Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis
Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are...
Saved in:
| Published in: | Brain (London, England : 1878) Vol. 138; no. Pt 9; p. 2584 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.09.2015
|
| Subjects: | |
| ISSN: | 1460-2156, 1460-2156 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article. |
|---|---|
| AbstractList | Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article. Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article. |
| Author | Ciccarelli, Olga Muhlert, Nils Wheeler-Kingshott, Claudia A M Thompson, Alan J Tur, Carmen Cawley, Niamh Solanky, Bhavana S Miller, David H Edden, Richard A E |
| Author_xml | – sequence: 1 givenname: Niamh surname: Cawley fullname: Cawley, Niamh email: n.cawley@ucl.ac.uk organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK n.cawley@ucl.ac.uk – sequence: 2 givenname: Bhavana S surname: Solanky fullname: Solanky, Bhavana S organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK – sequence: 3 givenname: Nils surname: Muhlert fullname: Muhlert, Nils organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 2 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK 3 School of Psychological Sciences, University of Manchester, Manchester, UK – sequence: 4 givenname: Carmen surname: Tur fullname: Tur, Carmen organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK – sequence: 5 givenname: Richard A E surname: Edden fullname: Edden, Richard A E organization: 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 5 FM Kirby Centre for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA – sequence: 6 givenname: Claudia A M surname: Wheeler-Kingshott fullname: Wheeler-Kingshott, Claudia A M organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 6 Brain Connectivity Centre, C. Mondino National Neurological Institute, Pavia, Italy – sequence: 7 givenname: David H surname: Miller fullname: Miller, David H organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK – sequence: 8 givenname: Alan J surname: Thompson fullname: Thompson, Alan J organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK – sequence: 9 givenname: Olga surname: Ciccarelli fullname: Ciccarelli, Olga organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26304151$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLw0AYxBdR7ENvnmWPXmL3mTRHKb6gIIiew2b3S_tJsonZTUv-ewNW8PSbw8wwzIKc-9YDITec3XOWy1XZG_QrczwIlp-ROVcpSwTX6fk_PSOLEL4Y40qK9JLMRCqZ4prPyeEd3GDB0Z1pGpOYBn1bDnHs0VJj0VHbegs-9iZi6ykGakJoLZo4ZY4Y97TbjwGtqanDYEqsMY4UPe36dtdDCHgA2gx1xK4GGmwNfRswXJGLytQBrk9cks-nx4_NS7J9e37dPGwTq3gWE2V1vmaGC6nWlqUwUWunNFSyBMhVBlXGnNRCljaDVHLNKs2ZTJl1rgImluTut3ea8z1AiEWDwUJdGw_tEAqesUxrpaWYrLcn61A24Iqux8b0Y_H3lfgBIxlwbw |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0223702 crossref_primary_10_3389_fneur_2019_01173 crossref_primary_10_1111_cen3_12281 crossref_primary_10_1002_hbm_23531 crossref_primary_10_1093_jnen_nlz028 crossref_primary_10_1002_jnr_24977 crossref_primary_10_1002_acn3_70148 crossref_primary_10_7554_eLife_73827 crossref_primary_10_1016_j_neuroscience_2018_03_018 crossref_primary_10_1007_s00330_017_5064_9 crossref_primary_10_1177_1756286419877081 crossref_primary_10_1002_nbm_4139 crossref_primary_10_3390_ijms222011112 crossref_primary_10_1016_j_ydbio_2017_04_019 crossref_primary_10_1007_s00441_020_03195_9 crossref_primary_10_1093_brain_awv213 crossref_primary_10_1002_jmri_25324 crossref_primary_10_3390_s23177629 crossref_primary_10_1016_j_isci_2025_112289 crossref_primary_10_1007_s11307_020_01501_z crossref_primary_10_1007_s12264_021_00693_w crossref_primary_10_1007_s00018_025_05690_0 crossref_primary_10_1007_s13311_016_0479_6 crossref_primary_10_1016_j_ejrad_2021_109610 crossref_primary_10_1007_s15005_015_1524_4 crossref_primary_10_1371_journal_pone_0182729 crossref_primary_10_1186_s12974_016_0686_4 crossref_primary_10_1016_j_nic_2016_12_005 crossref_primary_10_1016_j_clinph_2018_12_015 crossref_primary_10_1016_j_nicl_2023_103495 crossref_primary_10_3389_fpsyt_2020_00813 crossref_primary_10_1097_WCO_0000000000000333 crossref_primary_10_3390_ijms21176117 crossref_primary_10_1002_eji_70059 crossref_primary_10_1016_j_dscb_2021_100019 crossref_primary_10_1080_01616412_2021_1956282 crossref_primary_10_3390_ijms24021639 crossref_primary_10_1016_j_msard_2020_102183 crossref_primary_10_1016_j_jddst_2024_105386 crossref_primary_10_1038_s41583_018_0053_9 crossref_primary_10_1016_j_jaut_2022_102957 crossref_primary_10_1002_nbm_4590 crossref_primary_10_1097_QAI_0000000000002183 crossref_primary_10_1177_15459683221076461 crossref_primary_10_3390_brainsci11030346 crossref_primary_10_1016_j_neuroimage_2017_01_033 crossref_primary_10_1038_s41564_024_01761_3 crossref_primary_10_3389_fcell_2023_1221890 crossref_primary_10_1016_j_jmpt_2020_07_008 crossref_primary_10_4103_1673_5374_217353 crossref_primary_10_1007_s00726_022_03162_4 crossref_primary_10_1016_j_msard_2021_102978 crossref_primary_10_1177_1756286419859722 crossref_primary_10_1016_j_jneumeth_2021_109143 crossref_primary_10_1016_j_neuroscience_2019_07_014 crossref_primary_10_1016_j_neuroimage_2018_09_039 crossref_primary_10_1016_j_msard_2016_06_009 crossref_primary_10_1080_01616412_2023_2258040 crossref_primary_10_3390_cells13232014 crossref_primary_10_1016_j_clinph_2017_04_006 crossref_primary_10_1212_WNL_0000000000209543 crossref_primary_10_1016_j_jfca_2016_05_011 crossref_primary_10_1038_s41380_023_01943_1 crossref_primary_10_1111_jon_12700 crossref_primary_10_1002_jmri_25588 crossref_primary_10_1152_jn_00260_2017 crossref_primary_10_1002_hbm_25126 crossref_primary_10_1007_s00401_020_02258_z crossref_primary_10_1007_s10753_024_02075_6 crossref_primary_10_3390_ijms241612631 crossref_primary_10_1002_hipo_23001 crossref_primary_10_3390_diagnostics11010045 crossref_primary_10_1016_j_sjbs_2024_103939 crossref_primary_10_3389_fnmol_2023_1102334 crossref_primary_10_3390_diseases8030033 crossref_primary_10_3390_ijms26188842 crossref_primary_10_1016_j_tins_2016_02_001 crossref_primary_10_1007_s00415_020_09806_3 crossref_primary_10_1016_j_neuroimage_2021_118225 crossref_primary_10_3389_fphys_2023_1145973 crossref_primary_10_1016_j_clinthera_2017_12_001 crossref_primary_10_1007_s13204_022_02698_x crossref_primary_10_1016_j_bbr_2017_08_046 crossref_primary_10_1177_1352458517739975 crossref_primary_10_1007_s11481_018_9815_4 crossref_primary_10_1016_j_neuroscience_2017_01_035 crossref_primary_10_3389_fpsyg_2020_602736 crossref_primary_10_5937_arhfarm73_46986 |
| ContentType | Journal Article |
| Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/brain/awv209 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1460-2156 |
| ExternalDocumentID | 26304151 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01EB015909 |
| GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABQTQ ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AI. AIJHB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CGR COF CS3 CUY CVF CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NPM NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 7X8 AJBYB |
| ID | FETCH-LOGICAL-c417t-4c5980a12348c06e23455d45ef3bee947ef70d3523bc7e63150f510360cddfe02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361396200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2156 |
| IngestDate | Sun Sep 28 11:52:43 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 9 |
| Keywords | disease progression MRI disability multiple sclerosis gamma-aminobutyric acid (GABA) |
| Language | English |
| License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-4c5980a12348c06e23455d45ef3bee947ef70d3523bc7e63150f510360cddfe02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/brain/article-pdf/138/9/2584/11143760/awv209.pdf |
| PMID | 26304151 |
| PQID | 1707554532 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1707554532 pubmed_primary_26304151 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Brain (London, England : 1878) |
| PublicationTitleAlternate | Brain |
| PublicationYear | 2015 |
| References | 20308251 - J Physiol. 2010 Jun 1;588(Pt 11):1861-9 21376596 - Curr Biol. 2011 Mar 22;21(6):480-4 25863355 - Brain. 2015 Jun;138(Pt 6):1568-82 12662128 - J Clin Psychiatry. 2003;64 Suppl 3:7-14 24041438 - Eur J Radiol. 2013 Dec;82(12):e848-52 25008549 - Lancet Neurol. 2014 Aug;13(8):807-22 24431465 - J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):833-9 6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70 15958127 - J Peripher Nerv Syst. 2005 Jun;10(2):158-73 21209373 - Neurology. 2011 Feb 1;76(5):418-24 7984061 - Magn Reson Med. 1994 Sep;32(3):294-302 22190573 - Mult Scler. 2012 Jun;18(6):891-8 12447929 - Ann Neurol. 2002 Dec;52(6):755-61 20652023 - PLoS One. 2010;5(7):e11625 17000961 - Neurology. 2006 Sep 26;67(6):960-7 23246994 - Neuroimage. 2014 Feb 1;86:43-52 12215085 - Arch Gen Psychiatry. 2002 Sep;59(9):851-8 12111475 - J Neural Transm (Vienna). 2002 May;109(5-6):881-9 8104567 - Cereb Cortex. 1993 Jul-Aug;3(4):273-89 22543852 - J Alzheimers Dis. 2012;31 Suppl 3:S101-15 19556311 - Mult Scler. 2009 Sep;15(9):1077-84 16168930 - Lancet Neurol. 2005 Oct;4(10):618-26 16221751 - J Neurophysiol. 2006 Mar;95(3):1639-44 9339704 - Neurology. 1997 Oct;49(4):1138-41 3178453 - Arch Phys Med Rehabil. 1988 Oct;69(10):850-4 20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8 23493890 - AJNR Am J Neuroradiol. 2013 Sep;34(9):1733-9 20878762 - Magn Reson Med. 2011 Jan;65(1):1-12 11578600 - Brain Res. 2001 Sep 28;914(1-2):81-91 9802468 - NMR Biomed. 1998 Oct;11(6):266-72 16392116 - Ann Neurol. 2006 Mar;59(3):478-89 20729256 - Mult Scler. 2010 Dec;16(12):1474-82 23333699 - Neuroimage. 2014 Feb 1;86:19-27 24871874 - Neurology. 2014 Jul 15;83(3):278-86 26304149 - Brain. 2015 Sep;138(Pt 9):2467-8 3798095 - Science. 1987 Jan 2;235(4784):66-9 17275978 - Prog Neurobiol. 2007 Feb;81(2):89-131 10355672 - Brain. 1999 May;122 ( Pt 5):871-82 11241712 - Magn Reson Med. 2001 Mar;45(3):517-20 22293397 - Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:29-41 21232891 - Magn Reson Imaging. 2011 Apr;29(3):374-9 16230320 - Brain. 2005 Nov;128(Pt 11):2705-12 15824254 - Arch Neurol. 2005 Apr;62(4):569-73 10467383 - Mult Scler. 1999 Aug;5(4):244-50 6685237 - Neurology. 1983 Nov;33(11):1444-52 23175732 - Neurology. 2013 Jan 1;80(1):39-46 20640466 - Neurol Sci. 2010 Nov;31(Suppl 2):S211-4 10499174 - Curr Opin Neurol. 1999 Jun;12(3):295-302 21509888 - J Magn Reson Imaging. 2011 May;33(5):1262-7 22917690 - Mult Scler. 2012 Nov;18(11):1534-40 |
| References_xml | – reference: 12111475 - J Neural Transm (Vienna). 2002 May;109(5-6):881-9 – reference: 11578600 - Brain Res. 2001 Sep 28;914(1-2):81-91 – reference: 23246994 - Neuroimage. 2014 Feb 1;86:43-52 – reference: 16230320 - Brain. 2005 Nov;128(Pt 11):2705-12 – reference: 8104567 - Cereb Cortex. 1993 Jul-Aug;3(4):273-89 – reference: 21509888 - J Magn Reson Imaging. 2011 May;33(5):1262-7 – reference: 25863355 - Brain. 2015 Jun;138(Pt 6):1568-82 – reference: 16221751 - J Neurophysiol. 2006 Mar;95(3):1639-44 – reference: 9802468 - NMR Biomed. 1998 Oct;11(6):266-72 – reference: 23333699 - Neuroimage. 2014 Feb 1;86:19-27 – reference: 10355672 - Brain. 1999 May;122 ( Pt 5):871-82 – reference: 22190573 - Mult Scler. 2012 Jun;18(6):891-8 – reference: 3798095 - Science. 1987 Jan 2;235(4784):66-9 – reference: 12447929 - Ann Neurol. 2002 Dec;52(6):755-61 – reference: 20729256 - Mult Scler. 2010 Dec;16(12):1474-82 – reference: 23175732 - Neurology. 2013 Jan 1;80(1):39-46 – reference: 24431465 - J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):833-9 – reference: 6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70 – reference: 25008549 - Lancet Neurol. 2014 Aug;13(8):807-22 – reference: 20652023 - PLoS One. 2010;5(7):e11625 – reference: 21232891 - Magn Reson Imaging. 2011 Apr;29(3):374-9 – reference: 26304149 - Brain. 2015 Sep;138(Pt 9):2467-8 – reference: 12215085 - Arch Gen Psychiatry. 2002 Sep;59(9):851-8 – reference: 19556311 - Mult Scler. 2009 Sep;15(9):1077-84 – reference: 24041438 - Eur J Radiol. 2013 Dec;82(12):e848-52 – reference: 17000961 - Neurology. 2006 Sep 26;67(6):960-7 – reference: 12662128 - J Clin Psychiatry. 2003;64 Suppl 3:7-14 – reference: 24871874 - Neurology. 2014 Jul 15;83(3):278-86 – reference: 22917690 - Mult Scler. 2012 Nov;18(11):1534-40 – reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52 – reference: 9339704 - Neurology. 1997 Oct;49(4):1138-41 – reference: 17275978 - Prog Neurobiol. 2007 Feb;81(2):89-131 – reference: 22543852 - J Alzheimers Dis. 2012;31 Suppl 3:S101-15 – reference: 20878762 - Magn Reson Med. 2011 Jan;65(1):1-12 – reference: 20640466 - Neurol Sci. 2010 Nov;31(Suppl 2):S211-4 – reference: 15958127 - J Peripher Nerv Syst. 2005 Jun;10(2):158-73 – reference: 23493890 - AJNR Am J Neuroradiol. 2013 Sep;34(9):1733-9 – reference: 10467383 - Mult Scler. 1999 Aug;5(4):244-50 – reference: 20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8 – reference: 10499174 - Curr Opin Neurol. 1999 Jun;12(3):295-302 – reference: 16392116 - Ann Neurol. 2006 Mar;59(3):478-89 – reference: 20308251 - J Physiol. 2010 Jun 1;588(Pt 11):1861-9 – reference: 21376596 - Curr Biol. 2011 Mar 22;21(6):480-4 – reference: 11241712 - Magn Reson Med. 2001 Mar;45(3):517-20 – reference: 22293397 - Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:29-41 – reference: 15824254 - Arch Neurol. 2005 Apr;62(4):569-73 – reference: 3178453 - Arch Phys Med Rehabil. 1988 Oct;69(10):850-4 – reference: 16168930 - Lancet Neurol. 2005 Oct;4(10):618-26 – reference: 7984061 - Magn Reson Med. 1994 Sep;32(3):294-302 – reference: 21209373 - Neurology. 2011 Feb 1;76(5):418-24 |
| SSID | ssj0014326 |
| Score | 2.4837706 |
| Snippet | Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2584 |
| SubjectTerms | Adult Aspartic Acid Brain - metabolism Disability Evaluation Disabled Persons Female gamma-Aminobutyric Acid - metabolism Glutamic Acid Humans Magnetic Resonance Spectroscopy Male Middle Aged Multiple Sclerosis - complications Multiple Sclerosis - metabolism Multiple Sclerosis - pathology Neuropsychological Tests Severity of Illness Index |
| Title | Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26304151 https://www.proquest.com/docview/1707554532 |
| Volume | 138 |
| WOSCitedRecordID | wos000361396200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qinjx_VhfRPAaNtskbXoSERcvuyyisLeSJqn0sO1qu5X9907aLN5E8NKeAiEzme9LZvINQneKhoZJI0h70uFSGaIAJkloYiaF4SYVWdtsIppM5GwWT_2FW-XLKtcxsQ3UptTujnwwjADcAO5ZcL_4IK5rlMuu-hYam6jHgMo4r45mP1kEzgL_uogSgLbQF77DIX6QugYMA_XVBPQXctmCzGj_v9M7QHueXuKHzh8O0YYtjtDO2CfQj1Hz4qRarcHvaj5XRM3zokyX9QqiIVY6N1i7Z4yF19LFeYWVtx-McXe2eOENi41X561XOC9wW-flSmobi9dFiriCOQAK59UJehs9vT4-E996gWg-jGrCtYglVQBrXGoaWvgLsJywGUutjXlks4gaIG8s1ZENGdDKzGnzhVQbk1kanKKtoizsOcKppBowEKgNj7g1IuZGMhNT6ZTc4ATYR7frFU3AtV2-QhW2XFbJz5r20VlnlmTRaXAkQcicuMDw4g-jL9Eu0BzRVYZdoV4GG9teo23d1Hn1edP6DHwn0_E38ePOWQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+gamma-aminobutyric+acid+concentration+is+associated+with+physical+disability+in+progressive+multiple+sclerosis&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Cawley%2C+Niamh&rft.au=Solanky%2C+Bhavana+S&rft.au=Muhlert%2C+Nils&rft.au=Tur%2C+Carmen&rft.date=2015-09-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=138&rft.issue=Pt+9&rft.spage=2584&rft_id=info:doi/10.1093%2Fbrain%2Fawv209&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon |