The Growing Hierarchical Neural Gas Self-Organizing Neural Network

The growing neural gas (GNG) self-organizing neural network stands as one of the most successful examples of unsupervised learning of a graph of processing units. Despite its success, little attention has been devoted to its extension to a hierarchical model, unlike other models such as the self-org...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 28; číslo 9; s. 2000 - 2009
Hlavní autoři: Palomo, Esteban J., Lopez-Rubio, Ezequiel
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The growing neural gas (GNG) self-organizing neural network stands as one of the most successful examples of unsupervised learning of a graph of processing units. Despite its success, little attention has been devoted to its extension to a hierarchical model, unlike other models such as the self-organizing map, which has many hierarchical versions. Here, a hierarchical GNG is presented, which is designed to learn a tree of graphs. Moreover, the original GNG algorithm is improved by a distinction between a growth phase where more units are added until no significant improvement in the quantization error is obtained, and a convergence phase where no unit creation is allowed. This means that a principled mechanism is established to control the growth of the structure. Experiments are reported, which demonstrate the self-organization and hierarchy learning abilities of our approach and its performance for vector quantization applications.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2016.2570124