Generalized neural network for nonsmooth nonlinear programming problems
In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is intr...
Saved in:
| Published in: | IEEE transactions on circuits and systems. I, Regular papers Vol. 51; no. 9; pp. 1741 - 1754 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1549-8328, 1558-0806 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is introduced (G-NPC), which is aimed at solving in real time a much wider class of nonsmooth nonlinear programming problems where the objective function and the constraints are assumed to satisfy only the weak condition of being regular functions. G-NPC, which derives from a natural extension of NPC, has a neural-like architecture and also features the presence of constraint neurons modeled by ideal diodes with infinite slope in the conducting region. By using the Clarke's generalized gradient of the involved functions, G-NPC is shown to obey a gradient system of differential inclusions, and its dynamical behavior and optimization capabilities, both for convex and nonconvex problems, are rigorously analyzed in the framework of nonsmooth analysis and the theory of differential inclusions. In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework. |
|---|---|
| AbstractList | In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the objective function and the constraints are smooth (twice continuously differentiable) functions. In this paper, a generalized circuit is introduced (G-NPC), which is aimed at solving in real time a much wider class of nonsmooth nonlinear programming problems where the objective function and the constraints are assumed to satisfy only the weak condition of being regular functions. G-NPC, which derives from a natural extension of NPC, has a neural-like architecture and also features the presence of constraint neurons modeled by ideal diodes with infinite slope in the conducting region. By using the Clarke's generalized gradient of the involved functions, G-NPC is shown to obey a gradient system of differential inclusions, and its dynamical behavior and optimization capabilities, both for convex and nonconvex problems, are rigorously analyzed in the framework of nonsmooth analysis and the theory of differential inclusions. In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework. In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes , trajectory convergence in finite time, and the ability to compute the exact optimal solution of the problem being modeled, are uncovered and explained in the developed analytical framework. |
| Author | Quincampoix, M. Nistri, P. Forti, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Forti fullname: Forti, M. organization: Dipt. di Ingegneria dell'Informazione, Univ. di Siena, Italy – sequence: 2 givenname: P. surname: Nistri fullname: Nistri, P. organization: Dipt. di Ingegneria dell'Informazione, Univ. di Siena, Italy – sequence: 3 givenname: M. surname: Quincampoix fullname: Quincampoix, M. |
| BookMark | eNpdjj1PwzAURS1UJNrCjsQSsTClPH8l9ogqCJUqMVDmyE1eSkpiFzsRgl-PqzIx3TMc3XtnZGKdRUKuKSwoBX2_Wb6uFgxALBQXQvMzMqVSqhQUZJMjC50qztQFmYWwB2AaOJ2SokCL3nTtD9aJxTFijOHL-Y-kcT6JK6F3bng_UtdaND45eLfzpu9buzvytsM-XJLzxnQBr_5yTt6eHjfL53T9UqyWD-u0EjQfUlHVomaiErzSkG0pl2h0nTOd5Q1CfI_YSKoqjUbmRkPeMKXoFnSmUWVK8Tm5O_XG4c8Rw1D2baiw64xFN4ZSA80kl5mI5u0_c-9Gb-O5MvZIKrRkUbo5SS0ilgff9sZ_l5Rzzpjgv-itZoo |
| CODEN | ITCSCH |
| CitedBy_id | crossref_primary_10_1109_TCSI_2007_902607 crossref_primary_10_1109_TNN_2010_2048123 crossref_primary_10_1002_cta_657 crossref_primary_10_1016_j_neunet_2020_06_012 crossref_primary_10_1109_TNNLS_2015_2496658 crossref_primary_10_1007_s12555_021_0236_4 crossref_primary_10_1016_j_neucom_2016_03_005 crossref_primary_10_1016_j_cnsns_2012_07_016 crossref_primary_10_1109_TNN_2007_910736 crossref_primary_10_1007_s11071_017_3459_4 crossref_primary_10_1109_TNNLS_2016_2575860 crossref_primary_10_1016_j_neunet_2022_04_006 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1109_TNNLS_2015_2461553 crossref_primary_10_1016_j_neucom_2017_04_056 crossref_primary_10_1016_j_neucom_2022_01_018 crossref_primary_10_1109_ACCESS_2020_3025458 crossref_primary_10_1007_s11590_019_01437_6 crossref_primary_10_1016_j_neucom_2010_03_009 crossref_primary_10_1109_TKDE_2019_2893266 crossref_primary_10_1155_2016_1327235 crossref_primary_10_1002_cta_381 crossref_primary_10_1109_TNN_2008_2003287 crossref_primary_10_1109_TNN_2010_2045129 crossref_primary_10_1186_s13662_021_03542_2 crossref_primary_10_1109_TNNLS_2024_3408241 crossref_primary_10_1109_TNN_2010_2048759 crossref_primary_10_1109_TAC_2017_2681200 crossref_primary_10_3390_risks10050088 crossref_primary_10_1007_s10957_012_0258_4 crossref_primary_10_1162_neco_2007_03_07_488 crossref_primary_10_1016_j_neunet_2013_03_010 crossref_primary_10_1007_s11063_018_9791_y crossref_primary_10_1109_TNNLS_2020_2980383 crossref_primary_10_1109_TPWRS_2018_2821673 crossref_primary_10_1007_s11831_018_09309_5 crossref_primary_10_1016_j_neunet_2016_08_014 crossref_primary_10_1109_TNNLS_2016_2595489 crossref_primary_10_1016_j_chaos_2016_03_009 crossref_primary_10_1016_j_nonrwa_2009_02_005 crossref_primary_10_1109_TAC_2015_2416927 crossref_primary_10_1109_TCYB_2015_2479118 crossref_primary_10_1016_j_compchemeng_2010_06_005 crossref_primary_10_1007_s10489_019_01462_z crossref_primary_10_1080_00207721_2020_1849861 crossref_primary_10_1109_TNNLS_2019_2920408 crossref_primary_10_1016_j_matcom_2012_03_013 crossref_primary_10_1016_j_isatra_2014_03_017 crossref_primary_10_1016_j_neucom_2010_05_020 crossref_primary_10_1016_j_neunet_2018_01_008 crossref_primary_10_1109_TNN_2011_2104979 crossref_primary_10_1109_TSMC_2017_2672205 crossref_primary_10_1109_TCYB_2016_2567449 crossref_primary_10_1016_j_ins_2025_122379 crossref_primary_10_1109_TAC_2020_3028838 crossref_primary_10_1016_j_neunet_2014_12_007 crossref_primary_10_1109_TETCI_2017_2716377 crossref_primary_10_1109_TNN_2005_852862 crossref_primary_10_1007_s11063_020_10199_7 crossref_primary_10_1016_j_physa_2019_121756 crossref_primary_10_1109_TSMCB_2012_2198812 crossref_primary_10_1016_j_neunet_2013_11_006 crossref_primary_10_1109_TSMC_2017_2657784 crossref_primary_10_1109_TCYB_2017_2760908 crossref_primary_10_1007_s11071_022_08075_1 crossref_primary_10_1016_j_neucom_2017_01_010 crossref_primary_10_1016_j_neucom_2024_127636 crossref_primary_10_1016_j_neunet_2013_11_007 crossref_primary_10_1109_TNNLS_2013_2280905 crossref_primary_10_1109_TAC_2017_2752001 crossref_primary_10_1109_TNNLS_2015_2500618 crossref_primary_10_1016_j_neunet_2023_01_012 crossref_primary_10_1007_s11071_018_4188_z crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1109_TCNS_2019_2915626 crossref_primary_10_1080_01630563_2010_519134 crossref_primary_10_1109_TCSI_2008_2002556 crossref_primary_10_1109_TNNLS_2012_2202400 crossref_primary_10_1007_s10489_014_0616_z crossref_primary_10_1007_s11425_023_2281_0 crossref_primary_10_1016_j_engappai_2012_09_011 crossref_primary_10_1109_TNN_2008_2011266 crossref_primary_10_1007_s00521_024_10708_y crossref_primary_10_1109_TNNLS_2015_2466612 crossref_primary_10_1137_18M1234795 crossref_primary_10_1016_j_physd_2005_12_006 crossref_primary_10_1109_TNNLS_2013_2275732 crossref_primary_10_1016_j_neunet_2013_11_015 crossref_primary_10_1109_TAC_2009_2023963 crossref_primary_10_1109_TNNLS_2015_2464314 crossref_primary_10_1016_j_camwa_2008_04_027 crossref_primary_10_1109_TAC_2024_3453117 crossref_primary_10_1016_j_neucom_2024_127518 crossref_primary_10_1162_NECO_a_00029 crossref_primary_10_1016_j_neunet_2019_12_015 crossref_primary_10_1109_TCYB_2020_2997686 crossref_primary_10_1155_2014_107620 crossref_primary_10_1109_TNN_2006_879775 crossref_primary_10_1109_TNN_2010_2050781 crossref_primary_10_1016_j_neunet_2014_10_003 crossref_primary_10_1109_TNNLS_2019_2927639 crossref_primary_10_1016_j_ins_2016_11_020 crossref_primary_10_1016_j_ins_2012_07_040 crossref_primary_10_1007_s11063_017_9653_z crossref_primary_10_1016_j_neunet_2011_09_001 crossref_primary_10_1016_j_neunet_2015_09_013 crossref_primary_10_1016_j_neunet_2024_106337 crossref_primary_10_1109_TCSI_2024_3426313 crossref_primary_10_1109_TNNLS_2015_2425301 crossref_primary_10_1109_TNNLS_2021_3105732 crossref_primary_10_1109_TNSE_2021_3114426 crossref_primary_10_1016_j_neucom_2011_02_007 crossref_primary_10_1109_TAC_2016_2610945 crossref_primary_10_1016_j_neunet_2015_10_010 crossref_primary_10_1016_j_neunet_2018_10_010 crossref_primary_10_1007_s11063_023_11389_9 crossref_primary_10_1016_j_neucom_2011_06_003 crossref_primary_10_1016_j_automatica_2019_04_004 crossref_primary_10_1016_j_chaos_2005_09_075 crossref_primary_10_1016_j_neucom_2022_08_035 crossref_primary_10_1016_j_neunet_2021_05_020 crossref_primary_10_1016_j_nonrwa_2008_02_024 crossref_primary_10_1007_s11432_010_0110_0 crossref_primary_10_1016_j_neucom_2013_01_025 crossref_primary_10_1109_TNN_2011_2169682 crossref_primary_10_1016_j_neucom_2013_10_008 crossref_primary_10_1109_TNNLS_2013_2278427 crossref_primary_10_1016_j_matcom_2015_09_013 crossref_primary_10_1109_TNNLS_2013_2244908 crossref_primary_10_1016_j_neucom_2014_08_014 crossref_primary_10_1016_j_amc_2018_05_013 crossref_primary_10_1109_TNNLS_2015_2481006 crossref_primary_10_1109_TNNLS_2016_2524619 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1002_cta_352 crossref_primary_10_1016_j_neunet_2014_09_009 crossref_primary_10_1109_TII_2018_2881974 crossref_primary_10_1016_j_fss_2020_10_018 crossref_primary_10_1080_02331934_2011_613993 crossref_primary_10_1002_asjc_627 crossref_primary_10_1109_TNNLS_2014_2334364 crossref_primary_10_1109_TAC_2010_2052484 crossref_primary_10_1016_j_chaos_2012_05_009 crossref_primary_10_1109_TCSI_2008_920131 crossref_primary_10_1007_s11071_015_2219_6 crossref_primary_10_1007_s11431_017_9284_y crossref_primary_10_1109_TNNLS_2016_2635676 crossref_primary_10_1016_j_amc_2012_01_020 crossref_primary_10_1007_s10957_004_1179_7 crossref_primary_10_1007_s11063_010_9129_x crossref_primary_10_1016_j_neunet_2018_08_020 crossref_primary_10_1007_s00521_021_05833_x crossref_primary_10_1016_j_neunet_2015_11_009 crossref_primary_10_1016_j_cnsns_2014_02_016 crossref_primary_10_1016_j_neunet_2024_107121 crossref_primary_10_1109_TNN_2011_2159992 crossref_primary_10_1007_s00034_020_01445_3 crossref_primary_10_1016_j_neunet_2014_03_006 crossref_primary_10_1016_j_neunet_2013_12_005 crossref_primary_10_1016_j_physa_2019_123331 crossref_primary_10_1109_TNN_2008_2000993 crossref_primary_10_1109_TNN_2008_2006337 crossref_primary_10_1007_s00521_012_0954_x crossref_primary_10_1016_j_neunet_2022_03_033 crossref_primary_10_1109_TNNLS_2011_2181867 crossref_primary_10_1109_TNNLS_2019_2944388 crossref_primary_10_1109_TNN_2011_2109735 crossref_primary_10_1109_TCSI_2012_2209735 crossref_primary_10_1109_TNNLS_2015_2404773 crossref_primary_10_1109_TNNLS_2021_3133836 crossref_primary_10_1016_j_neucom_2016_01_020 crossref_primary_10_1109_TNN_2009_2016340 crossref_primary_10_1007_s11067_019_09457_6 crossref_primary_10_1016_j_neucom_2019_06_016 crossref_primary_10_1007_s00332_018_9516_4 crossref_primary_10_1007_s00521_020_05356_x crossref_primary_10_1016_j_neucom_2010_02_017 crossref_primary_10_1016_j_neunet_2019_07_019 crossref_primary_10_1007_s11063_009_9119_z crossref_primary_10_1016_j_neucom_2020_09_080 crossref_primary_10_1007_s11075_020_00950_5 crossref_primary_10_1016_j_neunet_2009_10_004 crossref_primary_10_1587_nolta_2_432 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| DBID | RIA RIE 7SP 8FD L7M 7QO FR3 P64 |
| DOI | 10.1109/TCSI.2004.834493 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0806 |
| EndPage | 1754 |
| ExternalDocumentID | 2426025261 1333224 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK 7SP 8FD L7M 7QO FR3 P64 |
| ID | FETCH-LOGICAL-c417t-4cd4d24c43c906b135ea9d72967fe0004eef518c9ea57a907f2881b0969e86883 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 244 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000223931800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-8328 |
| IngestDate | Tue Oct 07 10:13:10 EDT 2025 Mon Jun 30 04:37:25 EDT 2025 Tue Aug 26 16:39:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-4cd4d24c43c906b135ea9d72967fe0004eef518c9ea57a907f2881b0969e86883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 883514952 |
| PQPubID | 85411 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_901653564 ieee_primary_1333224 proquest_journals_883514952 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-09-01 |
| PublicationDateYYYYMMDD | 2004-09-01 |
| PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
| PublicationTitleAbbrev | TCSI |
| PublicationYear | 2004 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| SSID | ssj0029031 |
| Score | 2.23978 |
| Snippet | In 1988 Kennedy and Chua introduced the dynamical canonical nonlinear programming circuit (NPC) to solve in real time nonlinear programming problems where the... In the special important case of linear and quadratic programming problems, salient dynamical features of G-NPC, namely the presence of sliding modes ,... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1741 |
| SubjectTerms | Algorithms Analog circuits Circuit simulation Computational modeling Diodes Dynamic programming Functional programming Neural networks Neurons Nonlinear programming Quadratic programming Studies |
| Title | Generalized neural network for nonsmooth nonlinear programming problems |
| URI | https://ieeexplore.ieee.org/document/1333224 https://www.proquest.com/docview/883514952 https://www.proquest.com/docview/901653564 |
| Volume | 51 |
| WOSCitedRecordID | wos000223931800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0806 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029031 issn: 1549-8328 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xTiUHj3ZrlrRJjjKcCjIEp-xW0uQFdtgm6-bBv96k7YagF2-Blpfy8pL8fn1fADeSMeokpVFqc-EJilVRznIaoUEqZLjhSu_5-7MYjeRkol4acLvNhUHEMvgMu2FY-vLtwqzDr7Ke51Pe_vgO7AiRVrlaW3KlYlbVRuUq8lYqNy7JWPXGg9enkgl2Q1OJ4GIuG6n8On3LK2V4-L-POYKDGjqSu2qtj6GB8xPY_1FQsAUPdRXp6RdaEkpV-vfnVaA38eiUeK5fzBZ-ccIoAEy9JHWE1swLIHV7meIU3ob348FjVLdKiAynYhVxY7ntc8OZUXGaU5agVtYD51Q4DLgN0SVUGoU6EdoTYteXHrB6_qJQplKyM2j6ifEcSMp07KjKtYs1F8oobh21Ikks58alvA2toIzso6qGkdV6aENno82s3gZF5gUngYL120C2T739BqeEnuNiXWQq5FOxJOUXf8vtwF4VLBPCui6huVqu8Qp2zedqWiyvSxv4BkucsS0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEPfqER8WMHjw5W2m3t0RARIhIT0XBbuvY14QAYBh786223QUz04q3Jltfl9bX9_fa-AG45pcRwQvxIp7ElKFr4KU2JjwpJzN0Nl3vP3wfxcMjHY_FSgbtNLgwi5sFn2HTD3Jev52rlfpW1LJ-y9se2YNt1ziqztTb0SgS0qI7KhG_tlK-dkoFojTqv_ZwLNl1bCedkzlup_Dp_80ule_i_zzmCgxI8evfFah9DBWcnsP-jpGANHss60pMv1J4rVmnfnxWh3p7Fp55l-9l0bpfHjRzElAuvjNGaWgFe2WAmO4W37sOo0_PLZgm-YiRe-kxppttMMapEEKWEhiiFttA5ig065IZoQsKVQBnG0lJi0-YWsloGI5BHnNMzqNqJ8Ry8iMrAEJFKE0gWCyWYNkTHYagZUyZidag5ZSQfRT2MpNRDHRprbSblRsgSKzh0JKxdB2_z1Fqwc0vIGc5XWSJcRhUNI3bxt9wb2O2NngfJoD98asBeETrjgrwuobpcrPAKdtTncpItrnN7-Aay1rR2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+neural+network+for+nonsmooth+nonlinear+programming+problems&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=ti%2C+M&rft.au=Nistri%2C+P&rft.au=Quincampoix%2C+M&rft.date=2004-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=51&rft.issue=9&rft.spage=1741&rft_id=info:doi/10.1109%2FTCSI.2004.834493&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2426025261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |