Nonrelativistic string theory and T-duality
A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enj...
Uloženo v:
| Vydáno v: | The journal of high energy physics Ročník 2018; číslo 11; s. 1 - 23 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2018
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A
bstract
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. |
|---|---|
| AbstractList | A
bstract
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. Abstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. |
| ArticleNumber | 133 |
| Author | Bergshoeff, Eric Gomis, Jaume Yan, Ziqi |
| Author_xml | – sequence: 1 givenname: Eric surname: Bergshoeff fullname: Bergshoeff, Eric organization: Van Swinderen Institute, University of Groningen – sequence: 2 givenname: Jaume surname: Gomis fullname: Gomis, Jaume organization: Perimeter Institute for Theoretical Physics – sequence: 3 givenname: Ziqi orcidid: 0000-0002-9434-5397 surname: Yan fullname: Yan, Ziqi email: zyan@pitp.ca organization: Perimeter Institute for Theoretical Physics |
| BookMark | eNp1kEtLAzEURoNUsK2u3Q64UWRsXtNJllKqrRR1Udchk0dNGSc1SYX-e6eOoghd3cvlno-PMwC9xjcGgHMEbxCE5ehhNn1G6BJDxK4QIUegjyDmOaMl7_3ZT8AgxjWEqEAc9sH1o2-CqWVyHy4mp7KYgmtWWXo1Puwy2ehsmeutrF3anYJjK-tozr7nELzcTZeTWb54up9Pbhe5oqhMOaUaE8K0IlSVGGNTUIutkUoVTNvKlmPLmdaytFZVxLTHykBaMsUsw5wbMgTzLld7uRab4N5k2Akvnfg6-LASMrRdayMKqfHYcIYpZ9QQIpmxspIQ24JjxHSbddFlbYJ_35qYxNpvQ9PWFxiREnI0xrD9KrovFXyMwVihXGqd-CYF6WqBoNg7Fp1jsXcsWsctN_rH_bQ9TMCOiJu9ZxN--xxCPgGN2I5y |
| CitedBy_id | crossref_primary_10_1007_JHEP12_2021_068 crossref_primary_10_1007_JHEP03_2020_181 crossref_primary_10_1007_JHEP06_2020_145 crossref_primary_10_1007_JHEP09_2019_015 crossref_primary_10_1007_JHEP03_2021_269 crossref_primary_10_1007_JHEP08_2022_218 crossref_primary_10_1007_JHEP07_2020_083 crossref_primary_10_1088_1572_9494_adc40e crossref_primary_10_1007_JHEP09_2024_087 crossref_primary_10_1007_JHEP08_2025_025 crossref_primary_10_1016_j_aop_2025_170138 crossref_primary_10_1007_JHEP01_2023_165 crossref_primary_10_1007_JHEP08_2019_074 crossref_primary_10_1007_JHEP11_2023_053 crossref_primary_10_1007_JHEP02_2020_009 crossref_primary_10_1007_JHEP02_2025_024 crossref_primary_10_1007_JHEP11_2023_135 crossref_primary_10_1007_JHEP09_2021_035 crossref_primary_10_1007_JHEP10_2019_101 crossref_primary_10_1007_JHEP10_2019_266 crossref_primary_10_1007_JHEP11_2019_071 crossref_primary_10_1140_epjc_s10052_023_12085_7 crossref_primary_10_1007_JHEP02_2021_188 crossref_primary_10_1007_JHEP09_2020_172 crossref_primary_10_1140_epjc_s10052_020_8112_6 crossref_primary_10_1007_JHEP02_2022_191 crossref_primary_10_1007_JHEP07_2019_175 crossref_primary_10_1007_JHEP09_2019_109 crossref_primary_10_1007_JHEP05_2020_024 crossref_primary_10_1007_JHEP08_2025_139 crossref_primary_10_1007_JHEP06_2021_021 crossref_primary_10_1007_JHEP09_2022_237 crossref_primary_10_1007_JHEP05_2025_199 crossref_primary_10_1007_JHEP06_2022_017 crossref_primary_10_1007_JHEP01_2019_178 crossref_primary_10_1007_JHEP10_2019_153 crossref_primary_10_1088_1751_8121_ad72be crossref_primary_10_1007_JHEP04_2019_117 crossref_primary_10_1007_JHEP04_2022_161 crossref_primary_10_1007_JHEP06_2020_120 crossref_primary_10_1007_JHEP09_2025_021 crossref_primary_10_1007_JHEP04_2022_068 crossref_primary_10_1088_1402_4896_acab3e crossref_primary_10_1007_JHEP06_2019_072 crossref_primary_10_1007_JHEP12_2021_123 crossref_primary_10_1088_1751_8121_ab56e9 crossref_primary_10_1007_JHEP11_2018_133 crossref_primary_10_1142_S0217751X24500313 crossref_primary_10_1007_JHEP04_2021_186 crossref_primary_10_1007_JHEP03_2021_129 crossref_primary_10_1007_JHEP04_2023_075 crossref_primary_10_1007_JHEP06_2020_160 crossref_primary_10_1103_PhysRevD_111_026003 crossref_primary_10_1007_JHEP11_2022_152 crossref_primary_10_1007_JHEP06_2021_173 crossref_primary_10_1007_JHEP09_2022_007 crossref_primary_10_1007_JHEP12_2024_010 crossref_primary_10_1140_epjc_s10052_020_7688_1 crossref_primary_10_1007_JHEP10_2021_015 crossref_primary_10_1007_JHEP04_2019_163 crossref_primary_10_1007_JHEP05_2025_200 crossref_primary_10_1007_JHEP02_2022_116 crossref_primary_10_1007_JHEP06_2021_057 crossref_primary_10_1007_JHEP07_2020_069 crossref_primary_10_1007_JHEP02_2021_087 crossref_primary_10_1016_j_physletb_2025_139837 crossref_primary_10_1007_JHEP02_2020_109 crossref_primary_10_1007_JHEP07_2024_102 crossref_primary_10_1007_JHEP02_2023_153 crossref_primary_10_1007_JHEP12_2023_022 crossref_primary_10_1140_epjc_s10052_020_7648_9 crossref_primary_10_1007_JHEP03_2023_008 crossref_primary_10_1007_JHEP10_2022_131 crossref_primary_10_1007_JHEP07_2024_286 crossref_primary_10_1007_JHEP12_2023_141 crossref_primary_10_1007_JHEP06_2022_080 crossref_primary_10_1007_JHEP01_2024_146 crossref_primary_10_1007_JHEP09_2019_002 crossref_primary_10_1007_JHEP10_2020_066 crossref_primary_10_1007_JHEP09_2020_191 crossref_primary_10_1007_JHEP04_2025_169 crossref_primary_10_1007_JHEP04_2021_072 crossref_primary_10_1140_epjc_s10052_022_10255_7 crossref_primary_10_1007_JHEP08_2019_048 crossref_primary_10_1007_JHEP08_2022_096 crossref_primary_10_1007_JHEP03_2024_002 crossref_primary_10_1103_PhysRevResearch_4_033186 crossref_primary_10_1088_1361_6382_acbe8c crossref_primary_10_1007_JHEP01_2022_081 crossref_primary_10_1007_JHEP09_2025_125 crossref_primary_10_1007_JHEP10_2024_096 crossref_primary_10_1007_JHEP07_2020_175 |
| Cites_doi | 10.1016/0550-3213(92)90269-H 10.1103/PhysRevLett.79.3577 10.4310/ATMP.1998.v2.n1.a2 10.1016/0003-4916(85)90384-7 10.1007/JHEP04(2017)120 10.1088/1126-6708/2005/12/024 10.1088/0264-9381/29/23/235020 10.1007/JHEP02(2017)105 10.1016/0370-2693(88)90602-8 10.1140/epjc/s10052-017-5257-z 10.1016/j.physletb.2004.05.024 10.1103/PhysRevD.55.5112 10.1007/JHEP02(2017)049 10.1063/1.1372697 10.1103/PhysRevD.59.125002 10.1088/1126-6708/2009/07/037 10.1103/PhysRevD.73.085011 10.1016/0550-3213(85)90506-1 10.1088/1126-6708/2000/10/020 10.1007/JHEP11(2018)133 10.1007/JHEP05(2018)041 10.1142/S0217751X01004001 10.1016/0370-2693(87)90769-6 10.1103/PhysRevD.96.086019 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/JHEP11(2018)133 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_5ad26e9824984e33a8efaba02f59218d 10_1007_JHEP11_2018_133 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFFHD AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c417t-44d2338dc34c7222e54f2feacc58dfbf76f98dda7ffcb3e58dbe0478c8f8299e3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451010100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Mon Nov 10 04:36:09 EST 2025 Sat Oct 18 22:48:01 EDT 2025 Tue Nov 18 21:51:08 EST 2025 Sat Nov 29 06:03:10 EST 2025 Fri Feb 21 02:29:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Classical Theories of Gravity Sigma Models String Duality Bosonic Strings |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-44d2338dc34c7222e54f2feacc58dfbf76f98dda7ffcb3e58dbe0478c8f8299e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9434-5397 |
| OpenAccessLink | https://link.springer.com/10.1007/JHEP11(2018)133 |
| PQID | 2137091620 |
| PQPubID | 2034718 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5ad26e9824984e33a8efaba02f59218d proquest_journals_2137091620 crossref_citationtrail_10_1007_JHEP11_2018_133 crossref_primary_10_1007_JHEP11_2018_133 springer_journals_10_1007_JHEP11_2018_133 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE]. S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev.D 59 (1999) 125002 [hep-th/9711037] [INSPIRE]. L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE]. T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE]. T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE]. GomisJTownsendPKThe Galilean superstringJHEP2017021052017JHEP...02..105G363750910.1007/JHEP02(2017)1051377.83119[arXiv:1612.02759] [INSPIRE] K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE]. I.R. Klebanov and J.M. Maldacena, (1+1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys.A 16 (2001) 922 [hep-th/0006085] [INSPIRE]. E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018). C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys.B 262 (1985) 593 [INSPIRE]. SeibergNWhy is the matrix model correct?Phys. Rev. Lett.19977935771997PhRvL..79.3577S148011410.1103/PhysRevLett.79.35770946.81062[hep-th/9710009] [INSPIRE] J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE]. J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS5 × S5, JHEP12 (2005) 024 [hep-th/0507036] [INSPIRE]. M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys.B 373 (1992) 630 [hep-th/9110053] [INSPIRE]. DanielssonUHGuijosaAKruczenskiMIIA/B, wound and wrappedJHEP2000100202000JHEP...10..020D181145510.1088/1126-6708/2000/10/0200965.81056[hep-th/0009182] [INSPIRE] BagchiAGopakumarRGalilean conformal algebras and AdS/CFTJHEP2009070372009JHEP...07..037B254507510.1088/1126-6708/2009/07/037[arXiv:0902.1385] [INSPIRE] AndringaRBergshoeffEGomisJde RooM‘Stringy’ Newton-Cartan gravityClass. Quant. Grav.2012292350202012CQGra..29w5020A300288210.1088/0264-9381/29/23/2350201258.83041[arXiv:1206.5176] [INSPIRE] T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE]. KlusoňJRemark about non-relativistic string in Newton-Cartan background and null reductionJHEP2018050412018JHEP...05..041K383272210.1007/JHEP05(2018)0411391.81167[arXiv:1803.07336] [INSPIRE] A. Sen, D0-branes on Tnand matrix theory, Adv. Theor. Math. Phys.2 (1998) 51 [hep-th/9709220] [INSPIRE]. KoSMMelby-ThompsonCMeyerRParkJ-HDynamics of perturbations in double field theory & non-relativistic string theoryJHEP2015121442015JHEP...12..144K34646581388.83020[arXiv:1508.01121] [INSPIRE] J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE]. BatlleCGomisJMezincescuLTownsendPKTachyons in the Galilean limitJHEP2017041202017JHEP...04..120B365014810.1007/JHEP04(2017)1201378.83079[arXiv:1702.04792] [INSPIRE] BatlleCGomisJNotDExtended Galilean symmetries of non-relativistic stringsJHEP2017020492017JHEP...02..049B363756510.1007/JHEP02(2017)0491377.83109[arXiv:1611.00026] [INSPIRE] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE]. D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Annals Phys.163 (1985) 318 [INSPIRE]. 9441_CR21 9441_CR6 9441_CR20 9441_CR23 9441_CR22 N Seiberg (9441_CR14) 1997; 79 J Gomis (9441_CR8) 2017; 02 9441_CR24 J Klusoň (9441_CR11) 2018; 05 9441_CR26 UH Danielsson (9441_CR3) 2000; 10 9441_CR10 R Andringa (9441_CR5) 2012; 29 9441_CR12 9441_CR18 SM Ko (9441_CR25) 2015; 12 A Bagchi (9441_CR17) 2009; 07 9441_CR19 9441_CR13 9441_CR16 9441_CR15 C Batlle (9441_CR9) 2017; 04 C Batlle (9441_CR7) 2017; 02 9441_CR1 9441_CR2 9441_CR4 |
| References_xml | – reference: J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE]. – reference: M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys.B 373 (1992) 630 [hep-th/9110053] [INSPIRE]. – reference: I.R. Klebanov and J.M. Maldacena, (1+1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys.A 16 (2001) 922 [hep-th/0006085] [INSPIRE]. – reference: J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE]. – reference: C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys.B 262 (1985) 593 [INSPIRE]. – reference: T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE]. – reference: BagchiAGopakumarRGalilean conformal algebras and AdS/CFTJHEP2009070372009JHEP...07..037B254507510.1088/1126-6708/2009/07/037[arXiv:0902.1385] [INSPIRE] – reference: T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE]. – reference: E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018). – reference: KlusoňJRemark about non-relativistic string in Newton-Cartan background and null reductionJHEP2018050412018JHEP...05..041K383272210.1007/JHEP05(2018)0411391.81167[arXiv:1803.07336] [INSPIRE] – reference: KoSMMelby-ThompsonCMeyerRParkJ-HDynamics of perturbations in double field theory & non-relativistic string theoryJHEP2015121442015JHEP...12..144K34646581388.83020[arXiv:1508.01121] [INSPIRE] – reference: L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE]. – reference: J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS5 × S5, JHEP12 (2005) 024 [hep-th/0507036] [INSPIRE]. – reference: BatlleCGomisJNotDExtended Galilean symmetries of non-relativistic stringsJHEP2017020492017JHEP...02..049B363756510.1007/JHEP02(2017)0491377.83109[arXiv:1611.00026] [INSPIRE] – reference: GomisJTownsendPKThe Galilean superstringJHEP2017021052017JHEP...02..105G363750910.1007/JHEP02(2017)1051377.83119[arXiv:1612.02759] [INSPIRE] – reference: T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE]. – reference: A. Sen, D0-branes on Tnand matrix theory, Adv. Theor. Math. Phys.2 (1998) 51 [hep-th/9709220] [INSPIRE]. – reference: K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE]. – reference: AndringaRBergshoeffEGomisJde RooM‘Stringy’ Newton-Cartan gravityClass. Quant. Grav.2012292350202012CQGra..29w5020A300288210.1088/0264-9381/29/23/2350201258.83041[arXiv:1206.5176] [INSPIRE] – reference: S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev.D 59 (1999) 125002 [hep-th/9711037] [INSPIRE]. – reference: BatlleCGomisJMezincescuLTownsendPKTachyons in the Galilean limitJHEP2017041202017JHEP...04..120B365014810.1007/JHEP04(2017)1201378.83079[arXiv:1702.04792] [INSPIRE] – reference: J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE]. – reference: DanielssonUHGuijosaAKruczenskiMIIA/B, wound and wrappedJHEP2000100202000JHEP...10..020D181145510.1088/1126-6708/2000/10/0200965.81056[hep-th/0009182] [INSPIRE] – reference: D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Annals Phys.163 (1985) 318 [INSPIRE]. – reference: T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE]. – reference: SeibergNWhy is the matrix model correct?Phys. Rev. Lett.19977935771997PhRvL..79.3577S148011410.1103/PhysRevLett.79.35770946.81062[hep-th/9710009] [INSPIRE] – ident: 9441_CR22 doi: 10.1016/0550-3213(92)90269-H – volume: 79 start-page: 3577 year: 1997 ident: 9441_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.3577 – ident: 9441_CR15 doi: 10.4310/ATMP.1998.v2.n1.a2 – ident: 9441_CR13 – ident: 9441_CR20 doi: 10.1016/0003-4916(85)90384-7 – volume: 04 start-page: 120 year: 2017 ident: 9441_CR9 publication-title: JHEP doi: 10.1007/JHEP04(2017)120 – ident: 9441_CR4 doi: 10.1088/1126-6708/2005/12/024 – volume: 29 start-page: 235020 year: 2012 ident: 9441_CR5 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/23/235020 – volume: 02 start-page: 105 year: 2017 ident: 9441_CR8 publication-title: JHEP doi: 10.1007/JHEP02(2017)105 – ident: 9441_CR23 doi: 10.1016/0370-2693(88)90602-8 – ident: 9441_CR26 doi: 10.1140/epjc/s10052-017-5257-z – ident: 9441_CR18 doi: 10.1016/j.physletb.2004.05.024 – volume: 12 start-page: 144 year: 2015 ident: 9441_CR25 publication-title: JHEP – ident: 9441_CR12 doi: 10.1103/PhysRevD.55.5112 – volume: 02 start-page: 049 year: 2017 ident: 9441_CR7 publication-title: JHEP doi: 10.1007/JHEP02(2017)049 – ident: 9441_CR1 doi: 10.1063/1.1372697 – ident: 9441_CR16 doi: 10.1103/PhysRevD.59.125002 – volume: 07 start-page: 037 year: 2009 ident: 9441_CR17 publication-title: JHEP doi: 10.1088/1126-6708/2009/07/037 – ident: 9441_CR19 doi: 10.1103/PhysRevD.73.085011 – ident: 9441_CR21 doi: 10.1016/0550-3213(85)90506-1 – volume: 10 start-page: 020 year: 2000 ident: 9441_CR3 publication-title: JHEP doi: 10.1088/1126-6708/2000/10/020 – ident: 9441_CR6 doi: 10.1007/JHEP11(2018)133 – volume: 05 start-page: 041 year: 2018 ident: 9441_CR11 publication-title: JHEP doi: 10.1007/JHEP05(2018)041 – ident: 9441_CR2 doi: 10.1142/S0217751X01004001 – ident: 9441_CR24 doi: 10.1016/0370-2693(87)90769-6 – ident: 9441_CR10 doi: 10.1103/PhysRevD.96.086019 |
| SSID | ssj0015190 |
| Score | 2.6489077 |
| Snippet | A
bstract
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting... Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the... Abstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Big Bang theory Bosonic Strings Classical and Quantum Gravitation Classical Theories of Gravity Dilatons Elementary Particles Field theory First principles Geometry High energy physics M theory Mathematical analysis Matrix methods Matrix theory Measurement Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativistic theory Relativity Relativity Theory Sigma Models Spacetime String Duality String Theory Symmetry |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP7E6pQcPGxKXJm2SHlU2hoexw4TdQpofIkgn2xzsvzdJ2-kE8eI1Tcvje0m-lybvewDcSEZpjpGGxiALU0UtlEgZmPl_FriwbhaqUGyCjUZ8Os3H30p9-TthlTxwBVwvkxpTk3O3TeCpIURyY2UhEbZZ7uhJ-9UXsbzZTNXnBy4uQY2QD2K9p2F_nCQdR3a8mxCyxUFBqn8rvvxxJBqYZnAIDuoQMb6vTDsCO6Y8BnvhqqZanIDb0aysMlBWQWQ59pU3ypc4pCSuY1nqeAJ1yJVcn4LnQX_yOIR1yQOo0oQtYZpq7DaNWpFUMUfdJksttm5xVBnXtrCM2pxrLZm1qiDGNRbG6-sobrkjFkPOQKucleYcxF4Ijzq6xlryFEteEJ1paiWVjCeI6wjcNSAIVeuB-7IUb6JRMq5QEx414VCLQGfzwnslhfF71weP6qab17AODc6zovas-MuzEWg3PhH1xFoInBDmQhyKUQS6jZ--Hv9iz8V_2HMJ9v33qkTENmgt5x_mCuyq1fJ1Mb8O4-8TfMbcbg priority: 102 providerName: Directory of Open Access Journals – databaseName: AAdvanced Technologies & Aerospace Database (subscription) dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Fbz4LU6n9OBhQ6Jt0ibpSVQ2hoexw4ThpaT5GIK0c5uD_fcmabsxYV68pkl5vJe89_Lxfj8AbjklJEa-hEr5GoaCaMh9oWBkzyxQqs0qFI5sgvZ6bDiM--WB27R8Vln5ROeoZS7sGfkDCjA1sY0g_3H8BS1rlL1dLSk0tsGORUmw1A396H15i2CyE7-C8_Hpw2u33Q-Cpgl5rBVgvBaJHGD_Wpb562LUxZvO4X8lPQIHZabpPRVT4xhsqewE7LkXn2J6Cu56eVYUsswdVrNnCTyykecqGxcez6Q3gNKVXC7OwFunPXjpwpI5AYowoDMYhhKZvacUOBTUZAAqCjXSxseKiEmdakp0zKTkVGuRYmUaU2VhegTTzMQnhc9BLcszdQE8i6dHTNRHkrMQcZZiGUmiOeGUBT6TdXBfaTERJay4Zbf4TCpA5ELtiVV7YtReB83lgHGBqLG567M1y7KbhcJ2DflklJQrK4m4RETFzOwjWagw5kxpnnIf6Sg2-YsRsFGZKSnX5zRZ2agOWpWhV583yHP596-uwL7tWVQqNkBtNvlW12BXzGcf08mNm5o_3qXqRw priority: 102 providerName: ProQuest |
| Title | Nonrelativistic string theory and T-duality |
| URI | https://link.springer.com/article/10.1007/JHEP11(2018)133 https://www.proquest.com/docview/2137091620 https://doaj.org/article/5ad26e9824984e33a8efaba02f59218d |
| Volume | 2018 |
| WOSCitedRecordID | wos000451010100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qVfDiW6zWkoOHikSSTbLZHLW0qGAJUkG9hM0-iiCptFXw3zu7SRSVHvQSwj5gmX3MzM5-3wAc85jShHjSVcrTbiiodrknlBuZOwuSa9yFwiabiIdDdn-fpA3wayyMfe1ehyTtSV2D3a4v-6nvd1FhsRN0rJZgOfJZYl7x9QzAoQocoEHi1Qw-vzt9Uz6Wo_-bYfkjFmpVzGDjH4PbhPXKnnTOywWwBQ1VbMOqfdcpZjtwOpwUJVzlzTIyOyZNRzF2LH7x3eGFdEautMDK9124G_RHvUu3yo_gitCP524YSoIephRBKGLU8yoKNdF4koqISZ3rmOqEScljrUUeKCzMlSHjEUwz1EIq2INmMSnUPjiGNY-ibieSs5BwlgcyklRzymPme0y24KwWXCYq8nCTw-I5q2mPSwlkRgIZSqAF3c8OLyVvxuKmF2YmPpsZwmtbMJmOs2r_ZBGXhKqEobfIQhUEnCnNc-4RHSVopeAA2_U8ZtUunGXED2K0hyjxWnBSz9tX9YLxHPyh7SGsmd8SnNiG5nz6qo5gRbzNn2bTDixf9Ifpbccu0Y519_GbRo9Yk17dpA8fn-vjIg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7R0Ipe-gSRlrZ7aCVQZdi1vbb3UFWFgpICUQ6pBCfj9QMhoQ1NUqr8qf7G2t7dICrRG4devbZl7XyeGXs83wC8V5yxAqcGWZs6RDVzSKXaojzcWeDS-V2oY7EJPhiIk5NiuAS_21yY8Kyy1YlRUZuxDnfkOzgj3Ns2htPPVz9QqBoVoqttCY0aFod2_ssf2aaf-l-9fD9gfLA_2uuhpqoA0jTjM0Spwf5cZjShmnvraHPqsPP6R-fCuNJx5gphjOLO6ZJY31jaQGGjhRNed1vi530AyzSAvQPLw_7x8HQRt_D-UNoSCKV851tvf5hlm97Iiq2MkFu2L5YIuOXX_hWKjRbu4On_9m-ewZPGl06-1OB_Dku2egGP4ptWPX0JHwfjqk7VuY5s1EkoUVKdJzF3c56oyiQjZGJS6XwVvt_LStegU40ruw5JYAxk3q_BRgmKlSiJyQ1ziikuslSYLmy3UpO6IU4P9TsuZUv5XItZBjFLL-YubC4GXNWcIXd33Q0wWHQLZN-xYTw5l43ukLkymNlC-JOyoJYQJaxTpUqxywvvofkFbrSwkI0GmsobTHRhqwXWzec71vPq31O9g5Xe6PhIHvUHh6_hcRhV52VuQGc2-WnfwEN9PbuYTt42GyOBs_vG2x-HRUwy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ8gKvEFv8Mh6j5oAjH1dtvdtvtAjAoXEHO5B0yIL7XbD0JC9vDugNy_xl_ntLt7BBN848HXbts0O9P56Mz8BuCdFpyXNLXEudST3HBPdGocKcKbBa083kITm02I4VAeHZWjJbjqamFCWmUnE6OgtmMT3sj7NGMCdRunad-3aRGjncGns98kdJAKkdaunUbDIgdufonu23R7fwdp_Z7Swe7h1z3SdhggJs_EjOS5peijWcNyI1BTuiL31KMsMoW0vvKC-1Jaq4X3pmIOBysX4GyM9BLluGO47z24L9DHDOmEo-LnIoKBllHaQQmlov9tb3eUZZuobuVWxtgNLRibBdywcP8KykZdN3j8P_-lJ7DaWtjJ5-ZKPIUlVz-DhzHT1Uyfw4fhuG4KeC4iRnUSGpfUx0ms6JwnurbJIbGx1HT-An7cyUlfwnI9rt0aJAFHkKO1Q62WOdWyYraw3GuuhcxSaXvwsaOgMi2ceujqcao6IOiG5CqQXCHJe7C5WHDWIIncPvVLYInFtAABHgfGk2PVShRVaEu5KyX6zzJ3jGnpvK50Sn1Rot2GB9zoWES1cmmqrvmjB1sdk11_vuU86__e6i2sIJOp7_vDg1fwKCxqijU3YHk2OXev4YG5mJ1MJ2_iDUng110z2x80eFOV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonrelativistic+string+theory+and+T-duality&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bergshoeff%2C+Eric&rft.au=Gomis%2C+Jaume&rft.au=Yan%2C+Ziqi&rft.date=2018-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2018&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282018%29133&rft.externalDocID=10_1007_JHEP11_2018_133 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |