Generalized neural network for nonsmooth nonlinear programming problems

In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is intr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Vol. 51; no. 9; pp. 1741 - 1754
Main Authors: Forti, M., Nistri, P., Quincampoix, M.
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-8328, 1558-0806
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is introduced (G-NPC), which is aimed at solving in real time a much wider class of nonsmooth nonlinear programming problems where the objective function and the constraints are assumed to satisfy only the weak condition of being regular functions. G-NPC, which derives from a natural extension of NPC, has a neural-like architecture and also features the presence of constraint neurons modeled by ideal diodes with infinite slope in the conducting region. By using the Clarke's generalized gradient of the involved functions, G-NPC is shown to obey a gradient system of differential inclusions, and its dynamical behavior and optimization capabilities, both for convex and nonconvex problems, are rigorously analyzed in the framework of nonsmooth analysis and the theory of differential inclusions. In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework.
AbstractList In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is introduced (G-NPC), which is aimed at solving in real time a much wider class of nonsmooth nonlinear programming problems where the objective function and the constraints are assumed to satisfy only the weak condition of being regular functions. G-NPC, which derives from a natural extension of NPC, has a neural-like architecture and also features the presence of constraint neurons modeled by ideal diodes with infinite slope in the conducting region. By using the Clarke's generalized gradient of the involved functions, G-NPC is shown to obey a gradient system of differential inclusions, and its dynamical behavior and optimization capabilities, both for convex and nonconvex problems, are rigorously analyzed in the framework of nonsmooth analysis and the theory of differential inclusions. In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework.
In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework.
Author Quincampoix, M.
Nistri, P.
Forti, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Forti
  fullname: Forti, M.
  organization: Dipt. di Ingegneria dell'Informazione, Univ. di Siena, Italy
– sequence: 2
  givenname: P.
  surname: Nistri
  fullname: Nistri, P.
  organization: Dipt. di Ingegneria dell'Informazione, Univ. di Siena, Italy
– sequence: 3
  givenname: M.
  surname: Quincampoix
  fullname: Quincampoix, M.
BookMark eNpdjj1PwzAURS1UJNrCjsQSsTClPH8l9ogqCJUqMVDmyE1eSkpiFzsRgl-PqzIx3TMc3XtnZGKdRUKuKSwoBX2_Wb6uFgxALBQXQvMzMqVSqhQUZJMjC50qztQFmYWwB2AaOJ2SokCL3nTtD9aJxTFijOHL-Y-kcT6JK6F3bng_UtdaND45eLfzpu9buzvytsM-XJLzxnQBr_5yTt6eHjfL53T9UqyWD-u0EjQfUlHVomaiErzSkG0pl2h0nTOd5Q1CfI_YSKoqjUbmRkPeMKXoFnSmUWVK8Tm5O_XG4c8Rw1D2baiw64xFN4ZSA80kl5mI5u0_c-9Gb-O5MvZIKrRkUbo5SS0ilgff9sZ_l5Rzzpjgv-itZoo
CODEN ITCSCH
CitedBy_id crossref_primary_10_1109_TCSI_2007_902607
crossref_primary_10_1109_TNN_2010_2048123
crossref_primary_10_1002_cta_657
crossref_primary_10_1016_j_neunet_2020_06_012
crossref_primary_10_1109_TNNLS_2015_2496658
crossref_primary_10_1007_s12555_021_0236_4
crossref_primary_10_1016_j_neucom_2016_03_005
crossref_primary_10_1016_j_cnsns_2012_07_016
crossref_primary_10_1109_TNN_2007_910736
crossref_primary_10_1007_s11071_017_3459_4
crossref_primary_10_1109_TNNLS_2016_2575860
crossref_primary_10_1016_j_neunet_2022_04_006
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1109_TNNLS_2015_2461553
crossref_primary_10_1016_j_neucom_2017_04_056
crossref_primary_10_1016_j_neucom_2022_01_018
crossref_primary_10_1109_ACCESS_2020_3025458
crossref_primary_10_1007_s11590_019_01437_6
crossref_primary_10_1016_j_neucom_2010_03_009
crossref_primary_10_1109_TKDE_2019_2893266
crossref_primary_10_1155_2016_1327235
crossref_primary_10_1002_cta_381
crossref_primary_10_1109_TNN_2008_2003287
crossref_primary_10_1109_TNN_2010_2045129
crossref_primary_10_1186_s13662_021_03542_2
crossref_primary_10_1109_TNNLS_2024_3408241
crossref_primary_10_1109_TNN_2010_2048759
crossref_primary_10_1109_TAC_2017_2681200
crossref_primary_10_3390_risks10050088
crossref_primary_10_1007_s10957_012_0258_4
crossref_primary_10_1162_neco_2007_03_07_488
crossref_primary_10_1016_j_neunet_2013_03_010
crossref_primary_10_1007_s11063_018_9791_y
crossref_primary_10_1109_TNNLS_2020_2980383
crossref_primary_10_1109_TPWRS_2018_2821673
crossref_primary_10_1007_s11831_018_09309_5
crossref_primary_10_1016_j_neunet_2016_08_014
crossref_primary_10_1109_TNNLS_2016_2595489
crossref_primary_10_1016_j_chaos_2016_03_009
crossref_primary_10_1016_j_nonrwa_2009_02_005
crossref_primary_10_1109_TAC_2015_2416927
crossref_primary_10_1109_TCYB_2015_2479118
crossref_primary_10_1016_j_compchemeng_2010_06_005
crossref_primary_10_1007_s10489_019_01462_z
crossref_primary_10_1080_00207721_2020_1849861
crossref_primary_10_1109_TNNLS_2019_2920408
crossref_primary_10_1016_j_matcom_2012_03_013
crossref_primary_10_1016_j_isatra_2014_03_017
crossref_primary_10_1016_j_neucom_2010_05_020
crossref_primary_10_1016_j_neunet_2018_01_008
crossref_primary_10_1109_TNN_2011_2104979
crossref_primary_10_1109_TSMC_2017_2672205
crossref_primary_10_1109_TCYB_2016_2567449
crossref_primary_10_1016_j_ins_2025_122379
crossref_primary_10_1109_TAC_2020_3028838
crossref_primary_10_1016_j_neunet_2014_12_007
crossref_primary_10_1109_TETCI_2017_2716377
crossref_primary_10_1109_TNN_2005_852862
crossref_primary_10_1007_s11063_020_10199_7
crossref_primary_10_1016_j_physa_2019_121756
crossref_primary_10_1109_TSMCB_2012_2198812
crossref_primary_10_1016_j_neunet_2013_11_006
crossref_primary_10_1109_TSMC_2017_2657784
crossref_primary_10_1109_TCYB_2017_2760908
crossref_primary_10_1007_s11071_022_08075_1
crossref_primary_10_1016_j_neucom_2017_01_010
crossref_primary_10_1016_j_neucom_2024_127636
crossref_primary_10_1016_j_neunet_2013_11_007
crossref_primary_10_1109_TNNLS_2013_2280905
crossref_primary_10_1109_TAC_2017_2752001
crossref_primary_10_1109_TNNLS_2015_2500618
crossref_primary_10_1016_j_neunet_2023_01_012
crossref_primary_10_1007_s11071_018_4188_z
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1109_TCNS_2019_2915626
crossref_primary_10_1080_01630563_2010_519134
crossref_primary_10_1109_TCSI_2008_2002556
crossref_primary_10_1109_TNNLS_2012_2202400
crossref_primary_10_1007_s10489_014_0616_z
crossref_primary_10_1007_s11425_023_2281_0
crossref_primary_10_1016_j_engappai_2012_09_011
crossref_primary_10_1109_TNN_2008_2011266
crossref_primary_10_1007_s00521_024_10708_y
crossref_primary_10_1109_TNNLS_2015_2466612
crossref_primary_10_1137_18M1234795
crossref_primary_10_1016_j_physd_2005_12_006
crossref_primary_10_1109_TNNLS_2013_2275732
crossref_primary_10_1016_j_neunet_2013_11_015
crossref_primary_10_1109_TAC_2009_2023963
crossref_primary_10_1109_TNNLS_2015_2464314
crossref_primary_10_1016_j_camwa_2008_04_027
crossref_primary_10_1109_TAC_2024_3453117
crossref_primary_10_1016_j_neucom_2024_127518
crossref_primary_10_1162_NECO_a_00029
crossref_primary_10_1016_j_neunet_2019_12_015
crossref_primary_10_1109_TCYB_2020_2997686
crossref_primary_10_1155_2014_107620
crossref_primary_10_1109_TNN_2006_879775
crossref_primary_10_1109_TNN_2010_2050781
crossref_primary_10_1016_j_neunet_2014_10_003
crossref_primary_10_1109_TNNLS_2019_2927639
crossref_primary_10_1016_j_ins_2016_11_020
crossref_primary_10_1016_j_ins_2012_07_040
crossref_primary_10_1007_s11063_017_9653_z
crossref_primary_10_1016_j_neunet_2011_09_001
crossref_primary_10_1016_j_neunet_2015_09_013
crossref_primary_10_1016_j_neunet_2024_106337
crossref_primary_10_1109_TCSI_2024_3426313
crossref_primary_10_1109_TNNLS_2015_2425301
crossref_primary_10_1109_TNNLS_2021_3105732
crossref_primary_10_1109_TNSE_2021_3114426
crossref_primary_10_1016_j_neucom_2011_02_007
crossref_primary_10_1109_TAC_2016_2610945
crossref_primary_10_1016_j_neunet_2015_10_010
crossref_primary_10_1016_j_neunet_2018_10_010
crossref_primary_10_1007_s11063_023_11389_9
crossref_primary_10_1016_j_neucom_2011_06_003
crossref_primary_10_1016_j_automatica_2019_04_004
crossref_primary_10_1016_j_chaos_2005_09_075
crossref_primary_10_1016_j_neucom_2022_08_035
crossref_primary_10_1016_j_neunet_2021_05_020
crossref_primary_10_1016_j_nonrwa_2008_02_024
crossref_primary_10_1007_s11432_010_0110_0
crossref_primary_10_1016_j_neucom_2013_01_025
crossref_primary_10_1109_TNN_2011_2169682
crossref_primary_10_1016_j_neucom_2013_10_008
crossref_primary_10_1109_TNNLS_2013_2278427
crossref_primary_10_1016_j_matcom_2015_09_013
crossref_primary_10_1109_TNNLS_2013_2244908
crossref_primary_10_1016_j_neucom_2014_08_014
crossref_primary_10_1016_j_amc_2018_05_013
crossref_primary_10_1109_TNNLS_2015_2481006
crossref_primary_10_1109_TNNLS_2016_2524619
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1002_cta_352
crossref_primary_10_1016_j_neunet_2014_09_009
crossref_primary_10_1109_TII_2018_2881974
crossref_primary_10_1016_j_fss_2020_10_018
crossref_primary_10_1080_02331934_2011_613993
crossref_primary_10_1002_asjc_627
crossref_primary_10_1109_TNNLS_2014_2334364
crossref_primary_10_1109_TAC_2010_2052484
crossref_primary_10_1016_j_chaos_2012_05_009
crossref_primary_10_1109_TCSI_2008_920131
crossref_primary_10_1007_s11071_015_2219_6
crossref_primary_10_1007_s11431_017_9284_y
crossref_primary_10_1109_TNNLS_2016_2635676
crossref_primary_10_1016_j_amc_2012_01_020
crossref_primary_10_1007_s10957_004_1179_7
crossref_primary_10_1007_s11063_010_9129_x
crossref_primary_10_1016_j_neunet_2018_08_020
crossref_primary_10_1007_s00521_021_05833_x
crossref_primary_10_1016_j_neunet_2015_11_009
crossref_primary_10_1016_j_cnsns_2014_02_016
crossref_primary_10_1016_j_neunet_2024_107121
crossref_primary_10_1109_TNN_2011_2159992
crossref_primary_10_1007_s00034_020_01445_3
crossref_primary_10_1016_j_neunet_2014_03_006
crossref_primary_10_1016_j_neunet_2013_12_005
crossref_primary_10_1016_j_physa_2019_123331
crossref_primary_10_1109_TNN_2008_2000993
crossref_primary_10_1109_TNN_2008_2006337
crossref_primary_10_1007_s00521_012_0954_x
crossref_primary_10_1016_j_neunet_2022_03_033
crossref_primary_10_1109_TNNLS_2011_2181867
crossref_primary_10_1109_TNNLS_2019_2944388
crossref_primary_10_1109_TNN_2011_2109735
crossref_primary_10_1109_TCSI_2012_2209735
crossref_primary_10_1109_TNNLS_2015_2404773
crossref_primary_10_1109_TNNLS_2021_3133836
crossref_primary_10_1016_j_neucom_2016_01_020
crossref_primary_10_1109_TNN_2009_2016340
crossref_primary_10_1007_s11067_019_09457_6
crossref_primary_10_1016_j_neucom_2019_06_016
crossref_primary_10_1007_s00332_018_9516_4
crossref_primary_10_1007_s00521_020_05356_x
crossref_primary_10_1016_j_neucom_2010_02_017
crossref_primary_10_1016_j_neunet_2019_07_019
crossref_primary_10_1007_s11063_009_9119_z
crossref_primary_10_1016_j_neucom_2020_09_080
crossref_primary_10_1007_s11075_020_00950_5
crossref_primary_10_1016_j_neunet_2009_10_004
crossref_primary_10_1587_nolta_2_432
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
7SP
8FD
L7M
7QO
FR3
P64
DOI 10.1109/TCSI.2004.834493
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 1754
ExternalDocumentID 2426025261
1333224
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
7SP
8FD
L7M
7QO
FR3
P64
ID FETCH-LOGICAL-c417t-4cd4d24c43c906b135ea9d72967fe0004eef518c9ea57a907f2881b0969e86883
IEDL.DBID RIE
ISICitedReferencesCount 244
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000223931800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Tue Oct 07 10:13:10 EDT 2025
Mon Jun 30 04:37:25 EDT 2025
Tue Aug 26 16:39:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-4cd4d24c43c906b135ea9d72967fe0004eef518c9ea57a907f2881b0969e86883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 883514952
PQPubID 85411
PageCount 14
ParticipantIDs proquest_miscellaneous_901653564
ieee_primary_1333224
proquest_journals_883514952
PublicationCentury 2000
PublicationDate 2004-09-01
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0029031
Score 2.23978
Snippet In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the...
In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes ,...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1741
SubjectTerms Algorithms
Analog circuits
Circuit simulation
Computational modeling
Diodes
Dynamic programming
Functional programming
Neural networks
Neurons
Nonlinear programming
Quadratic programming
Studies
Title Generalized neural network for nonsmooth nonlinear programming problems
URI https://ieeexplore.ieee.org/document/1333224
https://www.proquest.com/docview/883514952
https://www.proquest.com/docview/901653564
Volume 51
WOSCitedRecordID wos000223931800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xTiUHj3ZrlrRJjjKcCjIEp-xW0uQFdtgm6-bBv96k7YagF2-Blpfy8pL8fn1fADeSMeokpVFqc-EJilVRznIaoUEqZLjhSu_5-7MYjeRkol4acLvNhUHEMvgMu2FY-vLtwqzDr7Ke51Pe_vgO7AiRVrlaW3KlYlbVRuUq8lYqNy7JWPXGg9enkgl2Q1OJ4GIuG6n8On3LK2V4-L-POYKDGjqSu2qtj6GB8xPY_1FQsAUPdRXp6RdaEkpV-vfnVaA38eiUeK5fzBZ-ccIoAEy9JHWE1swLIHV7meIU3ob348FjVLdKiAynYhVxY7ntc8OZUXGaU5agVtYD51Q4DLgN0SVUGoU6EdoTYteXHrB6_qJQplKyM2j6ifEcSMp07KjKtYs1F8oobh21Ikks58alvA2toIzso6qGkdV6aENno82s3gZF5gUngYL120C2T739BqeEnuNiXWQq5FOxJOUXf8vtwF4VLBPCui6huVqu8Qp2zedqWiyvSxv4BkucsS0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEPfqER8WMHjw5W2m3t0RARIhIT0XBbuvY14QAYBh786223QUz04q3Jltfl9bX9_fa-AG45pcRwQvxIp7ElKFr4KU2JjwpJzN0Nl3vP3wfxcMjHY_FSgbtNLgwi5sFn2HTD3Jev52rlfpW1LJ-y9se2YNt1ziqztTb0SgS0qI7KhG_tlK-dkoFojTqv_ZwLNl1bCedkzlup_Dp_80ule_i_zzmCgxI8evfFah9DBWcnsP-jpGANHss60pMv1J4rVmnfnxWh3p7Fp55l-9l0bpfHjRzElAuvjNGaWgFe2WAmO4W37sOo0_PLZgm-YiRe-kxppttMMapEEKWEhiiFttA5ig065IZoQsKVQBnG0lJi0-YWsloGI5BHnNMzqNqJ8Ry8iMrAEJFKE0gWCyWYNkTHYagZUyZidag5ZSQfRT2MpNRDHRprbSblRsgSKzh0JKxdB2_z1Fqwc0vIGc5XWSJcRhUNI3bxt9wb2O2NngfJoD98asBeETrjgrwuobpcrPAKdtTncpItrnN7-Aay1rR2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+neural+network+for+nonsmooth+nonlinear+programming+problems&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=ti%2C+M&rft.au=Nistri%2C+P&rft.au=Quincampoix%2C+M&rft.date=2004-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=51&rft.issue=9&rft.spage=1741&rft_id=info:doi/10.1109%2FTCSI.2004.834493&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2426025261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon