Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are...

Full description

Saved in:
Bibliographic Details
Published in:Brain (London, England : 1878) Vol. 138; no. Pt 9; p. 2584
Main Authors: Cawley, Niamh, Solanky, Bhavana S, Muhlert, Nils, Tur, Carmen, Edden, Richard A E, Wheeler-Kingshott, Claudia A M, Miller, David H, Thompson, Alan J, Ciccarelli, Olga
Format: Journal Article
Language:English
Published: England 01.09.2015
Subjects:
ISSN:1460-2156, 1460-2156
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.
AbstractList Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.
Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.
Author Ciccarelli, Olga
Muhlert, Nils
Wheeler-Kingshott, Claudia A M
Thompson, Alan J
Tur, Carmen
Cawley, Niamh
Solanky, Bhavana S
Miller, David H
Edden, Richard A E
Author_xml – sequence: 1
  givenname: Niamh
  surname: Cawley
  fullname: Cawley, Niamh
  email: n.cawley@ucl.ac.uk
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK n.cawley@ucl.ac.uk
– sequence: 2
  givenname: Bhavana S
  surname: Solanky
  fullname: Solanky, Bhavana S
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
– sequence: 3
  givenname: Nils
  surname: Muhlert
  fullname: Muhlert, Nils
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 2 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK 3 School of Psychological Sciences, University of Manchester, Manchester, UK
– sequence: 4
  givenname: Carmen
  surname: Tur
  fullname: Tur, Carmen
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
– sequence: 5
  givenname: Richard A E
  surname: Edden
  fullname: Edden, Richard A E
  organization: 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 5 FM Kirby Centre for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
– sequence: 6
  givenname: Claudia A M
  surname: Wheeler-Kingshott
  fullname: Wheeler-Kingshott, Claudia A M
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 6 Brain Connectivity Centre, C. Mondino National Neurological Institute, Pavia, Italy
– sequence: 7
  givenname: David H
  surname: Miller
  fullname: Miller, David H
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
– sequence: 8
  givenname: Alan J
  surname: Thompson
  fullname: Thompson, Alan J
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
– sequence: 9
  givenname: Olga
  surname: Ciccarelli
  fullname: Ciccarelli, Olga
  organization: 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26304151$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLw0AYxBdR7ENvnmWPXmL3mTRHKb6gIIiew2b3S_tJsonZTUv-ewNW8PSbw8wwzIKc-9YDITec3XOWy1XZG_QrczwIlp-ROVcpSwTX6fk_PSOLEL4Y40qK9JLMRCqZ4prPyeEd3GDB0Z1pGpOYBn1bDnHs0VJj0VHbegs-9iZi6ykGakJoLZo4ZY4Y97TbjwGtqanDYEqsMY4UPe36dtdDCHgA2gx1xK4GGmwNfRswXJGLytQBrk9cks-nx4_NS7J9e37dPGwTq3gWE2V1vmaGC6nWlqUwUWunNFSyBMhVBlXGnNRCljaDVHLNKs2ZTJl1rgImluTut3ea8z1AiEWDwUJdGw_tEAqesUxrpaWYrLcn61A24Iqux8b0Y_H3lfgBIxlwbw
CitedBy_id crossref_primary_10_1371_journal_pone_0223702
crossref_primary_10_3389_fneur_2019_01173
crossref_primary_10_1111_cen3_12281
crossref_primary_10_1002_hbm_23531
crossref_primary_10_1093_jnen_nlz028
crossref_primary_10_1002_jnr_24977
crossref_primary_10_1002_acn3_70148
crossref_primary_10_7554_eLife_73827
crossref_primary_10_1016_j_neuroscience_2018_03_018
crossref_primary_10_1007_s00330_017_5064_9
crossref_primary_10_1177_1756286419877081
crossref_primary_10_1002_nbm_4139
crossref_primary_10_3390_ijms222011112
crossref_primary_10_1016_j_ydbio_2017_04_019
crossref_primary_10_1007_s00441_020_03195_9
crossref_primary_10_1093_brain_awv213
crossref_primary_10_1002_jmri_25324
crossref_primary_10_3390_s23177629
crossref_primary_10_1016_j_isci_2025_112289
crossref_primary_10_1007_s11307_020_01501_z
crossref_primary_10_1007_s12264_021_00693_w
crossref_primary_10_1007_s00018_025_05690_0
crossref_primary_10_1007_s13311_016_0479_6
crossref_primary_10_1016_j_ejrad_2021_109610
crossref_primary_10_1007_s15005_015_1524_4
crossref_primary_10_1371_journal_pone_0182729
crossref_primary_10_1186_s12974_016_0686_4
crossref_primary_10_1016_j_nic_2016_12_005
crossref_primary_10_1016_j_clinph_2018_12_015
crossref_primary_10_1016_j_nicl_2023_103495
crossref_primary_10_3389_fpsyt_2020_00813
crossref_primary_10_1097_WCO_0000000000000333
crossref_primary_10_3390_ijms21176117
crossref_primary_10_1002_eji_70059
crossref_primary_10_1016_j_dscb_2021_100019
crossref_primary_10_1080_01616412_2021_1956282
crossref_primary_10_3390_ijms24021639
crossref_primary_10_1016_j_msard_2020_102183
crossref_primary_10_1016_j_jddst_2024_105386
crossref_primary_10_1038_s41583_018_0053_9
crossref_primary_10_1016_j_jaut_2022_102957
crossref_primary_10_1002_nbm_4590
crossref_primary_10_1097_QAI_0000000000002183
crossref_primary_10_1177_15459683221076461
crossref_primary_10_3390_brainsci11030346
crossref_primary_10_1016_j_neuroimage_2017_01_033
crossref_primary_10_1038_s41564_024_01761_3
crossref_primary_10_3389_fcell_2023_1221890
crossref_primary_10_1016_j_jmpt_2020_07_008
crossref_primary_10_4103_1673_5374_217353
crossref_primary_10_1007_s00726_022_03162_4
crossref_primary_10_1016_j_msard_2021_102978
crossref_primary_10_1177_1756286419859722
crossref_primary_10_1016_j_jneumeth_2021_109143
crossref_primary_10_1016_j_neuroscience_2019_07_014
crossref_primary_10_1016_j_neuroimage_2018_09_039
crossref_primary_10_1016_j_msard_2016_06_009
crossref_primary_10_1080_01616412_2023_2258040
crossref_primary_10_3390_cells13232014
crossref_primary_10_1016_j_clinph_2017_04_006
crossref_primary_10_1212_WNL_0000000000209543
crossref_primary_10_1016_j_jfca_2016_05_011
crossref_primary_10_1038_s41380_023_01943_1
crossref_primary_10_1111_jon_12700
crossref_primary_10_1002_jmri_25588
crossref_primary_10_1152_jn_00260_2017
crossref_primary_10_1002_hbm_25126
crossref_primary_10_1007_s00401_020_02258_z
crossref_primary_10_1007_s10753_024_02075_6
crossref_primary_10_3390_ijms241612631
crossref_primary_10_1002_hipo_23001
crossref_primary_10_3390_diagnostics11010045
crossref_primary_10_1016_j_sjbs_2024_103939
crossref_primary_10_3389_fnmol_2023_1102334
crossref_primary_10_3390_diseases8030033
crossref_primary_10_3390_ijms26188842
crossref_primary_10_1016_j_tins_2016_02_001
crossref_primary_10_1007_s00415_020_09806_3
crossref_primary_10_1016_j_neuroimage_2021_118225
crossref_primary_10_3389_fphys_2023_1145973
crossref_primary_10_1016_j_clinthera_2017_12_001
crossref_primary_10_1007_s13204_022_02698_x
crossref_primary_10_1016_j_bbr_2017_08_046
crossref_primary_10_1177_1352458517739975
crossref_primary_10_1007_s11481_018_9815_4
crossref_primary_10_1016_j_neuroscience_2017_01_035
crossref_primary_10_3389_fpsyg_2020_602736
crossref_primary_10_5937_arhfarm73_46986
ContentType Journal Article
Copyright The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awv209
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
ExternalDocumentID 26304151
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01EB015909
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABQTQ
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
7X8
AJBYB
ID FETCH-LOGICAL-c417t-4c5980a12348c06e23455d45ef3bee947ef70d3523bc7e63150f510360cddfe02
IEDL.DBID 7X8
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361396200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2156
IngestDate Sun Sep 28 11:52:43 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 9
Keywords disease progression
MRI
disability
multiple sclerosis
gamma-aminobutyric acid (GABA)
Language English
License The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-4c5980a12348c06e23455d45ef3bee947ef70d3523bc7e63150f510360cddfe02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/138/9/2584/11143760/awv209.pdf
PMID 26304151
PQID 1707554532
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1707554532
pubmed_primary_26304151
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2015
References 20308251 - J Physiol. 2010 Jun 1;588(Pt 11):1861-9
21376596 - Curr Biol. 2011 Mar 22;21(6):480-4
25863355 - Brain. 2015 Jun;138(Pt 6):1568-82
12662128 - J Clin Psychiatry. 2003;64 Suppl 3:7-14
24041438 - Eur J Radiol. 2013 Dec;82(12):e848-52
25008549 - Lancet Neurol. 2014 Aug;13(8):807-22
24431465 - J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):833-9
6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70
15958127 - J Peripher Nerv Syst. 2005 Jun;10(2):158-73
21209373 - Neurology. 2011 Feb 1;76(5):418-24
7984061 - Magn Reson Med. 1994 Sep;32(3):294-302
22190573 - Mult Scler. 2012 Jun;18(6):891-8
12447929 - Ann Neurol. 2002 Dec;52(6):755-61
20652023 - PLoS One. 2010;5(7):e11625
17000961 - Neurology. 2006 Sep 26;67(6):960-7
23246994 - Neuroimage. 2014 Feb 1;86:43-52
12215085 - Arch Gen Psychiatry. 2002 Sep;59(9):851-8
12111475 - J Neural Transm (Vienna). 2002 May;109(5-6):881-9
8104567 - Cereb Cortex. 1993 Jul-Aug;3(4):273-89
22543852 - J Alzheimers Dis. 2012;31 Suppl 3:S101-15
19556311 - Mult Scler. 2009 Sep;15(9):1077-84
16168930 - Lancet Neurol. 2005 Oct;4(10):618-26
16221751 - J Neurophysiol. 2006 Mar;95(3):1639-44
9339704 - Neurology. 1997 Oct;49(4):1138-41
3178453 - Arch Phys Med Rehabil. 1988 Oct;69(10):850-4
20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8
23493890 - AJNR Am J Neuroradiol. 2013 Sep;34(9):1733-9
20878762 - Magn Reson Med. 2011 Jan;65(1):1-12
11578600 - Brain Res. 2001 Sep 28;914(1-2):81-91
9802468 - NMR Biomed. 1998 Oct;11(6):266-72
16392116 - Ann Neurol. 2006 Mar;59(3):478-89
20729256 - Mult Scler. 2010 Dec;16(12):1474-82
23333699 - Neuroimage. 2014 Feb 1;86:19-27
24871874 - Neurology. 2014 Jul 15;83(3):278-86
26304149 - Brain. 2015 Sep;138(Pt 9):2467-8
3798095 - Science. 1987 Jan 2;235(4784):66-9
17275978 - Prog Neurobiol. 2007 Feb;81(2):89-131
10355672 - Brain. 1999 May;122 ( Pt 5):871-82
11241712 - Magn Reson Med. 2001 Mar;45(3):517-20
22293397 - Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:29-41
21232891 - Magn Reson Imaging. 2011 Apr;29(3):374-9
16230320 - Brain. 2005 Nov;128(Pt 11):2705-12
15824254 - Arch Neurol. 2005 Apr;62(4):569-73
10467383 - Mult Scler. 1999 Aug;5(4):244-50
6685237 - Neurology. 1983 Nov;33(11):1444-52
23175732 - Neurology. 2013 Jan 1;80(1):39-46
20640466 - Neurol Sci. 2010 Nov;31(Suppl 2):S211-4
10499174 - Curr Opin Neurol. 1999 Jun;12(3):295-302
21509888 - J Magn Reson Imaging. 2011 May;33(5):1262-7
22917690 - Mult Scler. 2012 Nov;18(11):1534-40
References_xml – reference: 12111475 - J Neural Transm (Vienna). 2002 May;109(5-6):881-9
– reference: 11578600 - Brain Res. 2001 Sep 28;914(1-2):81-91
– reference: 23246994 - Neuroimage. 2014 Feb 1;86:43-52
– reference: 16230320 - Brain. 2005 Nov;128(Pt 11):2705-12
– reference: 8104567 - Cereb Cortex. 1993 Jul-Aug;3(4):273-89
– reference: 21509888 - J Magn Reson Imaging. 2011 May;33(5):1262-7
– reference: 25863355 - Brain. 2015 Jun;138(Pt 6):1568-82
– reference: 16221751 - J Neurophysiol. 2006 Mar;95(3):1639-44
– reference: 9802468 - NMR Biomed. 1998 Oct;11(6):266-72
– reference: 23333699 - Neuroimage. 2014 Feb 1;86:19-27
– reference: 10355672 - Brain. 1999 May;122 ( Pt 5):871-82
– reference: 22190573 - Mult Scler. 2012 Jun;18(6):891-8
– reference: 3798095 - Science. 1987 Jan 2;235(4784):66-9
– reference: 12447929 - Ann Neurol. 2002 Dec;52(6):755-61
– reference: 20729256 - Mult Scler. 2010 Dec;16(12):1474-82
– reference: 23175732 - Neurology. 2013 Jan 1;80(1):39-46
– reference: 24431465 - J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):833-9
– reference: 6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70
– reference: 25008549 - Lancet Neurol. 2014 Aug;13(8):807-22
– reference: 20652023 - PLoS One. 2010;5(7):e11625
– reference: 21232891 - Magn Reson Imaging. 2011 Apr;29(3):374-9
– reference: 26304149 - Brain. 2015 Sep;138(Pt 9):2467-8
– reference: 12215085 - Arch Gen Psychiatry. 2002 Sep;59(9):851-8
– reference: 19556311 - Mult Scler. 2009 Sep;15(9):1077-84
– reference: 24041438 - Eur J Radiol. 2013 Dec;82(12):e848-52
– reference: 17000961 - Neurology. 2006 Sep 26;67(6):960-7
– reference: 12662128 - J Clin Psychiatry. 2003;64 Suppl 3:7-14
– reference: 24871874 - Neurology. 2014 Jul 15;83(3):278-86
– reference: 22917690 - Mult Scler. 2012 Nov;18(11):1534-40
– reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52
– reference: 9339704 - Neurology. 1997 Oct;49(4):1138-41
– reference: 17275978 - Prog Neurobiol. 2007 Feb;81(2):89-131
– reference: 22543852 - J Alzheimers Dis. 2012;31 Suppl 3:S101-15
– reference: 20878762 - Magn Reson Med. 2011 Jan;65(1):1-12
– reference: 20640466 - Neurol Sci. 2010 Nov;31(Suppl 2):S211-4
– reference: 15958127 - J Peripher Nerv Syst. 2005 Jun;10(2):158-73
– reference: 23493890 - AJNR Am J Neuroradiol. 2013 Sep;34(9):1733-9
– reference: 10467383 - Mult Scler. 1999 Aug;5(4):244-50
– reference: 20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8
– reference: 10499174 - Curr Opin Neurol. 1999 Jun;12(3):295-302
– reference: 16392116 - Ann Neurol. 2006 Mar;59(3):478-89
– reference: 20308251 - J Physiol. 2010 Jun 1;588(Pt 11):1861-9
– reference: 21376596 - Curr Biol. 2011 Mar 22;21(6):480-4
– reference: 11241712 - Magn Reson Med. 2001 Mar;45(3):517-20
– reference: 22293397 - Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:29-41
– reference: 15824254 - Arch Neurol. 2005 Apr;62(4):569-73
– reference: 3178453 - Arch Phys Med Rehabil. 1988 Oct;69(10):850-4
– reference: 16168930 - Lancet Neurol. 2005 Oct;4(10):618-26
– reference: 7984061 - Magn Reson Med. 1994 Sep;32(3):294-302
– reference: 21209373 - Neurology. 2011 Feb 1;76(5):418-24
SSID ssj0014326
Score 2.4837706
Snippet Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2584
SubjectTerms Adult
Aspartic Acid
Brain - metabolism
Disability Evaluation
Disabled Persons
Female
gamma-Aminobutyric Acid - metabolism
Glutamic Acid
Humans
Magnetic Resonance Spectroscopy
Male
Middle Aged
Multiple Sclerosis - complications
Multiple Sclerosis - metabolism
Multiple Sclerosis - pathology
Neuropsychological Tests
Severity of Illness Index
Title Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis
URI https://www.ncbi.nlm.nih.gov/pubmed/26304151
https://www.proquest.com/docview/1707554532
Volume 138
WOSCitedRecordID wos000361396200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qinjx_VhfRPAaNtskbXoSERcvuyyisLeSJqn0sO1qu5X9907aLN5E8NKeAiEzme9LZvINQneKhoZJI0h70uFSGaIAJkloYiaF4SYVWdtsIppM5GwWT_2FW-XLKtcxsQ3UptTujnwwjADcAO5ZcL_4IK5rlMuu-hYam6jHgMo4r45mP1kEzgL_uogSgLbQF77DIX6QugYMA_XVBPQXctmCzGj_v9M7QHueXuKHzh8O0YYtjtDO2CfQj1Hz4qRarcHvaj5XRM3zokyX9QqiIVY6N1i7Z4yF19LFeYWVtx-McXe2eOENi41X561XOC9wW-flSmobi9dFiriCOQAK59UJehs9vT4-E996gWg-jGrCtYglVQBrXGoaWvgLsJywGUutjXlks4gaIG8s1ZENGdDKzGnzhVQbk1kanKKtoizsOcKppBowEKgNj7g1IuZGMhNT6ZTc4ATYR7frFU3AtV2-QhW2XFbJz5r20VlnlmTRaXAkQcicuMDw4g-jL9Eu0BzRVYZdoV4GG9teo23d1Hn1edP6DHwn0_E38ePOWQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+gamma-aminobutyric+acid+concentration+is+associated+with+physical+disability+in+progressive+multiple+sclerosis&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Cawley%2C+Niamh&rft.au=Solanky%2C+Bhavana+S&rft.au=Muhlert%2C+Nils&rft.au=Tur%2C+Carmen&rft.date=2015-09-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=138&rft.issue=Pt+9&rft.spage=2584&rft_id=info:doi/10.1093%2Fbrain%2Fawv209&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon