Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs
We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures (typically used at the coarse search stage...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 42; číslo 4; s. 824 - 836 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures (typically used at the coarse search stage of the most proximity graph techniques). Hierarchical NSW incrementally builds a multi-layer structure consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting the search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation. |
|---|---|
| AbstractList | We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures (typically used at the coarse search stage of the most proximity graph techniques). Hierarchical NSW incrementally builds a multi-layer structure consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting the search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation. We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures (typically used at the coarse search stage of the most proximity graph techniques). Hierarchical NSW incrementally builds a multi-layer structure consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting the search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures (typically used at the coarse search stage of the most proximity graph techniques). Hierarchical NSW incrementally builds a multi-layer structure consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting the search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation. |
| Author | Yashunin, D. A. Malkov, Yu A. |
| Author_xml | – sequence: 1 givenname: Yu A. orcidid: 0000-0003-4324-6433 surname: Malkov fullname: Malkov, Yu A. email: yurymalkov@mail.ru organization: Samsung AI Center, Moscow, Russia – sequence: 2 givenname: D. A. surname: Yashunin fullname: Yashunin, D. A. email: yashuninda@yandex.ru organization: Nizhny Novgorod, Russia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30602420$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URNPCHwAJWeLCZYO_1msfo6q0ldqAaCuOltc7Tlxt1qm9i-Df45C0hx44WR49z2hm3hN0NMQBEHpPyZxSor_cfV_cXM0ZoWrOlNKi4a_QjFFJKs00O0IzQiWrlGLqGJ3k_EAIFTXhb9AxJ5IwwcgMrc-9Dy7AMGI7dPhHbKc84sV2m-LvsLEj4CXYBKW2hLBatzHh21Jwa3yfw7DClwHS7huc7fHS_gor2_aAbze27_HPmPoOXyS7Xee36LW3fYZ3h_cU3X89vzu7rK6_XVydLa4rJ2gzVgJAkcY2VDGvaM2od16D9YJp6S1lToNUviF17WTnVcdbaonVlvjOiSLzU_R537ds8DiVwc0mZAd9bweIUzblPpxQympd0E8v0Ic4paFMZxhvhNSS6R318UBN7QY6s03lLumPebphAdQecCnmnMAbF0Y7hjiMyYbeUGJ2cZl_cZldXOYQV1HZC_Wp-3-lD3spAMCzoGotJJf8L3cRoGw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_JAS_2022_105635 crossref_primary_10_1007_s00530_023_01065_2 crossref_primary_10_14778_3725688_3725705 crossref_primary_10_1145_3725413 crossref_primary_10_1142_S2196888823500148 crossref_primary_10_14778_3725688_3725709 crossref_primary_10_14778_3748191_3748193 crossref_primary_10_1016_j_ins_2023_120076 crossref_primary_10_1080_01431161_2024_2302353 crossref_primary_10_1109_TKDE_2022_3231781 crossref_primary_10_1016_j_patrec_2022_01_025 crossref_primary_10_1109_TVLSI_2025_3544342 crossref_primary_10_1145_3488377 crossref_primary_10_1093_nargab_lqaf040 crossref_primary_10_1145_3705000 crossref_primary_10_1049_itr2_12583 crossref_primary_10_1145_3677129 crossref_primary_10_1109_TKDE_2019_2953897 crossref_primary_10_1109_LRA_2022_3194310 crossref_primary_10_1145_3631939 crossref_primary_10_1155_2021_2011738 crossref_primary_10_21105_joss_08033 crossref_primary_10_2478_cait_2024_0035 crossref_primary_10_1007_s10115_023_01899_2 crossref_primary_10_2478_acss_2025_0004 crossref_primary_10_17586_2226_1494_2025_25_4_710_717 crossref_primary_10_26599_BDMA_2025_9020022 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1016_j_ins_2020_08_054 crossref_primary_10_1109_TDSC_2024_3383159 crossref_primary_10_1145_3725403 crossref_primary_10_1109_TPAMI_2022_3157197 crossref_primary_10_1109_TMM_2022_3210376 crossref_primary_10_1186_s13059_022_02820_w crossref_primary_10_1145_3725401 crossref_primary_10_1145_3654920 crossref_primary_10_3390_info14030149 crossref_primary_10_1016_j_autcon_2025_106103 crossref_primary_10_1007_s10772_024_10147_z crossref_primary_10_1007_s10278_025_01598_0 crossref_primary_10_1109_TEVC_2021_3106672 crossref_primary_10_3390_signals2020021 crossref_primary_10_1016_j_future_2024_03_002 crossref_primary_10_1016_j_ijmedinf_2024_105680 crossref_primary_10_1080_1206212X_2025_2537892 crossref_primary_10_1109_ACCESS_2023_3289836 crossref_primary_10_1038_s41587_020_0591_3 crossref_primary_10_1016_j_softx_2024_102016 crossref_primary_10_1016_j_eswa_2025_128596 crossref_primary_10_1038_s41598_025_12685_1 crossref_primary_10_1016_j_ress_2024_110582 crossref_primary_10_1016_j_isprsjprs_2024_04_005 crossref_primary_10_1038_s41598_025_15203_5 crossref_primary_10_1016_j_patcog_2025_111805 crossref_primary_10_1038_s41467_022_32097_3 crossref_primary_10_1016_j_isci_2023_106536 crossref_primary_10_7717_peerj_cs_1929 crossref_primary_10_1109_TCC_2022_3169329 crossref_primary_10_1007_s11227_021_03699_3 crossref_primary_10_1109_TBDATA_2023_3327220 crossref_primary_10_1145_3709743 crossref_primary_10_1145_3733610 crossref_primary_10_1007_s10346_021_01761_y crossref_primary_10_3390_machines12050321 crossref_primary_10_1038_s41467_020_18416_6 crossref_primary_10_1038_s41467_021_25773_3 crossref_primary_10_3847_1538_4357_adb0b7 crossref_primary_10_1007_s41060_024_00709_4 crossref_primary_10_1007_s12539_020_00411_6 crossref_primary_10_1016_j_aei_2022_101680 crossref_primary_10_1016_j_eswa_2024_123191 crossref_primary_10_1109_TDSC_2025_3547243 crossref_primary_10_1109_TKDE_2023_3266495 crossref_primary_10_1016_j_enconman_2024_118391 crossref_primary_10_1109_TSG_2024_3474039 crossref_primary_10_1002_cpe_5970 crossref_primary_10_1049_ipr2_12883 crossref_primary_10_1109_TPAMI_2019_2944597 crossref_primary_10_1007_s41781_024_00117_0 crossref_primary_10_1145_3749179 crossref_primary_10_1007_s00366_021_01304_y crossref_primary_10_17150_2713_1734_2024_6_2__251_262 crossref_primary_10_1109_TNET_2022_3217012 crossref_primary_10_1134_S1064562423701570 crossref_primary_10_1016_j_is_2022_102123 crossref_primary_10_1145_3639324 crossref_primary_10_1016_j_knosys_2023_110907 crossref_primary_10_1016_j_cogsys_2024_101216 crossref_primary_10_1007_s13369_024_08974_y crossref_primary_10_1109_TPAMI_2022_3198729 crossref_primary_10_1016_j_neucom_2024_128172 crossref_primary_10_14778_3749646_3749704 crossref_primary_10_1109_TIFS_2021_3139219 crossref_primary_10_14778_3750601_3750688 crossref_primary_10_3390_rs15174287 crossref_primary_10_1109_TKDE_2024_3408815 crossref_primary_10_1162_coli_a_00543 crossref_primary_10_1109_TFUZZ_2019_2949769 crossref_primary_10_1093_bib_bbab573 crossref_primary_10_1109_TBDATA_2022_3161156 crossref_primary_10_1145_3654970 crossref_primary_10_1080_20964471_2025_2529639 crossref_primary_10_1016_j_sysarc_2025_103514 crossref_primary_10_3389_fnbot_2023_1301785 crossref_primary_10_7717_peerj_cs_1757 crossref_primary_10_1007_s11063_024_11444_z crossref_primary_10_1142_S1793351X25420024 crossref_primary_10_1162_tacl_a_00415 crossref_primary_10_1007_s10115_022_01742_0 crossref_primary_10_1145_3469379_3469384 crossref_primary_10_1109_TMM_2021_3073811 crossref_primary_10_1145_3749116_3749122 crossref_primary_10_1109_TPAMI_2022_3187350 crossref_primary_10_1109_TCASAI_2025_3540957 crossref_primary_10_1038_s41592_021_01286_1 crossref_primary_10_1109_TKDE_2022_3150403 crossref_primary_10_3390_ai6050093 crossref_primary_10_1109_TMC_2024_3361876 crossref_primary_10_14778_3750601_3750674 crossref_primary_10_1038_s41598_025_09856_5 crossref_primary_10_14778_3748191_3748200 crossref_primary_10_1007_s00799_023_00354_5 crossref_primary_10_1016_j_eswa_2022_117885 crossref_primary_10_1186_s40537_025_01257_9 crossref_primary_10_1109_TSG_2024_3446859 crossref_primary_10_1109_TCSS_2024_3453226 crossref_primary_10_1109_TIM_2025_3557112 crossref_primary_10_3390_app131810468 crossref_primary_10_1177_00405175241293764 crossref_primary_10_14778_3748191_3748212 crossref_primary_10_1049_ell2_12052 crossref_primary_10_1109_ACCESS_2025_3561594 crossref_primary_10_1109_TPAMI_2019_2952606 crossref_primary_10_1073_pnas_2425048122 crossref_primary_10_1145_3486250 crossref_primary_10_1038_s44385_025_00022_0 crossref_primary_10_1145_3654990 crossref_primary_10_1109_ACCESS_2025_3542036 crossref_primary_10_1109_JSTARS_2023_3298994 crossref_primary_10_1109_TPDS_2023_3298038 crossref_primary_10_1088_1742_6596_2711_1_012014 crossref_primary_10_1145_3711903 crossref_primary_10_1109_TCSVT_2022_3213680 crossref_primary_10_1109_TKDE_2023_3270264 crossref_primary_10_1016_j_nlp_2025_100137 crossref_primary_10_1145_3709701 crossref_primary_10_3390_sym16081084 crossref_primary_10_1007_s00778_024_00864_x crossref_primary_10_1051_shsconf_202419703002 crossref_primary_10_1093_nargab_lqae172 crossref_primary_10_14778_3725688_3725692 crossref_primary_10_1007_s10489_024_06135_0 crossref_primary_10_14778_3734839_3734860 crossref_primary_10_1007_s00778_024_00886_5 crossref_primary_10_1007_s10791_023_09425_2 crossref_primary_10_1145_3589282 crossref_primary_10_14778_3725688_3725696 crossref_primary_10_14778_3746405_3746419 crossref_primary_10_3390_rs16020214 crossref_primary_10_3390_electronics10121434 crossref_primary_10_1007_s13755_023_00253_8 crossref_primary_10_1109_TSE_2025_3531210 crossref_primary_10_1109_ACCESS_2023_3295776 crossref_primary_10_1145_3656482 crossref_primary_10_3390_bdcc6040136 crossref_primary_10_2113_RGG20244760 crossref_primary_10_3390_app13063941 crossref_primary_10_3390_technologies9010010 crossref_primary_10_1145_3634912 crossref_primary_10_1109_MCAS_2024_3476008 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1016_j_jisa_2022_103335 crossref_primary_10_1016_j_engappai_2024_108912 crossref_primary_10_1016_j_engappai_2023_105902 crossref_primary_10_1109_TBDATA_2021_3101517 crossref_primary_10_1109_ACCESS_2025_3582825 crossref_primary_10_1145_3736754 crossref_primary_10_14778_3746405_3746427 crossref_primary_10_1109_TBDATA_2024_3460534 crossref_primary_10_1007_s00778_024_00874_9 crossref_primary_10_1016_j_ins_2024_120158 crossref_primary_10_1007_s00778_022_00762_0 crossref_primary_10_1016_j_ins_2021_10_027 crossref_primary_10_1016_j_eswa_2024_126254 crossref_primary_10_3390_s23020629 crossref_primary_10_3390_electronics14183605 crossref_primary_10_1109_TKDE_2022_3220683 crossref_primary_10_1109_TNET_2024_3473853 crossref_primary_10_37745_ejcsit_2013_vol13n362129 crossref_primary_10_1007_s00170_022_10785_0 crossref_primary_10_1109_TKDE_2023_3341098 crossref_primary_10_1016_j_patcog_2023_109300 crossref_primary_10_1109_TCCN_2025_3528895 crossref_primary_10_3390_app14135520 crossref_primary_10_1145_3637870 crossref_primary_10_1016_j_patcog_2023_109422 crossref_primary_10_1093_bib_bbad157 crossref_primary_10_1021_acs_jcim_5c00394 crossref_primary_10_3390_biomedicines10071491 crossref_primary_10_1109_TIP_2023_3261755 crossref_primary_10_1093_nar_gkae609 crossref_primary_10_1145_3709693 crossref_primary_10_1016_j_neucom_2020_08_084 crossref_primary_10_3390_make7020048 crossref_primary_10_1007_s10489_025_06530_1 crossref_primary_10_1145_3725260 crossref_primary_10_1007_s10586_023_04159_8 crossref_primary_10_1007_s00521_020_05530_1 crossref_primary_10_1007_s10044_025_01462_5 crossref_primary_10_1016_j_datak_2025_102494 crossref_primary_10_1109_TIT_2021_3102177 crossref_primary_10_1007_s42524_022_0225_1 crossref_primary_10_1109_TSMC_2023_3234227 crossref_primary_10_1109_JIOT_2024_3358349 crossref_primary_10_1088_1674_4527_adcdac crossref_primary_10_14778_3749646_3749650 crossref_primary_10_3390_rs14215619 crossref_primary_10_1016_j_is_2025_102563 crossref_primary_10_1145_3639269 crossref_primary_10_1007_s13042_024_02104_8 crossref_primary_10_1016_j_is_2025_102565 crossref_primary_10_1109_TIE_2020_2978722 crossref_primary_10_1007_s10618_023_00950_8 crossref_primary_10_1109_LRA_2021_3094228 crossref_primary_10_1177_00405175211037186 crossref_primary_10_1038_s41467_023_37969_w crossref_primary_10_3390_rs16091483 crossref_primary_10_1007_s11042_023_18023_9 crossref_primary_10_1016_j_ins_2025_122414 crossref_primary_10_1155_2022_1154325 crossref_primary_10_1088_2631_8695_ae0003 crossref_primary_10_1093_bib_bbae109 crossref_primary_10_1109_ACCESS_2025_3602730 crossref_primary_10_1145_3609384 crossref_primary_10_1109_TCSVT_2025_3558996 crossref_primary_10_1109_TIP_2022_3163571 crossref_primary_10_1016_j_jss_2021_111008 crossref_primary_10_1093_nar_gkae029 crossref_primary_10_1016_j_patcog_2024_110596 crossref_primary_10_1145_3725399 crossref_primary_10_1109_TCAD_2024_3378600 crossref_primary_10_21105_joss_07489 crossref_primary_10_1016_j_eswa_2022_119054 crossref_primary_10_1145_3725274 crossref_primary_10_7554_eLife_66747 crossref_primary_10_1109_TCAD_2022_3198513 crossref_primary_10_1145_3626710 crossref_primary_10_1007_s13735_024_00342_8 crossref_primary_10_1109_TKDE_2022_3232689 crossref_primary_10_1109_TKDE_2022_3198689 crossref_primary_10_1109_TPAMI_2021_3067706 crossref_primary_10_1007_s00500_022_07081_0 crossref_primary_10_14778_3750601_3750624 crossref_primary_10_3390_math13132199 crossref_primary_10_1016_j_measurement_2024_115245 crossref_primary_10_5715_jnlp_32_886 crossref_primary_10_1109_TITS_2022_3229364 crossref_primary_10_1109_TKDE_2022_3155196 crossref_primary_10_1145_3722552 crossref_primary_10_1016_j_knosys_2022_109597 crossref_primary_10_1109_TIP_2020_3036779 crossref_primary_10_1145_3736716 crossref_primary_10_1109_TMM_2024_3410136 crossref_primary_10_1016_j_knosys_2023_110750 crossref_primary_10_1109_LSP_2022_3148674 crossref_primary_10_14778_3750601_3750619 crossref_primary_10_1016_j_ins_2022_06_086 crossref_primary_10_14778_3717755_3717770 crossref_primary_10_1109_ACCESS_2025_3557609 crossref_primary_10_1145_3603167 crossref_primary_10_1109_JSTARS_2023_3323819 crossref_primary_10_1002_spe_3355 crossref_primary_10_1016_j_knosys_2022_110219 crossref_primary_10_1007_s42514_022_00103_1 crossref_primary_10_1145_3725338 crossref_primary_10_1016_j_future_2024_107586 crossref_primary_10_1093_bib_bbad475 crossref_primary_10_1109_TKDE_2024_3487759 crossref_primary_10_1007_s11760_024_03562_x crossref_primary_10_1145_3527546_3527552 crossref_primary_10_1016_j_inffus_2023_101979 crossref_primary_10_1016_j_ins_2025_122462 crossref_primary_10_1145_3736589 crossref_primary_10_1016_j_neucom_2022_07_001 crossref_primary_10_1145_3568681 crossref_primary_10_1038_s41598_025_02643_2 crossref_primary_10_1145_3512767 crossref_primary_10_14778_3717755_3717760 crossref_primary_10_1109_TCSVT_2023_3253548 crossref_primary_10_1109_TNET_2022_3187044 crossref_primary_10_1016_j_cose_2024_104249 crossref_primary_10_1016_j_isprsjprs_2025_04_015 crossref_primary_10_1145_3588908 crossref_primary_10_3390_rs15010160 crossref_primary_10_1007_s11263_021_01511_6 crossref_primary_10_1038_s41467_023_39279_7 crossref_primary_10_1145_3725325 crossref_primary_10_1007_s10489_024_05969_y crossref_primary_10_1038_s43588_021_00029_8 crossref_primary_10_14778_3749646_3749697 crossref_primary_10_1016_j_imavis_2025_105517 crossref_primary_10_1016_j_fsidi_2025_301930 crossref_primary_10_1145_3709661 crossref_primary_10_1145_3735128 crossref_primary_10_1007_s00778_024_00879_4 crossref_primary_10_1016_j_eswa_2023_120832 crossref_primary_10_1002_widm_70021 crossref_primary_10_1038_s41467_021_24991_z crossref_primary_10_1038_s42256_025_01112_9 crossref_primary_10_1007_s00778_024_00894_5 crossref_primary_10_3390_s25082571 crossref_primary_10_1109_TIFS_2024_3488527 crossref_primary_10_1145_3576922 crossref_primary_10_17586_2226_1494_2025_25_2_339_344 crossref_primary_10_1016_j_ins_2022_05_072 crossref_primary_10_1093_bib_bbae586 crossref_primary_10_1016_j_knosys_2022_108757 crossref_primary_10_1016_j_isprsjprs_2025_04_002 crossref_primary_10_1109_OJCS_2025_3602355 crossref_primary_10_1109_TIE_2022_3222696 crossref_primary_10_17586_2226_1494_2025_25_4_694_702 crossref_primary_10_1007_s11704_025_50480_3 crossref_primary_10_1007_s00778_022_00729_1 crossref_primary_10_1109_TIP_2022_3189803 crossref_primary_10_1016_j_simpa_2025_100772 crossref_primary_10_1038_s41586_024_08411_y crossref_primary_10_1017_nlp_2024_53 crossref_primary_10_1093_bioinformatics_btaf198 crossref_primary_10_26599_BDMA_2025_9020009 crossref_primary_10_1016_j_autcon_2025_106490 crossref_primary_10_1038_s41592_020_0905_x crossref_primary_10_1109_TIT_2022_3226479 crossref_primary_10_1109_TKDE_2025_3545176 crossref_primary_10_3233_JIFS_236010 crossref_primary_10_1109_TNSE_2024_3524576 crossref_primary_10_14778_3750601_3750700 crossref_primary_10_1109_TC_2022_3155956 crossref_primary_10_3390_app132413177 crossref_primary_10_1016_j_eswa_2025_126711 crossref_primary_10_1007_s00778_022_00771_z crossref_primary_10_1016_j_neucom_2025_131284 crossref_primary_10_1038_s41467_023_44290_z crossref_primary_10_1109_TGRS_2025_3586317 crossref_primary_10_1038_s41586_024_08247_6 crossref_primary_10_1016_j_asoc_2024_112353 crossref_primary_10_1007_s10472_023_09882_x crossref_primary_10_1371_journal_ppat_1012095 crossref_primary_10_1371_journal_pone_0281275 crossref_primary_10_1109_TKDE_2024_3381111 crossref_primary_10_1145_3709679 crossref_primary_10_1109_TIFS_2024_3488501 crossref_primary_10_1109_TVLSI_2024_3496589 crossref_primary_10_1145_3652609 crossref_primary_10_1007_s00778_024_00893_6 crossref_primary_10_1109_TCYB_2025_3562032 crossref_primary_10_1016_j_neunet_2025_107316 crossref_primary_10_1002_jrs_70047 crossref_primary_10_1109_TII_2021_3120141 |
| Cites_doi | 10.1007/978-3-642-41062-8_28 10.2307/2786545 10.1109/CVPR.2016.223 10.1007/978-3-319-25087-8_10 10.1109/TPAMI.2014.2321376 10.1016/j.is.2012.06.005 10.1007/978-3-642-32153-5_10 10.3115/v1/D14-1162 10.1145/1963405.1963487 10.1109/TPAMI.2007.70815 10.1145/2393347.2393378 10.1007/BF02574694 10.1103/PhysRevE.82.036106 10.1145/335305.335325 10.1145/276698.276876 10.1109/TIT.2015.2418284 10.1007/978-3-319-14998-1_18 10.1103/PhysRevLett.102.238703 10.1145/1109557.1109601 10.1109/TPAMI.2013.231 10.1007/978-3-319-46475-6_48 10.1371/journal.pone.0158162 10.1038/30918 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1016/0031-3203(80)90066-7 10.1016/j.is.2016.03.003 10.1007/978-3-642-15992-3_29 10.1016/j.is.2013.10.006 10.1145/78973.78977 10.1109/TPAMI.2014.2343223 10.1007/978-3-540-77096-1_23 10.1007/s007780200060 10.1109/IPDPS.2007.370210 10.1038/nphys1130 10.1007/978-3-319-27671-7_27 10.1109/CVPR.2016.616 10.1109/CVPR.2014.298 10.1023/B:VISI.0000029664.99615.94 10.14778/2824032.2824059 10.1109/5.726791 10.1109/CVPR.2012.6248038 10.1038/35022643 10.1016/j.is.2015.02.001 10.1137/1.9781611973068.36 10.1145/2020408.2020576 10.1038/ncomms8651 10.1109/TPAMI.2010.57 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2018.2889473 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 836 |
| ExternalDocumentID | 30602420 10_1109_TPAMI_2018_2889473 8594636 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Russian Foundation for Basic Research; RFBR grantid: 16-31-60104 mol_a_dk funderid: 10.13039/501100002261 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c417t-4ee807a7182f81521fcf9eaf4296fa12c9e68f7055c6df8d3b1a0a9a0fdc44ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 863 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526541100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 06:22:32 EDT 2025 Sun Jun 29 16:13:20 EDT 2025 Wed Feb 19 02:31:40 EST 2025 Sat Nov 29 05:15:58 EST 2025 Tue Nov 18 21:24:08 EST 2025 Wed Aug 27 02:42:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-4ee807a7182f81521fcf9eaf4296fa12c9e68f7055c6df8d3b1a0a9a0fdc44ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4324-6433 |
| PMID | 30602420 |
| PQID | 2374696299 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2018_2889473 crossref_primary_10_1109_TPAMI_2018_2889473 proquest_miscellaneous_2163011259 proquest_journals_2374696299 pubmed_primary_30602420 ieee_primary_8594636 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref15 ref52 ref55 ref11 ref54 ref10 andoni (ref51) 0 beecks (ref59) 2013 ref17 ref16 ref19 boytsov (ref50) 0 ref46 ref45 ref48 ponomarenko (ref33) 2014 ref47 andoni (ref8) 0 ref42 ref41 rehurek (ref58) 0 ref44 ref43 ref49 ref7 ref9 ref4 ref6 ref5 ref40 ponomarenko (ref30) 0 yianilos (ref3) 0; 93 ref35 ref34 ref37 ref36 ref31 ref32 ref2 ref1 ref39 ref38 babenko (ref14) 0 arya (ref18) 0 bolettieri (ref53) 2009 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 paredes (ref24) 2008 gonzalez (ref56) 2008; 30 |
| References_xml | – ident: ref49 doi: 10.1007/978-3-642-41062-8_28 – ident: ref42 doi: 10.2307/2786545 – ident: ref17 doi: 10.1109/CVPR.2016.223 – ident: ref23 doi: 10.1007/978-3-319-25087-8_10 – ident: ref6 doi: 10.1109/TPAMI.2014.2321376 – ident: ref57 doi: 10.1016/j.is.2012.06.005 – ident: ref25 doi: 10.1007/978-3-642-32153-5_10 – ident: ref52 doi: 10.3115/v1/D14-1162 – ident: ref29 doi: 10.1145/1963405.1963487 – volume: 30 start-page: 1647 year: 2008 ident: ref56 article-title: Effective proximity retrieval by ordering permutations publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70815 – ident: ref19 doi: 10.1145/2393347.2393378 – year: 2009 ident: ref53 article-title: CoPhIR: A test collection for content-based image retrieval – ident: ref48 doi: 10.1007/BF02574694 – ident: ref35 doi: 10.1103/PhysRevE.82.036106 – volume: 93 start-page: 311 year: 0 ident: ref3 article-title: Data structures and algorithms for nearest neighbor search in general metric spaces publication-title: SODA – ident: ref41 doi: 10.1145/335305.335325 – year: 2008 ident: ref24 article-title: Graphs for metric space searching – ident: ref9 doi: 10.1145/276698.276876 – ident: ref38 doi: 10.1109/TIT.2015.2418284 – start-page: 793 year: 0 ident: ref51 article-title: Optimal data-dependent hashing for approximate near neighbors publication-title: Proc Annual ACM Symp on Theory of Computing – ident: ref10 doi: 10.1007/978-3-319-14998-1_18 – year: 0 ident: ref30 article-title: Approximate nearest neighbor search small world approach publication-title: Proc Int Conf Inf Commun Technol – start-page: 1574 year: 0 ident: ref50 article-title: Learning to prune in metric and non-metric spaces publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1103/PhysRevLett.102.238703 – ident: ref45 doi: 10.1145/1109557.1109601 – ident: ref11 doi: 10.1109/TPAMI.2013.231 – ident: ref15 doi: 10.1007/978-3-319-46475-6_48 – ident: ref44 doi: 10.1371/journal.pone.0158162 – ident: ref43 doi: 10.1038/30918 – ident: ref2 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – start-page: 271 year: 0 ident: ref18 article-title: Approximate nearest neighbor queries in fixed dimensions publication-title: Proc 9th Annual ACM-SIAM Symp on Discrete Algorithms – ident: ref46 doi: 10.1016/0031-3203(80)90066-7 – ident: ref5 doi: 10.1016/j.is.2016.03.003 – ident: ref21 doi: 10.1007/978-3-642-15992-3_29 – ident: ref26 doi: 10.1016/j.is.2013.10.006 – ident: ref27 doi: 10.1145/78973.78977 – ident: ref7 doi: 10.1109/TPAMI.2014.2343223 – ident: ref39 doi: 10.1007/978-3-540-77096-1_23 – ident: ref4 doi: 10.1007/s007780200060 – ident: ref40 doi: 10.1109/IPDPS.2007.370210 – ident: ref32 doi: 10.1038/nphys1130 – ident: ref20 doi: 10.1007/978-3-319-27671-7_27 – ident: ref47 doi: 10.1109/CVPR.2016.616 – start-page: 125 year: 2014 ident: ref33 article-title: Comparative analysis of data structures for approximate nearest neighbor search publication-title: Data Anal – ident: ref16 doi: 10.1109/CVPR.2014.298 – ident: ref1 doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 45 year: 0 ident: ref58 article-title: Software framework for topic modelling with large corpora publication-title: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks – ident: ref34 doi: 10.14778/2824032.2824059 – start-page: 1225 year: 0 ident: ref8 article-title: Practical and optimal LSH for angular distance publication-title: Proc Adv Neural Inf Process Syst – year: 2013 ident: ref59 article-title: Distance-based similarity models for content-based multimedia retrieval – ident: ref54 doi: 10.1109/5.726791 – ident: ref12 doi: 10.1109/CVPR.2012.6248038 – ident: ref31 doi: 10.1038/35022643 – start-page: 2055 year: 0 ident: ref14 article-title: Efficient indexing of billion-scale datasets of deep descriptors publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref55 doi: 10.1016/j.is.2015.02.001 – ident: ref37 doi: 10.1137/1.9781611973068.36 – ident: ref22 doi: 10.1145/2020408.2020576 – ident: ref36 doi: 10.1038/ncomms8651 – ident: ref13 doi: 10.1109/TPAMI.2010.57 |
| SSID | ssj0014503 |
| Score | 2.7377121 |
| Snippet | We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 824 |
| SubjectTerms | Algorithms approximate search Approximation algorithms artificial intelligence big data Biological system modeling Brain modeling Complexity theory Data models data structures Graph and tree search strategies Graphs graphs and networks information search and retrieval information storage and retrieval information technology and systems Metric space Multilayers nearest neighbor search Performance evaluation Proximity Routing Search problems search process Searching similarity search Structural hierarchy |
| Title | Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs |
| URI | https://ieeexplore.ieee.org/document/8594636 https://www.ncbi.nlm.nih.gov/pubmed/30602420 https://www.proquest.com/docview/2374696299 https://www.proquest.com/docview/2163011259 |
| Volume | 42 |
| WOSCitedRecordID | wos000526541100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB42IYf2kGcfzgsVemud2F6tJR2XkHQLrQltCnszsh7pwtYbsruhP78z8oMU0kBvxpZkwzfjmZFmvgF4b9BmWl7lMbcjERMBXaxHsoqlcWmiE--tD-z6X0RRyOlUXQ_gY18L45wLyWfujC7DWb5dmDVtlZ3LkSJ-qw3YEEI0tVr9iQEfhS7I6MGghmMY0RXIJOr85nr89TNlccmzTErFBTXPQVeZzFPylz0KDVb-7WsGm3O1839fuwvbrW_Jxo0w7MHA1fuw0_VtYK0a78PLRySEB_DzMrBI4FpM15Z9W1Tr5YqNiWv89wz9WccK4rnFewVto6LMsCZHmYV0AzaZUQ1zaKkyZ4V-mN1SNRb7_kvP5yzk6rBPxIq9fAU_ri5vLiZx238hNjwVq5g7JxOh0XplXpKd98Yrpz2asNzrNDPK5dITHY_JrZd2WKU60QoRtobj5OFr2KwXtXsLTPHUVLaqjOFDnmupK66sVQqdOW2y3EaQdiiUpiUnpx4Z8zIEKYkqA4glgVi2IEbwoZ9z11BzPDv6gCDqR7boRHDcgV222rsss6HgucrRUkfwrn-MekeHKbp2izWOQUcW_40YPUbwphGSfu1Otg6ffucRvMgoag_5P8ewubpfuxPYMg-r2fL-FIV7Kk-DcP8B74j0TQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RilRxKAX6CI_WSL21gSTrJPZxhaCLukSo3UrcIsePdqVttmJ3UX9-Z5yHQCpI3KLEdiJ943xje-YbgI8aOdPwKgu5SfOQBOhClYoqFNrGkYqcM86r64_zohDX1_JqDT73uTDWWh98Zo_p0p_lm7le0VbZiUgl6Vs9g-cp50ncZGv1ZwY89XWQ0YfBOY4LiS5FJpInk6vh5QXFcYnjRAjJcyqfg84yEVR0j5F8iZWHvU3POudbT_veV_Cy9S7ZsDGHbViz9Q5sdZUbWDuRd2DzjgzhLvw68zoSOBZTtWHf5tVqsWRDUhv_O0WP1rKClG7xXkEbqWg1rIlSZj7ggI2mlMXsi6rMWKFupz8pH4t9_61mM-ajddgX0sVevIYf52eT01HYVmAINY_zZcitFVGukL8SJ4jpnXbSKockljkVJ1raTDgS5NGZccIMqlhFSiLGRnPsPHgD6_W8tu-ASR7rylSV1nzAMyVUxaUxUqI7p3SSmQDiDoVSt_LkVCVjVvplSiRLD2JJIJYtiAF86vv8acQ5Hm29SxD1LVt0AjjowC7b-bsok0HOM5khVwdw1D_GmUfHKaq28xW2QVcW_464fgzgbWMk_didbe39_50f4MVocjkuxxfF133YjJtQcAoHOoD15c3KHsKGvl1OFzfvvY3_A_2u9vM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Robust+Approximate+Nearest+Neighbor+Search+Using+Hierarchical+Navigable+Small+World+Graphs&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Malkov%2C+Yu+A&rft.au=Yashunin%2C+D+A&rft.date=2020-04-01&rft.eissn=1939-3539&rft.volume=42&rft.issue=4&rft.spage=824&rft_id=info:doi/10.1109%2FTPAMI.2018.2889473&rft_id=info%3Apmid%2F30602420&rft.externalDocID=30602420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |