Nonrelativistic string theory and T-duality
A bstract Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enj...
Uložené v:
| Vydané v: | The journal of high energy physics Ročník 2018; číslo 11; s. 1 - 23 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2018
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A
bstract
Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-8479 1029-8479 |
| DOI: | 10.1007/JHEP11(2018)133 |