Semiclassical limit of topological Rényi entropy in 3d Chern-Simons theory

A bstract We study the multi-boundary entanglement structure of the state associated with the torus link complement S 3 \T p,q in the set-up of three-dimensional SU(2) k Chern-Simons theory. The focal point of this work is the asymptotic behavior of the Rényi entropies, including the entanglement en...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2020; číslo 12; s. 1 - 72
Hlavní autoři: Dwivedi, Siddharth, Singh, Vivek Kumar, Roy, Abhishek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract We study the multi-boundary entanglement structure of the state associated with the torus link complement S 3 \T p,q in the set-up of three-dimensional SU(2) k Chern-Simons theory. The focal point of this work is the asymptotic behavior of the Rényi entropies, including the entanglement entropy, in the semiclassical limit of k → ∞ . We present a detailed analysis of several torus links and observe that the entropies converge to a finite value in the semiclassical limit. We further propose that the large k limiting value of the Rényi entropy of torus links of type T p,pn is the sum of two parts: (i) the universal part which is independent of n , and (ii) the non-universal or the linking part which explicitly depends on the linking number n . Using the analytic techniques, we show that the universal part comprises of Riemann zeta functions and can be written in terms of the partition functions of two-dimensional topological Yang-Mills theory. More precisely, it is equal to the Rényi entropy of certain states prepared in topological 2 d Yang-Mills theory with SU(2) gauge group. Further, the universal parts appearing in the large k limits of the entanglement entropy and the minimum Rényi entropy for torus links T p,pn can be interpreted in terms of the volume of the moduli space of flat connections on certain Riemann surfaces. We also analyze the Rényi entropies of T p,pn link in the double scaling limit of k → ∞ and n → ∞ and propose that the entropies converge in the double limit as well.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2020)132