJ-s2oTqfvuIpbIrFfDybtqB21e0Phi2oDPynVnYmPwCMB9nw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4pBS6Nm1T34Y4J84hOsW3ko8LDGYn25zgX2_StdsUFfSt0DSEuyR31_vd_QCOjU_ucg-5I6LYdSiT6DAR-o5UvrH-ccjCSGZkE1G7zZ6e4tu8jntYoN2LlGR2U0-L3ewfTBv6mkPhRSaCWoQlagyWxfHd3T_OFUNmPJwmbLGQHuoXqczvpvhsjGYe5pekaGZrGuV_rXId1nLXktQne2EDFjDdhHJB20DyU7wF9UujPvLW72nSNxfGc_cdB2eEk0kVC-lr82Qxm2Rs4mgLkyE8VWQ-070ND42LznnTyZkUHElr0chhPtdmeYFQsoY64EpzGmj0dIgiDjWTxnm1jeJ0KGpM0Vig5yFyLYTAOFDo70Ap7ae4C4Qrppj2VKw0UhUbD01LF3XoUhmgqvEKuIVIE5m3GbdsF71k2iA5E1FiRJRYESVBBU6mn7xMemz8Nrha6CnJj9sw8VzLZk5NeFaB00Ivs9c_Trb3p9FHsNLs3LSS1lX7eh9WjevEJsDdKpRGg1c8gGU5HnWHg8NsR34A1D7aOg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF-8xdVV8-CTUuyRtqlvi7oqyiJ44FvJMYGFtZXdquCvN-mxHqggvhWahDBHZ6ZzfAC7xid3uY_cEXHiOpRJdJiIAkeqwFj_JGJRLEuwibjXY_f3yVWNczpqqt2blGTV02CnNGXFwaPSB-PGN_s304bBRkH82ERTkzBNLWaQDdev7z40RpaYnCaEseU9NGjSmt8d8dkwvXubXxKkpd3pLvz7xoswX7ucpFPJyBJMYLYMCw2cA6m1ewU6p4at5CUfaJKbD8lD_xWHh4STqruF5No82VpO8mzia1s-Q3imyMcM-Crcdk9ujs6cGmHBkdSLC4cFXJvrhUJJD3XIleY01OjrCEUSaSaNU2sHyOlIeEzRRKDvI3IthMAkVBiswVSWZ7gOhCummPZVojRSlRjPTUsXdeRSGaLyeAvchryprMePWxSMQToenFySKDUkSi2J0rAFe-Mtj9Xsjd8WtxuepbUajlLftSjn1AhGC_YbHr2__vGwjT-t3oHZq-Nuenneu9iEOeNRsaqetw1TxfAJt2BGPhf90XC7FM43dI7jHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grey+wolf+optimizer%3A+a+review+of+recent+variants+and+applications&rft.jtitle=Neural+computing+%26+applications&rft.au=Faris%2C+Hossam&rft.au=Aljarah%2C+Ibrahim&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Mirjalili%2C+Seyedali&rft.date=2018-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=30&rft.issue=2&rft.spage=413&rft.epage=435&rft_id=info:doi/10.1007%2Fs00521-017-3272-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon