Nonrelativistic string theory and T-duality

A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enj...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2018; číslo 11; s. 1 - 23
Hlavní autoři: Bergshoeff, Eric, Gomis, Jaume, Yan, Ziqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2018
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
AbstractList A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
Abstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
ArticleNumber 133
Author Bergshoeff, Eric
Gomis, Jaume
Yan, Ziqi
Author_xml – sequence: 1
  givenname: Eric
  surname: Bergshoeff
  fullname: Bergshoeff, Eric
  organization: Van Swinderen Institute, University of Groningen
– sequence: 2
  givenname: Jaume
  surname: Gomis
  fullname: Gomis, Jaume
  organization: Perimeter Institute for Theoretical Physics
– sequence: 3
  givenname: Ziqi
  orcidid: 0000-0002-9434-5397
  surname: Yan
  fullname: Yan, Ziqi
  email: zyan@pitp.ca
  organization: Perimeter Institute for Theoretical Physics
BookMark eNp1kEtLAzEURoNUsK2u3Q64UWRsXtNJllKqrRR1Udchk0dNGSc1SYX-e6eOoghd3cvlno-PMwC9xjcGgHMEbxCE5ehhNn1G6BJDxK4QIUegjyDmOaMl7_3ZT8AgxjWEqEAc9sH1o2-CqWVyHy4mp7KYgmtWWXo1Puwy2ehsmeutrF3anYJjK-tozr7nELzcTZeTWb54up9Pbhe5oqhMOaUaE8K0IlSVGGNTUIutkUoVTNvKlmPLmdaytFZVxLTHykBaMsUsw5wbMgTzLld7uRab4N5k2Akvnfg6-LASMrRdayMKqfHYcIYpZ9QQIpmxspIQ24JjxHSbddFlbYJ_35qYxNpvQ9PWFxiREnI0xrD9KrovFXyMwVihXGqd-CYF6WqBoNg7Fp1jsXcsWsctN_rH_bQ9TMCOiJu9ZxN--xxCPgGN2I5y
CitedBy_id crossref_primary_10_1007_JHEP12_2021_068
crossref_primary_10_1007_JHEP03_2020_181
crossref_primary_10_1007_JHEP06_2020_145
crossref_primary_10_1007_JHEP09_2019_015
crossref_primary_10_1007_JHEP03_2021_269
crossref_primary_10_1007_JHEP08_2022_218
crossref_primary_10_1007_JHEP07_2020_083
crossref_primary_10_1088_1572_9494_adc40e
crossref_primary_10_1007_JHEP09_2024_087
crossref_primary_10_1007_JHEP08_2025_025
crossref_primary_10_1016_j_aop_2025_170138
crossref_primary_10_1007_JHEP01_2023_165
crossref_primary_10_1007_JHEP08_2019_074
crossref_primary_10_1007_JHEP11_2023_053
crossref_primary_10_1007_JHEP02_2020_009
crossref_primary_10_1007_JHEP02_2025_024
crossref_primary_10_1007_JHEP11_2023_135
crossref_primary_10_1007_JHEP09_2021_035
crossref_primary_10_1007_JHEP10_2019_101
crossref_primary_10_1007_JHEP10_2019_266
crossref_primary_10_1007_JHEP11_2019_071
crossref_primary_10_1140_epjc_s10052_023_12085_7
crossref_primary_10_1007_JHEP02_2021_188
crossref_primary_10_1007_JHEP09_2020_172
crossref_primary_10_1140_epjc_s10052_020_8112_6
crossref_primary_10_1007_JHEP02_2022_191
crossref_primary_10_1007_JHEP07_2019_175
crossref_primary_10_1007_JHEP09_2019_109
crossref_primary_10_1007_JHEP05_2020_024
crossref_primary_10_1007_JHEP08_2025_139
crossref_primary_10_1007_JHEP06_2021_021
crossref_primary_10_1007_JHEP09_2022_237
crossref_primary_10_1007_JHEP05_2025_199
crossref_primary_10_1007_JHEP06_2022_017
crossref_primary_10_1007_JHEP01_2019_178
crossref_primary_10_1007_JHEP10_2019_153
crossref_primary_10_1088_1751_8121_ad72be
crossref_primary_10_1007_JHEP04_2019_117
crossref_primary_10_1007_JHEP04_2022_161
crossref_primary_10_1007_JHEP06_2020_120
crossref_primary_10_1007_JHEP09_2025_021
crossref_primary_10_1007_JHEP04_2022_068
crossref_primary_10_1088_1402_4896_acab3e
crossref_primary_10_1007_JHEP06_2019_072
crossref_primary_10_1007_JHEP12_2021_123
crossref_primary_10_1088_1751_8121_ab56e9
crossref_primary_10_1007_JHEP11_2018_133
crossref_primary_10_1142_S0217751X24500313
crossref_primary_10_1007_JHEP04_2021_186
crossref_primary_10_1007_JHEP03_2021_129
crossref_primary_10_1007_JHEP04_2023_075
crossref_primary_10_1007_JHEP06_2020_160
crossref_primary_10_1103_PhysRevD_111_026003
crossref_primary_10_1007_JHEP11_2022_152
crossref_primary_10_1007_JHEP06_2021_173
crossref_primary_10_1007_JHEP09_2022_007
crossref_primary_10_1007_JHEP12_2024_010
crossref_primary_10_1140_epjc_s10052_020_7688_1
crossref_primary_10_1007_JHEP10_2021_015
crossref_primary_10_1007_JHEP04_2019_163
crossref_primary_10_1007_JHEP05_2025_200
crossref_primary_10_1007_JHEP02_2022_116
crossref_primary_10_1007_JHEP06_2021_057
crossref_primary_10_1007_JHEP07_2020_069
crossref_primary_10_1007_JHEP02_2021_087
crossref_primary_10_1016_j_physletb_2025_139837
crossref_primary_10_1007_JHEP02_2020_109
crossref_primary_10_1007_JHEP07_2024_102
crossref_primary_10_1007_JHEP02_2023_153
crossref_primary_10_1007_JHEP12_2023_022
crossref_primary_10_1140_epjc_s10052_020_7648_9
crossref_primary_10_1007_JHEP03_2023_008
crossref_primary_10_1007_JHEP10_2022_131
crossref_primary_10_1007_JHEP07_2024_286
crossref_primary_10_1007_JHEP12_2023_141
crossref_primary_10_1007_JHEP06_2022_080
crossref_primary_10_1007_JHEP01_2024_146
crossref_primary_10_1007_JHEP09_2019_002
crossref_primary_10_1007_JHEP10_2020_066
crossref_primary_10_1007_JHEP09_2020_191
crossref_primary_10_1007_JHEP04_2025_169
crossref_primary_10_1007_JHEP04_2021_072
crossref_primary_10_1140_epjc_s10052_022_10255_7
crossref_primary_10_1007_JHEP08_2019_048
crossref_primary_10_1007_JHEP08_2022_096
crossref_primary_10_1007_JHEP03_2024_002
crossref_primary_10_1103_PhysRevResearch_4_033186
crossref_primary_10_1088_1361_6382_acbe8c
crossref_primary_10_1007_JHEP01_2022_081
crossref_primary_10_1007_JHEP09_2025_125
crossref_primary_10_1007_JHEP10_2024_096
crossref_primary_10_1007_JHEP07_2020_175
Cites_doi 10.1016/0550-3213(92)90269-H
10.1103/PhysRevLett.79.3577
10.4310/ATMP.1998.v2.n1.a2
10.1016/0003-4916(85)90384-7
10.1007/JHEP04(2017)120
10.1088/1126-6708/2005/12/024
10.1088/0264-9381/29/23/235020
10.1007/JHEP02(2017)105
10.1016/0370-2693(88)90602-8
10.1140/epjc/s10052-017-5257-z
10.1016/j.physletb.2004.05.024
10.1103/PhysRevD.55.5112
10.1007/JHEP02(2017)049
10.1063/1.1372697
10.1103/PhysRevD.59.125002
10.1088/1126-6708/2009/07/037
10.1103/PhysRevD.73.085011
10.1016/0550-3213(85)90506-1
10.1088/1126-6708/2000/10/020
10.1007/JHEP11(2018)133
10.1007/JHEP05(2018)041
10.1142/S0217751X01004001
10.1016/0370-2693(87)90769-6
10.1103/PhysRevD.96.086019
ContentType Journal Article
Copyright The Author(s) 2018
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP11(2018)133
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 23
ExternalDocumentID oai_doaj_org_article_5ad26e9824984e33a8efaba02f59218d
10_1007_JHEP11_2018_133
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-44d2338dc34c7222e54f2feacc58dfbf76f98dda7ffcb3e58dbe0478c8f8299e3
IEDL.DBID C24
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451010100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Mon Nov 10 04:36:09 EST 2025
Sat Oct 18 22:48:01 EDT 2025
Tue Nov 18 21:51:08 EST 2025
Sat Nov 29 06:03:10 EST 2025
Fri Feb 21 02:29:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Classical Theories of Gravity
Sigma Models
String Duality
Bosonic Strings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-44d2338dc34c7222e54f2feacc58dfbf76f98dda7ffcb3e58dbe0478c8f8299e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9434-5397
OpenAccessLink https://link.springer.com/10.1007/JHEP11(2018)133
PQID 2137091620
PQPubID 2034718
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_5ad26e9824984e33a8efaba02f59218d
proquest_journals_2137091620
crossref_citationtrail_10_1007_JHEP11_2018_133
crossref_primary_10_1007_JHEP11_2018_133
springer_journals_10_1007_JHEP11_2018_133
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].
S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev.D 59 (1999) 125002 [hep-th/9711037] [INSPIRE].
L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].
T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE].
T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE].
GomisJTownsendPKThe Galilean superstringJHEP2017021052017JHEP...02..105G363750910.1007/JHEP02(2017)1051377.83119[arXiv:1612.02759] [INSPIRE]
K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE].
I.R. Klebanov and J.M. Maldacena, (1+1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys.A 16 (2001) 922 [hep-th/0006085] [INSPIRE].
E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018).
C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys.B 262 (1985) 593 [INSPIRE].
SeibergNWhy is the matrix model correct?Phys. Rev. Lett.19977935771997PhRvL..79.3577S148011410.1103/PhysRevLett.79.35770946.81062[hep-th/9710009] [INSPIRE]
J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE].
J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS5 × S5, JHEP12 (2005) 024 [hep-th/0507036] [INSPIRE].
M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys.B 373 (1992) 630 [hep-th/9110053] [INSPIRE].
DanielssonUHGuijosaAKruczenskiMIIA/B, wound and wrappedJHEP2000100202000JHEP...10..020D181145510.1088/1126-6708/2000/10/0200965.81056[hep-th/0009182] [INSPIRE]
BagchiAGopakumarRGalilean conformal algebras and AdS/CFTJHEP2009070372009JHEP...07..037B254507510.1088/1126-6708/2009/07/037[arXiv:0902.1385] [INSPIRE]
AndringaRBergshoeffEGomisJde RooM‘Stringy’ Newton-Cartan gravityClass. Quant. Grav.2012292350202012CQGra..29w5020A300288210.1088/0264-9381/29/23/2350201258.83041[arXiv:1206.5176] [INSPIRE]
T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].
KlusoňJRemark about non-relativistic string in Newton-Cartan background and null reductionJHEP2018050412018JHEP...05..041K383272210.1007/JHEP05(2018)0411391.81167[arXiv:1803.07336] [INSPIRE]
A. Sen, D0-branes on Tnand matrix theory, Adv. Theor. Math. Phys.2 (1998) 51 [hep-th/9709220] [INSPIRE].
KoSMMelby-ThompsonCMeyerRParkJ-HDynamics of perturbations in double field theory & non-relativistic string theoryJHEP2015121442015JHEP...12..144K34646581388.83020[arXiv:1508.01121] [INSPIRE]
J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].
BatlleCGomisJMezincescuLTownsendPKTachyons in the Galilean limitJHEP2017041202017JHEP...04..120B365014810.1007/JHEP04(2017)1201378.83079[arXiv:1702.04792] [INSPIRE]
BatlleCGomisJNotDExtended Galilean symmetries of non-relativistic stringsJHEP2017020492017JHEP...02..049B363756510.1007/JHEP02(2017)0491377.83109[arXiv:1611.00026] [INSPIRE]
T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Annals Phys.163 (1985) 318 [INSPIRE].
9441_CR21
9441_CR6
9441_CR20
9441_CR23
9441_CR22
N Seiberg (9441_CR14) 1997; 79
J Gomis (9441_CR8) 2017; 02
9441_CR24
J Klusoň (9441_CR11) 2018; 05
9441_CR26
UH Danielsson (9441_CR3) 2000; 10
9441_CR10
R Andringa (9441_CR5) 2012; 29
9441_CR12
9441_CR18
SM Ko (9441_CR25) 2015; 12
A Bagchi (9441_CR17) 2009; 07
9441_CR19
9441_CR13
9441_CR16
9441_CR15
C Batlle (9441_CR9) 2017; 04
C Batlle (9441_CR7) 2017; 02
9441_CR1
9441_CR2
9441_CR4
References_xml – reference: J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].
– reference: M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys.B 373 (1992) 630 [hep-th/9110053] [INSPIRE].
– reference: I.R. Klebanov and J.M. Maldacena, (1+1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys.A 16 (2001) 922 [hep-th/0006085] [INSPIRE].
– reference: J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE].
– reference: C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys.B 262 (1985) 593 [INSPIRE].
– reference: T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE].
– reference: BagchiAGopakumarRGalilean conformal algebras and AdS/CFTJHEP2009070372009JHEP...07..037B254507510.1088/1126-6708/2009/07/037[arXiv:0902.1385] [INSPIRE]
– reference: T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
– reference: E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018).
– reference: KlusoňJRemark about non-relativistic string in Newton-Cartan background and null reductionJHEP2018050412018JHEP...05..041K383272210.1007/JHEP05(2018)0411391.81167[arXiv:1803.07336] [INSPIRE]
– reference: KoSMMelby-ThompsonCMeyerRParkJ-HDynamics of perturbations in double field theory & non-relativistic string theoryJHEP2015121442015JHEP...12..144K34646581388.83020[arXiv:1508.01121] [INSPIRE]
– reference: L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].
– reference: J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS5 × S5, JHEP12 (2005) 024 [hep-th/0507036] [INSPIRE].
– reference: BatlleCGomisJNotDExtended Galilean symmetries of non-relativistic stringsJHEP2017020492017JHEP...02..049B363756510.1007/JHEP02(2017)0491377.83109[arXiv:1611.00026] [INSPIRE]
– reference: GomisJTownsendPKThe Galilean superstringJHEP2017021052017JHEP...02..105G363750910.1007/JHEP02(2017)1051377.83119[arXiv:1612.02759] [INSPIRE]
– reference: T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE].
– reference: A. Sen, D0-branes on Tnand matrix theory, Adv. Theor. Math. Phys.2 (1998) 51 [hep-th/9709220] [INSPIRE].
– reference: K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE].
– reference: AndringaRBergshoeffEGomisJde RooM‘Stringy’ Newton-Cartan gravityClass. Quant. Grav.2012292350202012CQGra..29w5020A300288210.1088/0264-9381/29/23/2350201258.83041[arXiv:1206.5176] [INSPIRE]
– reference: S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev.D 59 (1999) 125002 [hep-th/9711037] [INSPIRE].
– reference: BatlleCGomisJMezincescuLTownsendPKTachyons in the Galilean limitJHEP2017041202017JHEP...04..120B365014810.1007/JHEP04(2017)1201378.83079[arXiv:1702.04792] [INSPIRE]
– reference: J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].
– reference: DanielssonUHGuijosaAKruczenskiMIIA/B, wound and wrappedJHEP2000100202000JHEP...10..020D181145510.1088/1126-6708/2000/10/0200965.81056[hep-th/0009182] [INSPIRE]
– reference: D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Annals Phys.163 (1985) 318 [INSPIRE].
– reference: T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].
– reference: SeibergNWhy is the matrix model correct?Phys. Rev. Lett.19977935771997PhRvL..79.3577S148011410.1103/PhysRevLett.79.35770946.81062[hep-th/9710009] [INSPIRE]
– ident: 9441_CR22
  doi: 10.1016/0550-3213(92)90269-H
– volume: 79
  start-page: 3577
  year: 1997
  ident: 9441_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3577
– ident: 9441_CR15
  doi: 10.4310/ATMP.1998.v2.n1.a2
– ident: 9441_CR13
– ident: 9441_CR20
  doi: 10.1016/0003-4916(85)90384-7
– volume: 04
  start-page: 120
  year: 2017
  ident: 9441_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)120
– ident: 9441_CR4
  doi: 10.1088/1126-6708/2005/12/024
– volume: 29
  start-page: 235020
  year: 2012
  ident: 9441_CR5
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/23/235020
– volume: 02
  start-page: 105
  year: 2017
  ident: 9441_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)105
– ident: 9441_CR23
  doi: 10.1016/0370-2693(88)90602-8
– ident: 9441_CR26
  doi: 10.1140/epjc/s10052-017-5257-z
– ident: 9441_CR18
  doi: 10.1016/j.physletb.2004.05.024
– volume: 12
  start-page: 144
  year: 2015
  ident: 9441_CR25
  publication-title: JHEP
– ident: 9441_CR12
  doi: 10.1103/PhysRevD.55.5112
– volume: 02
  start-page: 049
  year: 2017
  ident: 9441_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)049
– ident: 9441_CR1
  doi: 10.1063/1.1372697
– ident: 9441_CR16
  doi: 10.1103/PhysRevD.59.125002
– volume: 07
  start-page: 037
  year: 2009
  ident: 9441_CR17
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/07/037
– ident: 9441_CR19
  doi: 10.1103/PhysRevD.73.085011
– ident: 9441_CR21
  doi: 10.1016/0550-3213(85)90506-1
– volume: 10
  start-page: 020
  year: 2000
  ident: 9441_CR3
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/10/020
– ident: 9441_CR6
  doi: 10.1007/JHEP11(2018)133
– volume: 05
  start-page: 041
  year: 2018
  ident: 9441_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)041
– ident: 9441_CR2
  doi: 10.1142/S0217751X01004001
– ident: 9441_CR24
  doi: 10.1016/0370-2693(87)90769-6
– ident: 9441_CR10
  doi: 10.1103/PhysRevD.96.086019
SSID ssj0015190
Score 2.6489077
Snippet A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting...
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the...
Abstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Big Bang theory
Bosonic Strings
Classical and Quantum Gravitation
Classical Theories of Gravity
Dilatons
Elementary Particles
Field theory
First principles
Geometry
High energy physics
M theory
Mathematical analysis
Matrix methods
Matrix theory
Measurement
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Relativistic theory
Relativity
Relativity Theory
Sigma Models
Spacetime
String Duality
String Theory
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP7E6pQcPGxKXJm2SHlU2hoexw4TdQpofIkgn2xzsvzdJ2-kE8eI1Tcvje0m-lybvewDcSEZpjpGGxiALU0UtlEgZmPl_FriwbhaqUGyCjUZ8Os3H30p9-TthlTxwBVwvkxpTk3O3TeCpIURyY2UhEbZZ7uhJ-9UXsbzZTNXnBy4uQY2QD2K9p2F_nCQdR3a8mxCyxUFBqn8rvvxxJBqYZnAIDuoQMb6vTDsCO6Y8BnvhqqZanIDb0aysMlBWQWQ59pU3ypc4pCSuY1nqeAJ1yJVcn4LnQX_yOIR1yQOo0oQtYZpq7DaNWpFUMUfdJksttm5xVBnXtrCM2pxrLZm1qiDGNRbG6-sobrkjFkPOQKucleYcxF4Ijzq6xlryFEteEJ1paiWVjCeI6wjcNSAIVeuB-7IUb6JRMq5QEx414VCLQGfzwnslhfF71weP6qab17AODc6zovas-MuzEWg3PhH1xFoInBDmQhyKUQS6jZ--Hv9iz8V_2HMJ9v33qkTENmgt5x_mCuyq1fJ1Mb8O4-8TfMbcbg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Fbz4LU6n9OBhQ6Jt0ibpSVQ2hoexw4ThpaT5GIK0c5uD_fcmabsxYV68pkl5vJe89_Lxfj8AbjklJEa-hEr5GoaCaMh9oWBkzyxQqs0qFI5sgvZ6bDiM--WB27R8Vln5ROeoZS7sGfkDCjA1sY0g_3H8BS1rlL1dLSk0tsGORUmw1A396H15i2CyE7-C8_Hpw2u33Q-Cpgl5rBVgvBaJHGD_Wpb562LUxZvO4X8lPQIHZabpPRVT4xhsqewE7LkXn2J6Cu56eVYUsswdVrNnCTyykecqGxcez6Q3gNKVXC7OwFunPXjpwpI5AYowoDMYhhKZvacUOBTUZAAqCjXSxseKiEmdakp0zKTkVGuRYmUaU2VhegTTzMQnhc9BLcszdQE8i6dHTNRHkrMQcZZiGUmiOeGUBT6TdXBfaTERJay4Zbf4TCpA5ELtiVV7YtReB83lgHGBqLG567M1y7KbhcJ2DflklJQrK4m4RETFzOwjWagw5kxpnnIf6Sg2-YsRsFGZKSnX5zRZ2agOWpWhV583yHP596-uwL7tWVQqNkBtNvlW12BXzGcf08mNm5o_3qXqRw
  priority: 102
  providerName: ProQuest
Title Nonrelativistic string theory and T-duality
URI https://link.springer.com/article/10.1007/JHEP11(2018)133
https://www.proquest.com/docview/2137091620
https://doaj.org/article/5ad26e9824984e33a8efaba02f59218d
Volume 2018
WOSCitedRecordID wos000451010100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qVfDiW6zWkoOHikSSTbLZHLW0qGAJUkG9hM0-iiCptFXw3zu7SRSVHvQSwj5gmX3MzM5-3wAc85jShHjSVcrTbiiodrknlBuZOwuSa9yFwiabiIdDdn-fpA3wayyMfe1ehyTtSV2D3a4v-6nvd1FhsRN0rJZgOfJZYl7x9QzAoQocoEHi1Qw-vzt9Uz6Wo_-bYfkjFmpVzGDjH4PbhPXKnnTOywWwBQ1VbMOqfdcpZjtwOpwUJVzlzTIyOyZNRzF2LH7x3eGFdEautMDK9124G_RHvUu3yo_gitCP524YSoIephRBKGLU8yoKNdF4koqISZ3rmOqEScljrUUeKCzMlSHjEUwz1EIq2INmMSnUPjiGNY-ibieSs5BwlgcyklRzymPme0y24KwWXCYq8nCTw-I5q2mPSwlkRgIZSqAF3c8OLyVvxuKmF2YmPpsZwmtbMJmOs2r_ZBGXhKqEobfIQhUEnCnNc-4RHSVopeAA2_U8ZtUunGXED2K0hyjxWnBSz9tX9YLxHPyh7SGsmd8SnNiG5nz6qo5gRbzNn2bTDixf9Ifpbccu0Y519_GbRo9Yk17dpA8fn-vjIg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7R0Ipe-gSRlrZ7aCVQZdi1vbb3UFWFgpICUQ6pBCfj9QMhoQ1NUqr8qf7G2t7dICrRG4devbZl7XyeGXs83wC8V5yxAqcGWZs6RDVzSKXaojzcWeDS-V2oY7EJPhiIk5NiuAS_21yY8Kyy1YlRUZuxDnfkOzgj3Ns2htPPVz9QqBoVoqttCY0aFod2_ssf2aaf-l-9fD9gfLA_2uuhpqoA0jTjM0Spwf5cZjShmnvraHPqsPP6R-fCuNJx5gphjOLO6ZJY31jaQGGjhRNed1vi530AyzSAvQPLw_7x8HQRt_D-UNoSCKV851tvf5hlm97Iiq2MkFu2L5YIuOXX_hWKjRbu4On_9m-ewZPGl06-1OB_Dku2egGP4ptWPX0JHwfjqk7VuY5s1EkoUVKdJzF3c56oyiQjZGJS6XwVvt_LStegU40ruw5JYAxk3q_BRgmKlSiJyQ1ziikuslSYLmy3UpO6IU4P9TsuZUv5XItZBjFLL-YubC4GXNWcIXd33Q0wWHQLZN-xYTw5l43ukLkymNlC-JOyoJYQJaxTpUqxywvvofkFbrSwkI0GmsobTHRhqwXWzec71vPq31O9g5Xe6PhIHvUHh6_hcRhV52VuQGc2-WnfwEN9PbuYTt42GyOBs_vG2x-HRUwy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ8gKvEFv8Mh6j5oAjH1dtvdtvtAjAoXEHO5B0yIL7XbD0JC9vDugNy_xl_ntLt7BBN848HXbts0O9P56Mz8BuCdFpyXNLXEudST3HBPdGocKcKbBa083kITm02I4VAeHZWjJbjqamFCWmUnE6OgtmMT3sj7NGMCdRunad-3aRGjncGns98kdJAKkdaunUbDIgdufonu23R7fwdp_Z7Swe7h1z3SdhggJs_EjOS5peijWcNyI1BTuiL31KMsMoW0vvKC-1Jaq4X3pmIOBysX4GyM9BLluGO47z24L9DHDOmEo-LnIoKBllHaQQmlov9tb3eUZZuobuVWxtgNLRibBdywcP8KykZdN3j8P_-lJ7DaWtjJ5-ZKPIUlVz-DhzHT1Uyfw4fhuG4KeC4iRnUSGpfUx0ms6JwnurbJIbGx1HT-An7cyUlfwnI9rt0aJAFHkKO1Q62WOdWyYraw3GuuhcxSaXvwsaOgMi2ceujqcao6IOiG5CqQXCHJe7C5WHDWIIncPvVLYInFtAABHgfGk2PVShRVaEu5KyX6zzJ3jGnpvK50Sn1Rot2GB9zoWES1cmmqrvmjB1sdk11_vuU86__e6i2sIJOp7_vDg1fwKCxqijU3YHk2OXev4YG5mJ1MJ2_iDUng110z2x80eFOV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonrelativistic+string+theory+and+T-duality&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bergshoeff%2C+Eric&rft.au=Gomis%2C+Jaume&rft.au=Yan%2C+Ziqi&rft.date=2018-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2018&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282018%29133&rft.externalDocID=10_1007_JHEP11_2018_133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon