On (scalar QED) gravitational positivity bounds

A bstract We study positivity bounds in the presence of gravity. We first review the gravitational positivity bound at the tree-level, where it is known that a certain amount of negativity is allowed for the coefficients of higher-derivative operators. The size of these potentially negative contribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics Jg. 2023; H. 5; S. 76 - 27
Hauptverfasser: Hamada, Yuta, Kuramochi, Rinto, Loges, Gregory J., Nakajima, Sota
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 09.05.2023
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-8479, 1029-8479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We study positivity bounds in the presence of gravity. We first review the gravitational positivity bound at the tree-level, where it is known that a certain amount of negativity is allowed for the coefficients of higher-derivative operators. The size of these potentially negative contributions is estimated for several tree-level, Reggeized gravitational amplitudes which are unitary at high energies and feature the t -channel pole characteristic of graviton exchange. We also argue for the form of the one-loop Regge amplitude assuming that the branch cut structure associated with the exchange of the graviton and higher-spin particles is reflected. We demonstrate how the one-loop Regge amplitude appears by summing over Feynman diagrams. For our one-loop amplitude proposal, the positivity bounds generically receive a finite contribution from the Regge tower and do not lead to a parametrically small bound on the cut-off scale of the low-energy EFT, consistent with recent studies based on sum rules of the amplitude.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP05(2023)076