NWTOPT – A hyperparameter optimization approach for selection of environmental model solver settings

Hyperparameter optimization approaches were applied to improve performance and accuracy of groundwater flow models. Freely available new software, NWTOPT, is described that uses Tree of Parzen Estimators (TPE) and Random Search algorithms to optimize MODFLOW-NWT's solver settings. We ran 3500 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news Jg. 147; S. 105250
Hauptverfasser: Newcomer, Max W., Hunt, Randall J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.01.2022
Elsevier Science Ltd
Schlagworte:
ISSN:1364-8152, 1873-6726
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hyperparameter optimization approaches were applied to improve performance and accuracy of groundwater flow models. Freely available new software, NWTOPT, is described that uses Tree of Parzen Estimators (TPE) and Random Search algorithms to optimize MODFLOW-NWT's solver settings. We ran 3500 trials on a steady-state and transient model. To quantify the performance of candidate solver settings, we defined a loss function based on time elapsed and mass balance error of the MODFLOW-NWT forward run. Before optimization the steady-state model ran in ∼12 min and the transient model ran in ∼5 h with acceptable mass balance error (<1%). After optimization runtimes were reduced to ∼2.7 min (steady state) and ∼48 min (transient) with errors below 0.1%. In both cases TPE found hyperparameters that resulted in faster running and lower error models than those found by Random Search. The time to complete the optimization trials was also shorter with the TPE algorithm. •NWTOPT customizes off-the-shelf software for seamless application to MODFLOWNWT solver settings.•NWTOPT uses high-throughput computing to test multiple solver settings simultaneously.•The NWTOPT performance metric “loss” captures both aspects of desirable MODFLOW-NWT runs – short run times and low mass balance errors.•Benefits over manually selected solver settings are demonstrated using both a steady state and transient MODFLOW-NWT model.•The Tree of Parzen Estimator algorithm performed better than a Random Search approach for both steady state and transient models.
AbstractList Hyperparameter optimization approaches were applied to improve performance and accuracy of groundwater flow models. Freely available new software, NWTOPT, is described that uses Tree of Parzen Estimators (TPE) and Random Search algorithms to optimize MODFLOW-NWT's solver settings. We ran 3500 trials on a steady-state and transient model. To quantify the performance of candidate solver settings, we defined a loss function based on time elapsed and mass balance error of the MODFLOW-NWT forward run. Before optimization the steady-state model ran in ∼12 min and the transient model ran in ∼5 h with acceptable mass balance error (<1%). After optimization runtimes were reduced to ∼2.7 min (steady state) and ∼48 min (transient) with errors below 0.1%. In both cases TPE found hyperparameters that resulted in faster running and lower error models than those found by Random Search. The time to complete the optimization trials was also shorter with the TPE algorithm. •NWTOPT customizes off-the-shelf software for seamless application to MODFLOWNWT solver settings.•NWTOPT uses high-throughput computing to test multiple solver settings simultaneously.•The NWTOPT performance metric “loss” captures both aspects of desirable MODFLOW-NWT runs – short run times and low mass balance errors.•Benefits over manually selected solver settings are demonstrated using both a steady state and transient MODFLOW-NWT model.•The Tree of Parzen Estimator algorithm performed better than a Random Search approach for both steady state and transient models.
Hyperparameter optimization approaches were applied to improve performance and accuracy of groundwater flow models. Freely available new software, NWTOPT, is described that uses Tree of Parzen Estimators (TPE) and Random Search algorithms to optimize MODFLOW-NWT's solver settings. We ran 3500 trials on a steady-state and transient model. To quantify the performance of candidate solver settings, we defined a loss function based on time elapsed and mass balance error of the MODFLOW-NWT forward run. Before optimization the steady-state model ran in ∼12 min and the transient model ran in ∼5 h with acceptable mass balance error (<1%). After optimization runtimes were reduced to ∼2.7 min (steady state) and ∼48 min (transient) with errors below 0.1%. In both cases TPE found hyperparameters that resulted in faster running and lower error models than those found by Random Search. The time to complete the optimization trials was also shorter with the TPE algorithm.
ArticleNumber 105250
Author Hunt, Randall J.
Newcomer, Max W.
Author_xml – sequence: 1
  givenname: Max W.
  surname: Newcomer
  fullname: Newcomer, Max W.
  email: mnewcomer@usgs.gov
– sequence: 2
  givenname: Randall J.
  surname: Hunt
  fullname: Hunt, Randall J.
  email: rjhunt@usgs.gov
BookMark eNqFkM9KAzEQh4MoqNVHEAJevGxNsrvZFQ8i4j8Q9VDxGNJkoim7yZqkBT35Dr6hT2LaevIiBDIMv29m-HbRpvMOEDqgZEwJ5cezMbhF9CaNGWE092pWkw20Q9umLHjD-GauS14VLa3ZNtqNcUYIyXW1g8z98-ThcYK_P7_wOX59HyAMMsgeEgTsh2R7-yGT9Q7LYQheqldsfMAROlCrtjc4b7fBux5ckh3uvYYOR98tYJlLybqXuIe2jOwi7P_-I_R0dTm5uCnuHq5vL87vClXRJhVNe6IrMtU1LVvemlrLykwr3XCiwegSmGGtpGDA8PpEKU5UCS1njeSS6EpBOUJH67n51rc5xCR6GxV0nXTg51Ewnj20NCM5evgnOvPz4PJ1OcVKUrEyvxGq1ykVfIwBjBiC7WV4F5SIpX0xE7_2xdK-WNvP3OkfTtm0EpmCtN2_9NmahuxqYSGIqCw4BdqG7F1ob_-Z8AN2l6j0
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3526885
crossref_primary_10_1111_gwat_13270
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1007_s00704_024_04947_1
crossref_primary_10_1016_j_envsoft_2025_106489
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1080_15623599_2024_2304392
Cites_doi 10.1111/gwat.12320
10.1016/j.envsoft.2018.03.025
10.1111/j.1745-6584.2010.00699.x
10.1177/0278364904045481
10.1016/j.envsoft.2018.06.007
10.1111/gwat.13106
10.25080/Majora-8b375195-003
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Jan 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Jan 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
DOI 10.1016/j.envsoft.2021.105250
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
ExternalDocumentID 10_1016_j_envsoft_2021_105250
S1364815221002929
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ID FETCH-LOGICAL-c417t-789d40bd513868f5da4fb4d760defd3e2f28a1efef659cc60c3e8627a6a0d4ce3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744254300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-8152
IngestDate Sat Sep 27 23:57:57 EDT 2025
Wed Aug 13 08:12:42 EDT 2025
Sat Nov 29 07:01:05 EST 2025
Tue Nov 18 22:20:44 EST 2025
Fri Feb 23 02:41:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hyperparameter
Parameter estimation
Uncertainty
Calibration
Groundwater modeling
Optimization
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-789d40bd513868f5da4fb4d760defd3e2f28a1efef659cc60c3e8627a6a0d4ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.envsoft.2021.105250
PQID 2623042342
PQPubID 2047471
ParticipantIDs proquest_miscellaneous_2636481627
proquest_journals_2623042342
crossref_primary_10_1016_j_envsoft_2021_105250
crossref_citationtrail_10_1016_j_envsoft_2021_105250
elsevier_sciencedirect_doi_10_1016_j_envsoft_2021_105250
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References White, Hunt, Fienen, Doherty (bib20) 2020
Haserodt, Hunt, Fienen, Feinstein (bib8) 2021
Newcomer, Hunt (bib16) 2021
(bib9) 2021
Rossetto, De Filippis, Borsi, Foglia, Cannata, Criollo, Vázquez-Suñé (bib19) 2018; 107
Bergstra, Bengio (bib3) 2012; 13
Hunt, White, Duncan, Haugh, Doherty (bib11) 2021; 59
LaValle, Branicky, Lindemann (bib14) 2004; 23
Markstrom, Niswonger, Regan, Prudic, Barlow (bib15) 2008
Doherty (bib6) 2021
Panday, Langevin, Niswonger, Ibaraki, Hughes (bib18) 2013; Book 6
Bergstra, Yamins, Cox (bib5) 2013
Anderson, Woessner, Hunt (bib1) 2015
Hunt, Luchette, Schreüder, Rumbaugh, Doherty, Tonkin, Rumbaugh (bib10) 2010; 48
Langevin, Hughes, Banta, Niswonger, Panday, Provost (bib13) 2017
Bakinam, Goodall, Zell, Voce, Morsy, Sadler, Yuan, Malik (bib2) 2018; 105
Bergstra, Yamins, Cox (bib4) 2013; vol. 28
Koehrsen (bib12) 2018
Fienen, Hunt (bib7) 2015; 53
Niswonger, Panday, Ibaraki (bib17) 2011
LaValle (10.1016/j.envsoft.2021.105250_bib14) 2004; 23
Doherty (10.1016/j.envsoft.2021.105250_bib6) 2021
Anderson (10.1016/j.envsoft.2021.105250_bib1) 2015
Bergstra (10.1016/j.envsoft.2021.105250_bib4) 2013; vol. 28
Bakinam (10.1016/j.envsoft.2021.105250_bib2) 2018; 105
Fienen (10.1016/j.envsoft.2021.105250_bib7) 2015; 53
Langevin (10.1016/j.envsoft.2021.105250_bib13) 2017
Rossetto (10.1016/j.envsoft.2021.105250_bib19) 2018; 107
(10.1016/j.envsoft.2021.105250_bib9) 2021
Hunt (10.1016/j.envsoft.2021.105250_bib11) 2021; 59
Bergstra (10.1016/j.envsoft.2021.105250_bib5) 2013
Haserodt (10.1016/j.envsoft.2021.105250_bib8) 2021
Niswonger (10.1016/j.envsoft.2021.105250_bib17) 2011
Koehrsen (10.1016/j.envsoft.2021.105250_bib12) 2018
Bergstra (10.1016/j.envsoft.2021.105250_bib3) 2012; 13
Panday (10.1016/j.envsoft.2021.105250_bib18) 2013; Book 6
White (10.1016/j.envsoft.2021.105250_bib20) 2020
Hunt (10.1016/j.envsoft.2021.105250_bib10) 2010; 48
Markstrom (10.1016/j.envsoft.2021.105250_bib15) 2008
Newcomer (10.1016/j.envsoft.2021.105250_bib16) 2021
References_xml – volume: 48
  start-page: 360
  year: 2010
  end-page: 365
  ident: bib10
  article-title: Using a Cloud to replenish parched groundwater modeling efforts
  publication-title: Groundwater
– year: 2011
  ident: bib17
  article-title: MODFLOW-NWT, A Newton formulation for MODFLOW-2005
– volume: 107
  start-page: 210
  year: 2018
  end-page: 230
  ident: bib19
  article-title: Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management
  publication-title: Environ. Model. Software
– volume: 53
  start-page: 180
  year: 2015
  end-page: 184
  ident: bib7
  article-title: High-throughput computing vs. High-performance computing for groundwater applications
  publication-title: Groundwater
– year: 2008
  ident: bib15
  article-title: GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005)
– volume: 59
  start-page: 788
  year: 2021
  end-page: 798
  ident: bib11
  article-title: Evaluating lower computational burden approaches for calibration of large environmental models
  publication-title: Groundwater
– year: 2021
  ident: bib9
  article-title: HTCondor Version 9.0 Manual
– volume: Book 6
  start-page: 66
  year: 2013
  ident: bib18
  article-title: MODFLOW-USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation
  publication-title: U.S. Geological Survey Techniques and Methods Report
– volume: 105
  start-page: 217
  year: 2018
  end-page: 229
  ident: bib2
  article-title: Integrating scientific cyberinfrastructures to improve reproducibility in computational hydrology: example for HydroShare and GeoTrust
  publication-title: Environ. Model. Software
– year: 2021
  ident: bib16
  article-title: NWTOPT Software and Examples
– year: 2015
  ident: bib1
  publication-title: Applied Groundwater Modeling: Simulation of Flow and Advective Transport
– start-page: 353
  year: 2021
  ident: bib6
  article-title: PEST and its Utility Support Software: Brisbane, Australia
– year: 2013
  ident: bib5
  article-title: Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms
  publication-title: Proceedings of the 12th Python in Science Conference
– year: 2020
  ident: bib20
  article-title: Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib3
  article-title: Random search for hyper-parameter optimization
  publication-title: JMLR
– start-page: 94 p.
  year: 2021
  ident: bib8
  article-title: Groundwater/surface-water interactions in the Partridge River Basin and evaluation of hypothetical future mine pits, Minnesota
  publication-title: U.S. Geological Survey Scientific Investigations Report 2021-5038
– year: 2018
  ident: bib12
  article-title: A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning
– year: 2017
  ident: bib13
  article-title: Documentation for the MODFLOW 6 groundwater flow model
– volume: vol. 28
  year: 2013
  ident: bib4
  article-title: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume: 23
  start-page: 673
  year: 2004
  end-page: 692
  ident: bib14
  article-title: On the relationship between classical grid search and probabilistic roadmaps
  publication-title: Int. J. Robot Res.
– volume: 53
  start-page: 180
  issue: 2
  year: 2015
  ident: 10.1016/j.envsoft.2021.105250_bib7
  article-title: High-throughput computing vs. High-performance computing for groundwater applications
  publication-title: Groundwater
  doi: 10.1111/gwat.12320
– volume: vol. 28
  year: 2013
  ident: 10.1016/j.envsoft.2021.105250_bib4
  article-title: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures
– volume: Book 6
  start-page: 66
  year: 2013
  ident: 10.1016/j.envsoft.2021.105250_bib18
  article-title: MODFLOW-USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation
  publication-title: U.S. Geological Survey Techniques and Methods Report
– volume: 105
  start-page: 217
  year: 2018
  ident: 10.1016/j.envsoft.2021.105250_bib2
  article-title: Integrating scientific cyberinfrastructures to improve reproducibility in computational hydrology: example for HydroShare and GeoTrust
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2018.03.025
– volume: 13
  start-page: 281
  issue: 10
  year: 2012
  ident: 10.1016/j.envsoft.2021.105250_bib3
  article-title: Random search for hyper-parameter optimization
  publication-title: JMLR
– year: 2008
  ident: 10.1016/j.envsoft.2021.105250_bib15
– start-page: 353
  year: 2021
  ident: 10.1016/j.envsoft.2021.105250_bib6
– volume: 48
  start-page: 360
  issue: 3
  year: 2010
  ident: 10.1016/j.envsoft.2021.105250_bib10
  article-title: Using a Cloud to replenish parched groundwater modeling efforts
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2010.00699.x
– year: 2015
  ident: 10.1016/j.envsoft.2021.105250_bib1
– volume: 23
  start-page: 673
  issue: 7–8
  year: 2004
  ident: 10.1016/j.envsoft.2021.105250_bib14
  article-title: On the relationship between classical grid search and probabilistic roadmaps
  publication-title: Int. J. Robot Res.
  doi: 10.1177/0278364904045481
– year: 2011
  ident: 10.1016/j.envsoft.2021.105250_bib17
– year: 2020
  ident: 10.1016/j.envsoft.2021.105250_bib20
– year: 2021
  ident: 10.1016/j.envsoft.2021.105250_bib9
– volume: 107
  start-page: 210
  year: 2018
  ident: 10.1016/j.envsoft.2021.105250_bib19
  article-title: Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2018.06.007
– year: 2021
  ident: 10.1016/j.envsoft.2021.105250_bib16
– volume: 59
  start-page: 788
  issue: 6
  year: 2021
  ident: 10.1016/j.envsoft.2021.105250_bib11
  article-title: Evaluating lower computational burden approaches for calibration of large environmental models
  publication-title: Groundwater
  doi: 10.1111/gwat.13106
– year: 2017
  ident: 10.1016/j.envsoft.2021.105250_bib13
– year: 2013
  ident: 10.1016/j.envsoft.2021.105250_bib5
  article-title: Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms
  doi: 10.25080/Majora-8b375195-003
– year: 2018
  ident: 10.1016/j.envsoft.2021.105250_bib12
– start-page: 94 p.
  year: 2021
  ident: 10.1016/j.envsoft.2021.105250_bib8
  article-title: Groundwater/surface-water interactions in the Partridge River Basin and evaluation of hypothetical future mine pits, Minnesota
  publication-title: U.S. Geological Survey Scientific Investigations Report 2021-5038
SSID ssj0001524
Score 2.3878186
Snippet Hyperparameter optimization approaches were applied to improve performance and accuracy of groundwater flow models. Freely available new software, NWTOPT, is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105250
SubjectTerms Algorithms
Calibration
computer software
Environmental modeling
environmental models
Errors
Groundwater
Groundwater availability
Groundwater flow
Groundwater modeling
Hyperparameter
Mass balance
Optimization
Parameter estimation
Performance enhancement
Run time (computers)
Search algorithms
Solvers
Steady state models
Uncertainty
Title NWTOPT – A hyperparameter optimization approach for selection of environmental model solver settings
URI https://dx.doi.org/10.1016/j.envsoft.2021.105250
https://www.proquest.com/docview/2623042342
https://www.proquest.com/docview/2636481627
Volume 147
WOSCitedRecordID wos000744254300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKFyQ48FNYUViQkbhFKYnj2s6xQkWwEmUFRdtblMS2llU3XbXdUm6ceAHekCdhHDtp2gUtIHGJKtc_SebLZDyZ-Qah5yTmKWWh9EPJcp9mLPDjKBB-Fuso45qJVGVlsQk-GonJJD5qtb5VuTCrKS8KsV7H5_9V1NAGwjaps38h7npSaIDfIHQ4gtjh-EeCHx2P3x2NvSqKIYJH_wQ2m3ND8n1mgl-8GaiJM5d_WZOKl_GGi7IqjrMhGzlwJsXElMzx4NRXhv9ZleHSiy2__uXuU-uHYDBMLz-bGDPjgChdv43JPROl6jXNe9C8cGcsmN6ma--4t0Gf5Ul4bxwg06l32Gu6LQjZcVvU-TSb4CWjfiNGfRFaTtuesm2CRz7jNq--1tmWpvOS_reuiNMeXIS5Mtj_k9CUMiaW3XaHWvuDWc8sRwwRLRiK19Ae4bDFaqO9wZvh5LB-p0MfWx7Znd8mF-zFLxf7nZWz874vjZjxXXTb7T7wwKLmHmqpooPuVJU9sFP0HXRjWJKZf-mgWw3Cyg7a3xJy1X9xH2mLOvzj63c8wNt4w0284QpvGPCGa7zhmcZbeMMlgLDFG67w9gB9fDUcv3ztuxIefk5DvvS5iCUNMtkPI8GE7suU6oxKzgKptIwU0USkodJKs36c5yzIIwV7bJ6yNJA0V9E-ahezQj1EOKA651KoFOah8IZOwaziMhVZHtBMUNpFtLrlSe747U2ZlWlSBTKeJk5SiZFUYiXVRb162LkleLlqgKjkmTgr1VqfCYDwqqEHlfwTpzEWCWHmuwyJKOmiZ_XfoOTNl7u0ULML06cEKtyYR_---mN0c_MgHqD2cn6hnqDr-Wr5aTF_6hD_ExHh1JM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NWTOPT+%E2%80%93+A+hyperparameter+optimization+approach+for+selection+of+environmental+model+solver+settings&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Newcomer%2C+Max+W.&rft.au=Hunt%2C+Randall+J.&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=147&rft_id=info:doi/10.1016%2Fj.envsoft.2021.105250&rft.externalDocID=S1364815221002929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon