Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid
[Display omitted] •Efficient conversion of glycerol to lactate with concomitant transfer to various H2 acceptors.•A bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic counterparts.•The NiCo/CeO2 catalyst achieved very high yield of lactic acid salt (93%) at 97% glycerol...
Saved in:
| Published in: | Applied catalysis. B, Environmental Vol. 263; p. 118273 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0926-3373, 1873-3883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Efficient conversion of glycerol to lactate with concomitant transfer to various H2 acceptors.•A bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic counterparts.•The NiCo/CeO2 catalyst achieved very high yield of lactic acid salt (93%) at 97% glycerol conversion.•The NiCo/CeO2 catalyst also gave high activity and selectivity in the transfer hydrogenation.
Bimetallic Ni-Co catalysts supported on nanosized CeO2 were prepared and investigated as heterogeneous catalysts for the transfer hydrogenation between glycerol and various H2 acceptors (levulinic acid, benzene, nitrobenzene, 1-decene, cyclohexene) to selectively produce lactic acid (salt) and the target hydrogenated compound. The bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic Ni or Co counterparts (with equal total metal mass), thus indicating strong synergetic effects. The interaction between the metallic sites and the CeO2 support was thoroughly characterised by means of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX) mapping, X-ray photoelectron spectroscopy (XPS), hydrogen-temperature programmed reduction (H2-TPR) and X-ray diffraction (XRD). Combining characterisation and catalytic results proved that the Ni species are intrinsically more active than Co species, but that incorporating Co into the catalyst formulation prevented the formation of large Ni particles and led to highly dispersed metal nanoparticles on CeO2, thus leading to the observed enhanced activity for the bimetallic system. The highest yield of lactic acid (salt) achieved in this work was 93% at 97% glycerol conversion (160 °C, 6.5 h at 20 bar N2, NaOH: glycerol = 1.5). The NiCo/CeO2 catalyst also exhibited high activity and selectivity towards the target hydrogenated products in the transfer hydrogenation reactions between glycerol and various H2 acceptors. Batch recycle experiments showed good reusability, with retention of 80% of the original activity after 5 runs. |
|---|---|
| AbstractList | Bimetallic Ni-Co catalysts supported on nanosized CeO2 were prepared and investigated as heterogeneous catalysts for the transfer hydrogenation between glycerol and various H2 acceptors (levulinic acid, benzene, nitrobenzene, 1-decene, cyclohexene) to selectively produce lactic acid (salt) and the target hydrogenated compound. The bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic Ni or Co counterparts (with equal total metal mass), thus indicating strong synergetic effects. The interaction between the metallic sites and the CeO2 support was thoroughly characterised by means of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX) mapping, X-ray photoelectron spectroscopy (XPS), hydrogen-temperature programmed reduction (H2-TPR) and X-ray diffraction (XRD). Combining characterisation and catalytic results proved that the Ni species are intrinsically more active than Co species, but that incorporating Co into the catalyst formulation prevented the formation of large Ni particles and led to highly dispersed metal nanoparticles on CeO2, thus leading to the observed enhanced activity for the bimetallic system. The highest yield of lactic acid (salt) achieved in this work was 93% at 97% glycerol conversion (160 °C, 6.5 h at 20 bar N2, NaOH: glycerol = 1.5). The NiCo/CeO2 catalyst also exhibited high activity and selectivity towards the target hydrogenated products in the transfer hydrogenation reactions between glycerol and various H2 acceptors. Batch recycle experiments showed good reusability, with retention of 80% of the original activity after 5 runs. [Display omitted] •Efficient conversion of glycerol to lactate with concomitant transfer to various H2 acceptors.•A bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic counterparts.•The NiCo/CeO2 catalyst achieved very high yield of lactic acid salt (93%) at 97% glycerol conversion.•The NiCo/CeO2 catalyst also gave high activity and selectivity in the transfer hydrogenation. Bimetallic Ni-Co catalysts supported on nanosized CeO2 were prepared and investigated as heterogeneous catalysts for the transfer hydrogenation between glycerol and various H2 acceptors (levulinic acid, benzene, nitrobenzene, 1-decene, cyclohexene) to selectively produce lactic acid (salt) and the target hydrogenated compound. The bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic Ni or Co counterparts (with equal total metal mass), thus indicating strong synergetic effects. The interaction between the metallic sites and the CeO2 support was thoroughly characterised by means of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX) mapping, X-ray photoelectron spectroscopy (XPS), hydrogen-temperature programmed reduction (H2-TPR) and X-ray diffraction (XRD). Combining characterisation and catalytic results proved that the Ni species are intrinsically more active than Co species, but that incorporating Co into the catalyst formulation prevented the formation of large Ni particles and led to highly dispersed metal nanoparticles on CeO2, thus leading to the observed enhanced activity for the bimetallic system. The highest yield of lactic acid (salt) achieved in this work was 93% at 97% glycerol conversion (160 °C, 6.5 h at 20 bar N2, NaOH: glycerol = 1.5). The NiCo/CeO2 catalyst also exhibited high activity and selectivity towards the target hydrogenated products in the transfer hydrogenation reactions between glycerol and various H2 acceptors. Batch recycle experiments showed good reusability, with retention of 80% of the original activity after 5 runs. |
| ArticleNumber | 118273 |
| Author | Pescarmona, Paolo P. Tang, Zhenchen Heeres, Hero J. Cao, Huatang Tao, Yehan |
| Author_xml | – sequence: 1 givenname: Zhenchen surname: Tang fullname: Tang, Zhenchen organization: Chemical Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands – sequence: 2 givenname: Huatang surname: Cao fullname: Cao, Huatang organization: School of Materials, University of Manchester, Manchester M139PL, United Kingdom – sequence: 3 givenname: Yehan surname: Tao fullname: Tao, Yehan organization: Chemical Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands – sequence: 4 givenname: Hero J. surname: Heeres fullname: Heeres, Hero J. organization: Chemical Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands – sequence: 5 givenname: Paolo P. orcidid: 0000-0003-3608-6400 surname: Pescarmona fullname: Pescarmona, Paolo P. email: p.p.pescarmona@rug.nl organization: Chemical Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands |
| BookMark | eNqFkD1v2zAQhokgAeqk_QcdCGSWww9ZpDIUCIx-AUGzpDNxIk82DYV0SSqAtvz0ylGmDO10y_u8d_dckvMQAxLymbM1Z7y5OazhaKF0a8F4u-ZcCyXPyIprJSuptTwnK9aKppJSyQ_kMucDY0xIoVfk5TFByD0mup9cijsMUHwMtE_xie6GyWKKA43PcwDoL19t480WHwSd18Ew5XJL7-je7_bDRLHvvfUYCoXgaB5zAR-gG5CmOBakJdJjim60SAewxVsK1ruP5KKHIeOnt3lFfn_7-rj9Ud0_fP-5vbuvbM1VqaTTwnXWWsGlcqpXzLEemEO2sVo1m43QnXMooG0tdrytZSs3qubQYIcNoLwi10vvfMOfEXMxhzimMK80QtaSs4Y1ek7VS8qmmHPC3hyTf4I0Gc7MybU5mMW1Obk2i-sZu32HWV9eRZYEfvgf_GWBcX7_2WMy-aTRovMJbTEu-n8X_AUES6BT |
| CitedBy_id | crossref_primary_10_1016_j_mcat_2022_112771 crossref_primary_10_1016_j_cej_2025_168225 crossref_primary_10_1038_s41598_021_89561_1 crossref_primary_10_1016_j_fuel_2023_128074 crossref_primary_10_1002_ange_202419607 crossref_primary_10_1007_s11144_020_01805_9 crossref_primary_10_1016_j_cattod_2021_09_005 crossref_primary_10_1007_s10562_024_04831_7 crossref_primary_10_1016_j_ijhydene_2024_02_149 crossref_primary_10_3390_ma13030759 crossref_primary_10_1016_j_apcata_2021_118199 crossref_primary_10_1016_j_cej_2021_132555 crossref_primary_10_1039_D3RA05454C crossref_primary_10_1002_ange_202505490 crossref_primary_10_1002_cctc_202001632 crossref_primary_10_1016_j_cej_2024_153618 crossref_primary_10_1016_j_apcatb_2024_124960 crossref_primary_10_1016_j_colsurfa_2021_127383 crossref_primary_10_1016_j_jcat_2022_07_003 crossref_primary_10_1016_j_cej_2023_148005 crossref_primary_10_1016_j_molstruc_2022_134205 crossref_primary_10_1016_j_jece_2025_116948 crossref_primary_10_1002_chem_202102868 crossref_primary_10_1016_j_apcatb_2020_119854 crossref_primary_10_1016_j_apcata_2024_119971 crossref_primary_10_1016_j_catcom_2023_106733 crossref_primary_10_1016_j_jclepro_2023_136724 crossref_primary_10_1016_j_jiec_2024_02_008 crossref_primary_10_1016_j_apcata_2023_119552 crossref_primary_10_1016_j_joei_2024_101823 crossref_primary_10_3389_fchem_2022_962579 crossref_primary_10_1016_j_fuproc_2022_107275 crossref_primary_10_1016_j_joei_2024_101589 crossref_primary_10_1002_anie_202505490 crossref_primary_10_1016_j_fuel_2021_120923 crossref_primary_10_1016_j_cej_2025_168525 crossref_primary_10_1016_j_renene_2025_124107 crossref_primary_10_1016_j_jiec_2021_06_023 crossref_primary_10_1002_anie_202505518 crossref_primary_10_1016_j_seppur_2025_131667 crossref_primary_10_1002_cnma_202300158 crossref_primary_10_9767_bcrec_20341 crossref_primary_10_1016_j_cej_2024_156988 crossref_primary_10_3390_eng6050094 crossref_primary_10_1016_j_gee_2022_08_008 crossref_primary_10_1016_j_apcatb_2022_121515 crossref_primary_10_1002_ejoc_202301278 crossref_primary_10_1002_anie_202419607 crossref_primary_10_1039_D2CY01624A crossref_primary_10_3390_catal12091010 crossref_primary_10_1016_j_fuel_2024_133733 crossref_primary_10_1016_j_mcat_2024_114200 crossref_primary_10_1016_j_apsusc_2021_150042 crossref_primary_10_1016_j_cej_2025_165505 crossref_primary_10_71267_mencom_7603 crossref_primary_10_1002_ange_202505518 crossref_primary_10_1002_cssc_202001600 crossref_primary_10_1016_j_cej_2025_162318 crossref_primary_10_1016_j_jece_2025_119275 crossref_primary_10_1039_D5CY00016E crossref_primary_10_1016_j_apcatb_2022_121785 crossref_primary_10_3390_nano12244366 |
| Cites_doi | 10.1021/cs200080j 10.1016/j.apcatb.2017.12.079 10.1039/c3cy20770f 10.1016/j.ijhydene.2010.06.003 10.1016/j.catcom.2013.11.031 10.1006/jcat.2000.2900 10.1002/cssc.200900133 10.1016/j.ijhydene.2012.12.079 10.1002/cssc.201500390 10.1016/j.jbiosc.2014.06.003 10.1002/cssc.201300834 10.1002/sia.740150406 10.1126/science.1085597 10.1016/j.cattod.2017.05.053 10.1016/j.cej.2015.08.027 10.1021/ac60363a034 10.1016/j.apcatb.2018.09.065 10.1038/ncomms7540 10.1016/j.jcat.2007.05.008 10.1016/j.apcatb.2015.05.013 10.1016/j.cej.2013.01.074 10.1021/acssuschemeng.8b02277 10.1021/ie900937d 10.1016/j.apcatb.2012.05.049 10.1039/c3gc40314a 10.1021/cr4002269 10.1246/cl.2005.1560 10.1016/j.apsusc.2016.04.180 10.1016/j.apcata.2015.05.007 10.1039/C4GC00723A 10.1038/nature01009 10.1021/ie049963n 10.1016/j.apcatb.2014.11.014 10.1016/j.apcatb.2018.10.059 10.1016/j.apcatb.2006.03.018 10.1021/nl0716000 10.1002/chem.201000740 10.1021/jp2092048 10.1080/00397911.2010.518276 10.1016/j.cattod.2010.01.007 10.1039/C5TA03985A 10.1016/j.apcata.2017.09.032 10.1007/s11244-012-9823-1 10.1039/c2cc34178f 10.1039/C8TA01609G 10.1016/j.jcat.2009.09.025 10.1016/j.apcatb.2013.09.026 10.1016/j.apcata.2015.02.041 10.1021/ef900259h 10.1039/C6EE02002J 10.1016/j.jcat.2009.11.027 10.1016/j.tetlet.2009.08.035 10.1021/cr050989d 10.1263/jbb.100.260 10.1021/cr068360d 10.1016/j.jcat.2007.05.004 10.1007/s00289-012-0792-0 10.1002/cssc.201000359 10.1039/B707343G 10.1016/j.apcata.2013.08.048 10.1016/j.apcatb.2013.07.068 10.1039/C4CY00249K 10.1016/j.fuel.2018.09.069 10.1016/j.jiec.2017.08.028 10.1002/cphc.201700529 10.1007/s11144-009-0012-6 10.1039/C3GC41935E 10.1016/j.fuel.2006.03.022 10.1016/j.apcatb.2013.09.006 10.1039/c1cs15131b 10.1039/c2cs35188a 10.1039/C5RA06354J 10.1039/B710561D 10.1021/cr050200z 10.1002/1521-3773(20000703)39:13<2310::AID-ANIE2310>3.0.CO;2-G 10.1016/j.apcatb.2016.03.032 10.1016/j.micromeso.2017.11.027 10.1039/c3ee00069a 10.1016/S0926-860X(01)00472-0 10.1016/j.ijhydene.2008.06.019 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s) Copyright Elsevier BV Apr 2020 |
| Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright Elsevier BV Apr 2020 |
| DBID | 6I. AAFTH AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
| DOI | 10.1016/j.apcatb.2019.118273 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| EISSN | 1873-3883 |
| ExternalDocumentID | 10_1016_j_apcatb_2019_118273 S0926337319310197 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD 7SR 7ST 7U5 8BQ 8FD AGCQF C1K FR3 JG9 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c417t-3d82dbccc2137d7f70d0fa0de05c8765528bdde2a99ceb1943935741a6ebe6ae3 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510526000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Wed Aug 13 05:44:46 EDT 2025 Sat Nov 29 07:18:06 EST 2025 Tue Nov 18 21:43:02 EST 2025 Sat Mar 02 15:59:49 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Co catalyst Glycerol Transfer hydrogenation Lactic acid Alloy effects Ni catalyst |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c417t-3d82dbccc2137d7f70d0fa0de05c8765528bdde2a99ceb1943935741a6ebe6ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3608-6400 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apcatb.2019.118273 |
| PQID | 2343106068 |
| PQPubID | 2045281 |
| ParticipantIDs | proquest_journals_2343106068 crossref_primary_10_1016_j_apcatb_2019_118273 crossref_citationtrail_10_1016_j_apcatb_2019_118273 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118273 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Wasewar, Yawalkar, Moulijn, Pangarkar (bib0075) 2004; 43 Huber, Iborra, Corma (bib0010) 2006; 106 Shen, Zhang, Li, Ren, Liu (bib0105) 2010; 16 Tavor, Gefen, Dlugy, Wolfson (bib0315) 2011; 41 Lubitz, Tumas (bib0090) 2007; 107 Liotta, Di Carlo, Pantaleo, Venezia, Deganello (bib0260) 2006; 66 Sheldon (bib0030) 2014; 16 Cho, Chang, Fan (bib0070) 2014; 16 Cui, Zhang, Shi, Deng (bib0370) 2012; 48 Alonso, Wettstein, Dumesic (bib0020) 2012; 41 Behr, Eilting, Irawadi, Leschinski, Lindner (bib0045) 2008; 10 Zhang, Wang, Dalai (bib0235) 2007; 249 Zhou, Song, Zhou, Wu, Wu, Liu, Han (bib0375) 2015; 5 De, Zhang, Luque, Yan (bib0165) 2016; 9 Somacescu, Cioatera, Osiceanu, Calderon-Moreno, Ghica, Neaţu, Florea (bib0285) 2019; 241 Dugal, Sankar, Raja, Thomas (bib0360) 2000; 39 Arbeláez, Reina, Ivanova, Bustamante, Villa, Centeno, Odriozola (bib0205) 2015; 497 van Haasterecht, van Deelen, de Jong, Bitter (bib0125) 2014; 4 McIntyre, Johnston, Coatsworth, Davidson, Brown (bib0300) 1990; 15 Cheng, Su, Kuang, Chen, Liu (bib0290) 2015; 3 Djinović, Osojnik Črnivec, Erjavec, Pintar (bib0220) 2012; 125 de Lima, da Silva, da Costa, Graham, Jacobs, Davis, Mattos, Noronha (bib0255) 2009; 268 Lin (bib0035) 2013; 38 Yadav, Mewada (bib0385) 2013; 221 Wang, Tashiro, Sonomoto (bib0080) 2015; 119 Serrano-Ruiz, Luque, Sepulveda-Escribano (bib0340) 2011; 40 Kondrat, Miedziak, Douthwaite, Brett, Davies, Morgan, Edwards, Knight, Kiely, Taylor (bib0025) 2014; 7 Zhou, Liu, Cui, Jia, Hu, Jiao, Liu, Zhang (bib0270) 2016; 383 Miranda, Chimentão, Santos, Gispert-Guirado, Llorca, Medina, Bonillo, Sueiras (bib0130) 2014; 147 Chen, Zhu, Hao, Zhang, Xie (bib0230) 2010; 35 Hengst, Schubert, Carvalho, Lu, Kleist, Grunwaldt (bib0350) 2015; 502 Giordano, Trovarelli, de Leitenburg, Giona (bib0245) 2000; 193 Xu, Zhang, Zhao, Yu, Chen, Li, Hao, Liu (bib0410) 2013; 15 Daems, Wouters, Van Goethem, Baert, Poleunis, Delcorte, Hubin, Vankelecom, Pescarmona (bib0390) 2018; 226 Palacio, Torres, Lopez, Hernandez (bib0135) 2018; 302 Lin, Ma, Wang, Xu, Ma, Wang, Wang, Dong, Zhang, Ding (bib0265) 2019; 243 Maris, Davis (bib0115) 2007; 249 Movasati, Alavi, Mazloom (bib0180) 2019; 236 Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib0310) 2016; 192 Dusselier, Van Wouwe, Dewaele, Makshina, Sels (bib0060) 2013; 6 Xu, Yan, Wang (bib0250) 2006; 85 Manfro, Pires, Ribeiro, Souza (bib0210) 2013; 3 Purushothaman, van Haveren, van Es, Melián-Cabrera, Meeldijk, Heeres (bib0110) 2014; 147 Mahimwalla, Yager, Mamiya, Shishido, Priimagi, Barrett (bib0320) 2012; 69 Bratlie, Lee, Komvopoulos, Yang, Somorjai (bib0330) 2007; 7 Liu, Xie, Tan, You, Wang, Luo, Letters (bib0325) 2009; 97 Tsuji, Rao, Nishimura, Takagaki, Ebitani (bib0400) 2011; 4 Roy, Subramaniam, Chaudhari (bib0200) 2010; 156 Li, Wang, Gao, Wu, Yang, Sheng, Xiao (bib0305) 2018; 262 Auneau, Arani, Besson, Djakovitch, Michel, Delbecq, Sautet, Pinel (bib0120) 2012; 55 Formenti, Ferretti, Scharnagl, Beller (bib0160) 2018 Gonzalez-delaCruz, Pereñiguez, Ternero, Holgado, Caballero (bib0170) 2012; 116 Kawi, Kathiraser, Ni, Oemar, Li, Saw (bib0240) 2015; 8 McIntyre, Cook (bib0275) 1975; 47 Kishida, Jin, Zhou, Moriya, Enomoto (bib0150) 2005; 34 Roy, Subramaniam, Chaudhari (bib0140) 2011; 1 Lakshmanan, Upare, Le, Hwang, Hwang, Lee, Kim, Chang (bib0185) 2013; 468 Cortright, Davda, Dumesic (bib0095) 2002; 418 Sankar, Dimitratos, Knight, Carley, Tiruvalam, Kiely, Thomas, Hutchings (bib0405) 2009; 2 Piskun, Ftouni, Tang, Weckhuysen, Bruijnincx, Heeres (bib0355) 2018; 549 Wawrzetz, Peng, Hrabar, Jentys, Lemonidou, Lercher (bib0085) 2010; 269 Yin, Yin, Wang, Shen (bib0100) 2018; 57 Mauriello, Ariga, Musolino, Pietropaolo, Takakusagi, Asakura (bib0195) 2015; 166-167 Shen, Jin, Zhang, Wu, Kishita, Tohji, Kishida (bib0155) 2009; 48 Ito, Nakashimada, Senba, Matsui, Nishio (bib0050) 2005; 100 Besson, Gallezot, Pinel (bib0015) 2014; 114 Yang, Ke, Ren, Liu, Yang, Dong (bib0145) 2016; 283 Sheng, Wouters, Breugelmans, Hubin, Vankelecom, Pescarmona (bib0295) 2014; 147 Feng, Xiong, Xu, Jiang, Wang, Chen (bib0190) 2014; 46 Huber, Shabaker, Dumesic (bib0055) 2003; 300 Luo, Sankar, Beale, He, Kiely, Bruijnincx, Weckhuysen (bib0345) 2015; 6 Tang, Fiorilli, Heeres, Pescarmona (bib0065) 2018; 6 Zhou, Beltramini, Fan, Lu (bib0040) 2008; 37 Ay, Üner (bib0175) 2015; 179 Yang, Yang, Hou, Li, Gao, Lin, Luo (bib0280) 2019; 259 Wolfson, Dlugy, Shotland, Tavor (bib0380) 2009; 50 Schuchardt, Cardoso, Sercheli, Pereira, da Cruz, Guerreiro, Mandelli, Spinacé, Pires (bib0365) 2001; 211 Yan, Lin, Liu (bib0335) 2009; 23 Daems, Risplendi, Baert, Hubin, Vankelecom, Cicero, Pescarmona (bib0395) 2018; 6 Pérez-Hernández, Mondragón Galicia, Mendoza Anaya, Palacios, Angeles-Chavez, Arenas-Alatorre (bib0215) 2008; 33 Bian, Das, Wai, Hongmanorom, Kawi (bib0225) 2017; 18 Corma, Iborra, Velty (bib0005) 2007; 107 Corma (10.1016/j.apcatb.2019.118273_bib0005) 2007; 107 Giordano (10.1016/j.apcatb.2019.118273_bib0245) 2000; 193 Bratlie (10.1016/j.apcatb.2019.118273_bib0330) 2007; 7 Daems (10.1016/j.apcatb.2019.118273_bib0395) 2018; 6 Gupta (10.1016/j.apcatb.2019.118273_bib0310) 2016; 192 Cho (10.1016/j.apcatb.2019.118273_bib0070) 2014; 16 Cheng (10.1016/j.apcatb.2019.118273_bib0290) 2015; 3 Miranda (10.1016/j.apcatb.2019.118273_bib0130) 2014; 147 Tsuji (10.1016/j.apcatb.2019.118273_bib0400) 2011; 4 Tavor (10.1016/j.apcatb.2019.118273_bib0315) 2011; 41 Arbeláez (10.1016/j.apcatb.2019.118273_bib0205) 2015; 497 Sheng (10.1016/j.apcatb.2019.118273_bib0295) 2014; 147 Somacescu (10.1016/j.apcatb.2019.118273_bib0285) 2019; 241 Piskun (10.1016/j.apcatb.2019.118273_bib0355) 2018; 549 Yadav (10.1016/j.apcatb.2019.118273_bib0385) 2013; 221 Alonso (10.1016/j.apcatb.2019.118273_bib0020) 2012; 41 Kawi (10.1016/j.apcatb.2019.118273_bib0240) 2015; 8 Kondrat (10.1016/j.apcatb.2019.118273_bib0025) 2014; 7 Wolfson (10.1016/j.apcatb.2019.118273_bib0380) 2009; 50 McIntyre (10.1016/j.apcatb.2019.118273_bib0275) 1975; 47 Feng (10.1016/j.apcatb.2019.118273_bib0190) 2014; 46 Wawrzetz (10.1016/j.apcatb.2019.118273_bib0085) 2010; 269 Sheldon (10.1016/j.apcatb.2019.118273_bib0030) 2014; 16 Lin (10.1016/j.apcatb.2019.118273_bib0265) 2019; 243 Schuchardt (10.1016/j.apcatb.2019.118273_bib0365) 2001; 211 Lubitz (10.1016/j.apcatb.2019.118273_bib0090) 2007; 107 Tang (10.1016/j.apcatb.2019.118273_bib0065) 2018; 6 Zhang (10.1016/j.apcatb.2019.118273_bib0235) 2007; 249 Djinović (10.1016/j.apcatb.2019.118273_bib0220) 2012; 125 Zhou (10.1016/j.apcatb.2019.118273_bib0040) 2008; 37 Cui (10.1016/j.apcatb.2019.118273_bib0370) 2012; 48 Formenti (10.1016/j.apcatb.2019.118273_bib0160) 2018 Ay (10.1016/j.apcatb.2019.118273_bib0175) 2015; 179 Maris (10.1016/j.apcatb.2019.118273_bib0115) 2007; 249 McIntyre (10.1016/j.apcatb.2019.118273_bib0300) 1990; 15 Manfro (10.1016/j.apcatb.2019.118273_bib0210) 2013; 3 Purushothaman (10.1016/j.apcatb.2019.118273_bib0110) 2014; 147 Xu (10.1016/j.apcatb.2019.118273_bib0250) 2006; 85 Lin (10.1016/j.apcatb.2019.118273_bib0035) 2013; 38 Shen (10.1016/j.apcatb.2019.118273_bib0105) 2010; 16 Cortright (10.1016/j.apcatb.2019.118273_bib0095) 2002; 418 Palacio (10.1016/j.apcatb.2019.118273_bib0135) 2018; 302 de Lima (10.1016/j.apcatb.2019.118273_bib0255) 2009; 268 Xu (10.1016/j.apcatb.2019.118273_bib0410) 2013; 15 Wang (10.1016/j.apcatb.2019.118273_bib0080) 2015; 119 van Haasterecht (10.1016/j.apcatb.2019.118273_bib0125) 2014; 4 Behr (10.1016/j.apcatb.2019.118273_bib0045) 2008; 10 Besson (10.1016/j.apcatb.2019.118273_bib0015) 2014; 114 Movasati (10.1016/j.apcatb.2019.118273_bib0180) 2019; 236 Bian (10.1016/j.apcatb.2019.118273_bib0225) 2017; 18 Auneau (10.1016/j.apcatb.2019.118273_bib0120) 2012; 55 Mahimwalla (10.1016/j.apcatb.2019.118273_bib0320) 2012; 69 Yang (10.1016/j.apcatb.2019.118273_bib0280) 2019; 259 Huber (10.1016/j.apcatb.2019.118273_bib0055) 2003; 300 Liotta (10.1016/j.apcatb.2019.118273_bib0260) 2006; 66 Ito (10.1016/j.apcatb.2019.118273_bib0050) 2005; 100 Hengst (10.1016/j.apcatb.2019.118273_bib0350) 2015; 502 Serrano-Ruiz (10.1016/j.apcatb.2019.118273_bib0340) 2011; 40 Chen (10.1016/j.apcatb.2019.118273_bib0230) 2010; 35 Yin (10.1016/j.apcatb.2019.118273_bib0100) 2018; 57 Roy (10.1016/j.apcatb.2019.118273_bib0140) 2011; 1 Shen (10.1016/j.apcatb.2019.118273_bib0155) 2009; 48 Dugal (10.1016/j.apcatb.2019.118273_bib0360) 2000; 39 Dusselier (10.1016/j.apcatb.2019.118273_bib0060) 2013; 6 Roy (10.1016/j.apcatb.2019.118273_bib0200) 2010; 156 Zhou (10.1016/j.apcatb.2019.118273_bib0270) 2016; 383 Mauriello (10.1016/j.apcatb.2019.118273_bib0195) 2015; 166-167 Luo (10.1016/j.apcatb.2019.118273_bib0345) 2015; 6 Gonzalez-delaCruz (10.1016/j.apcatb.2019.118273_bib0170) 2012; 116 Daems (10.1016/j.apcatb.2019.118273_bib0390) 2018; 226 De (10.1016/j.apcatb.2019.118273_bib0165) 2016; 9 Huber (10.1016/j.apcatb.2019.118273_bib0010) 2006; 106 Sankar (10.1016/j.apcatb.2019.118273_bib0405) 2009; 2 Pérez-Hernández (10.1016/j.apcatb.2019.118273_bib0215) 2008; 33 Yang (10.1016/j.apcatb.2019.118273_bib0145) 2016; 283 Zhou (10.1016/j.apcatb.2019.118273_bib0375) 2015; 5 Yan (10.1016/j.apcatb.2019.118273_bib0335) 2009; 23 Liu (10.1016/j.apcatb.2019.118273_bib0325) 2009; 97 Wasewar (10.1016/j.apcatb.2019.118273_bib0075) 2004; 43 Kishida (10.1016/j.apcatb.2019.118273_bib0150) 2005; 34 Li (10.1016/j.apcatb.2019.118273_bib0305) 2018; 262 Lakshmanan (10.1016/j.apcatb.2019.118273_bib0185) 2013; 468 |
| References_xml | – volume: 300 start-page: 2075 year: 2003 end-page: 2077 ident: bib0055 publication-title: Science – volume: 18 start-page: 3117 year: 2017 end-page: 3134 ident: bib0225 publication-title: ChemPhysChem – volume: 262 start-page: 154 year: 2018 end-page: 165 ident: bib0305 publication-title: Microporous Mesoporous Mater. – volume: 156 start-page: 31 year: 2010 end-page: 37 ident: bib0200 publication-title: Catal. Today – volume: 193 start-page: 273 year: 2000 end-page: 282 ident: bib0245 publication-title: J. Catal. – volume: 23 start-page: 3853 year: 2009 end-page: 3858 ident: bib0335 publication-title: Energy Fuels – volume: 221 start-page: 500 year: 2013 end-page: 511 ident: bib0385 publication-title: Chem. Eng. J. – volume: 268 start-page: 268 year: 2009 end-page: 281 ident: bib0255 publication-title: J. Catal. – volume: 119 start-page: 10 year: 2015 end-page: 18 ident: bib0080 publication-title: J. Biosci. Bioeng. – volume: 55 start-page: 474 year: 2012 end-page: 479 ident: bib0120 publication-title: Top. Catal. – volume: 179 start-page: 128 year: 2015 end-page: 138 ident: bib0175 publication-title: Appl. Catal. B – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: bib0010 publication-title: Chem. Rev. – volume: 166-167 start-page: 121 year: 2015 end-page: 131 ident: bib0195 publication-title: Appl. Catal. B – volume: 85 start-page: 2243 year: 2006 end-page: 2247 ident: bib0250 publication-title: Fuel – volume: 3 start-page: 19314 year: 2015 end-page: 19321 ident: bib0290 publication-title: J. Mater. Chem. A – volume: 226 start-page: 509 year: 2018 end-page: 522 ident: bib0390 publication-title: Appl. Catal. B – volume: 147 start-page: 330 year: 2014 end-page: 339 ident: bib0295 publication-title: Appl. Catal. B – volume: 97 start-page: 101 year: 2009 end-page: 108 ident: bib0325 publication-title: React. Kinet. Catal. Lett. – volume: 6 start-page: 13397 year: 2018 end-page: 13411 ident: bib0395 publication-title: J. Mater. Chem. A – volume: 114 start-page: 1827 year: 2014 end-page: 1870 ident: bib0015 publication-title: Chem. Rev. – volume: 6 start-page: 10923 year: 2018 end-page: 10933 ident: bib0065 publication-title: ACS Sustain. Chem. Eng. – volume: 38 start-page: 2678 year: 2013 end-page: 2700 ident: bib0035 publication-title: Int. J. Hydrogen Energy – volume: 211 start-page: 1 year: 2001 end-page: 17 ident: bib0365 publication-title: Appl. Catal. A – volume: 16 start-page: 7368 year: 2010 end-page: 7371 ident: bib0105 publication-title: Chem. Eur. J. – volume: 283 start-page: 759 year: 2016 end-page: 767 ident: bib0145 publication-title: Chem. Eng. J. – volume: 48 start-page: 8920 year: 2009 end-page: 8925 ident: bib0155 publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 542 year: 2011 end-page: 548 ident: bib0400 publication-title: ChemSusChem – volume: 6 start-page: 1415 year: 2013 end-page: 1442 ident: bib0060 publication-title: Energy Environ. Sci. – volume: 502 start-page: 18 year: 2015 end-page: 26 ident: bib0350 publication-title: Appl. Catal. A – volume: 418 start-page: 964 year: 2002 end-page: 967 ident: bib0095 publication-title: Nature – year: 2018 ident: bib0160 publication-title: Chem. Rev. – volume: 236 start-page: 1254 year: 2019 end-page: 1262 ident: bib0180 publication-title: Fuel – volume: 107 start-page: 2411 year: 2007 end-page: 2502 ident: bib0005 publication-title: Chem. Rev. – volume: 107 start-page: 3900 year: 2007 end-page: 3903 ident: bib0090 publication-title: Chem. Rev. – volume: 46 start-page: 98 year: 2014 end-page: 102 ident: bib0190 publication-title: Catal. Commun. – volume: 39 start-page: 2310 year: 2000 end-page: 2313 ident: bib0360 publication-title: Angew. Chem. Int. Ed. – volume: 100 start-page: 260 year: 2005 end-page: 265 ident: bib0050 publication-title: J. Biosci. Bioeng. – volume: 7 start-page: 3097 year: 2007 end-page: 3101 ident: bib0330 publication-title: Nano Lett. – volume: 243 start-page: 262 year: 2019 end-page: 272 ident: bib0265 publication-title: Appl. Catal. B – volume: 33 start-page: 4569 year: 2008 end-page: 4576 ident: bib0215 publication-title: Int. J. Hydrogen Energy – volume: 269 start-page: 411 year: 2010 end-page: 420 ident: bib0085 publication-title: J. Catal. – volume: 15 start-page: 265 year: 1990 end-page: 272 ident: bib0300 publication-title: Surf. Interface Anal. – volume: 9 start-page: 3314 year: 2016 end-page: 3347 ident: bib0165 publication-title: Energy Environ. Sci. – volume: 66 start-page: 217 year: 2006 end-page: 227 ident: bib0260 publication-title: Appl. Catal. B – volume: 259 year: 2019 ident: bib0280 publication-title: Appl. Catal. B – volume: 34 start-page: 1560 year: 2005 end-page: 1561 ident: bib0150 publication-title: Chem. Lett. – volume: 2 start-page: 1145 year: 2009 end-page: 1151 ident: bib0405 publication-title: ChemSusChem – volume: 147 start-page: 92 year: 2014 end-page: 100 ident: bib0110 publication-title: Appl. Catal. B – volume: 8 start-page: 3556 year: 2015 end-page: 3575 ident: bib0240 publication-title: ChemSusChem – volume: 69 start-page: 967 year: 2012 end-page: 1006 ident: bib0320 publication-title: Polym. Bull. – volume: 249 start-page: 328 year: 2007 end-page: 337 ident: bib0115 publication-title: J. Catal. – volume: 302 start-page: 196 year: 2018 end-page: 202 ident: bib0135 publication-title: Catal. Today – volume: 1 start-page: 548 year: 2011 end-page: 551 ident: bib0140 publication-title: ACS Catal. – volume: 40 start-page: 5266 year: 2011 end-page: 5281 ident: bib0340 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 2208 year: 1975 end-page: 2213 ident: bib0275 publication-title: Anal. Chem. – volume: 50 start-page: 5951 year: 2009 end-page: 5953 ident: bib0380 publication-title: Tetrahedron Lett. – volume: 549 start-page: 197 year: 2018 end-page: 206 ident: bib0355 publication-title: Appl. Catal. A – volume: 10 start-page: 13 year: 2008 end-page: 30 ident: bib0045 publication-title: Green Chem. – volume: 57 start-page: 226 year: 2018 end-page: 235 ident: bib0100 publication-title: J. Ind. Eng. Chem. – volume: 15 start-page: 1520 year: 2013 end-page: 1525 ident: bib0410 publication-title: Green Chem. – volume: 383 start-page: 248 year: 2016 end-page: 252 ident: bib0270 publication-title: Appl. Surf. Sci. – volume: 116 start-page: 2919 year: 2012 end-page: 2926 ident: bib0170 publication-title: J. Phys. Chem. C – volume: 16 start-page: 950 year: 2014 end-page: 963 ident: bib0030 publication-title: Green Chem. – volume: 4 start-page: 2353 year: 2014 end-page: 2366 ident: bib0125 publication-title: Catal. Sci. Technol. – volume: 35 start-page: 8494 year: 2010 end-page: 8502 ident: bib0230 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 36347 year: 2015 end-page: 36352 ident: bib0375 publication-title: RSC Adv. – volume: 241 start-page: 393 year: 2019 end-page: 406 ident: bib0285 publication-title: Appl. Catal. B – volume: 192 start-page: 126 year: 2016 end-page: 133 ident: bib0310 publication-title: Appl. Catal. B – volume: 6 start-page: 6540 year: 2015 ident: bib0345 publication-title: Nat. Commun. – volume: 249 start-page: 300 year: 2007 end-page: 310 ident: bib0235 publication-title: J. Catal. – volume: 147 start-page: 464 year: 2014 end-page: 480 ident: bib0130 publication-title: Appl. Catal. B – volume: 48 start-page: 9391 year: 2012 end-page: 9393 ident: bib0370 publication-title: Chem. Commun. – volume: 468 start-page: 260 year: 2013 end-page: 268 ident: bib0185 publication-title: Appl. Catal. A – volume: 41 start-page: 8075 year: 2012 end-page: 8098 ident: bib0020 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 3409 year: 2011 end-page: 3416 ident: bib0315 publication-title: Synth. Commun. – volume: 125 start-page: 259 year: 2012 end-page: 270 ident: bib0220 publication-title: Appl. Catal. B – volume: 7 start-page: 1326 year: 2014 end-page: 1334 ident: bib0025 publication-title: ChemSusChem – volume: 16 start-page: 3428 year: 2014 end-page: 3433 ident: bib0070 publication-title: Green Chem. – volume: 497 start-page: 1 year: 2015 end-page: 9 ident: bib0205 publication-title: Appl. Catal. A – volume: 3 start-page: 1278 year: 2013 end-page: 1287 ident: bib0210 publication-title: Catal. Sci. Technol. – volume: 37 start-page: 527 year: 2008 end-page: 549 ident: bib0040 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5969 year: 2004 end-page: 5982 ident: bib0075 publication-title: Ind. Eng. Chem. Res. – volume: 1 start-page: 548 year: 2011 ident: 10.1016/j.apcatb.2019.118273_bib0140 publication-title: ACS Catal. doi: 10.1021/cs200080j – volume: 226 start-page: 509 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0390 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.079 – volume: 3 start-page: 1278 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0210 publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20770f – volume: 35 start-page: 8494 year: 2010 ident: 10.1016/j.apcatb.2019.118273_bib0230 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.06.003 – volume: 46 start-page: 98 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0190 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.11.031 – volume: 193 start-page: 273 year: 2000 ident: 10.1016/j.apcatb.2019.118273_bib0245 publication-title: J. Catal. doi: 10.1006/jcat.2000.2900 – volume: 2 start-page: 1145 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0405 publication-title: ChemSusChem doi: 10.1002/cssc.200900133 – volume: 38 start-page: 2678 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0035 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.079 – volume: 8 start-page: 3556 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0240 publication-title: ChemSusChem doi: 10.1002/cssc.201500390 – volume: 119 start-page: 10 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0080 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2014.06.003 – volume: 7 start-page: 1326 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0025 publication-title: ChemSusChem doi: 10.1002/cssc.201300834 – volume: 15 start-page: 265 year: 1990 ident: 10.1016/j.apcatb.2019.118273_bib0300 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740150406 – year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0160 publication-title: Chem. Rev. – volume: 300 start-page: 2075 year: 2003 ident: 10.1016/j.apcatb.2019.118273_bib0055 publication-title: Science doi: 10.1126/science.1085597 – volume: 302 start-page: 196 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0135 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.05.053 – volume: 283 start-page: 759 year: 2016 ident: 10.1016/j.apcatb.2019.118273_bib0145 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.027 – volume: 47 start-page: 2208 year: 1975 ident: 10.1016/j.apcatb.2019.118273_bib0275 publication-title: Anal. Chem. doi: 10.1021/ac60363a034 – volume: 241 start-page: 393 year: 2019 ident: 10.1016/j.apcatb.2019.118273_bib0285 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.065 – volume: 6 start-page: 6540 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0345 publication-title: Nat. Commun. doi: 10.1038/ncomms7540 – volume: 249 start-page: 328 year: 2007 ident: 10.1016/j.apcatb.2019.118273_bib0115 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.05.008 – volume: 179 start-page: 128 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0175 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.05.013 – volume: 221 start-page: 500 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0385 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.01.074 – volume: 6 start-page: 10923 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0065 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02277 – volume: 48 start-page: 8920 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0155 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900937d – volume: 125 start-page: 259 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0220 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.05.049 – volume: 15 start-page: 1520 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0410 publication-title: Green Chem. doi: 10.1039/c3gc40314a – volume: 259 year: 2019 ident: 10.1016/j.apcatb.2019.118273_bib0280 publication-title: Appl. Catal. B – volume: 114 start-page: 1827 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0015 publication-title: Chem. Rev. doi: 10.1021/cr4002269 – volume: 34 start-page: 1560 year: 2005 ident: 10.1016/j.apcatb.2019.118273_bib0150 publication-title: Chem. Lett. doi: 10.1246/cl.2005.1560 – volume: 383 start-page: 248 year: 2016 ident: 10.1016/j.apcatb.2019.118273_bib0270 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.180 – volume: 502 start-page: 18 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0350 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2015.05.007 – volume: 16 start-page: 3428 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0070 publication-title: Green Chem. doi: 10.1039/C4GC00723A – volume: 418 start-page: 964 year: 2002 ident: 10.1016/j.apcatb.2019.118273_bib0095 publication-title: Nature doi: 10.1038/nature01009 – volume: 43 start-page: 5969 year: 2004 ident: 10.1016/j.apcatb.2019.118273_bib0075 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049963n – volume: 166-167 start-page: 121 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0195 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.11.014 – volume: 243 start-page: 262 year: 2019 ident: 10.1016/j.apcatb.2019.118273_bib0265 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.10.059 – volume: 66 start-page: 217 year: 2006 ident: 10.1016/j.apcatb.2019.118273_bib0260 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2006.03.018 – volume: 7 start-page: 3097 year: 2007 ident: 10.1016/j.apcatb.2019.118273_bib0330 publication-title: Nano Lett. doi: 10.1021/nl0716000 – volume: 16 start-page: 7368 year: 2010 ident: 10.1016/j.apcatb.2019.118273_bib0105 publication-title: Chem. Eur. J. doi: 10.1002/chem.201000740 – volume: 116 start-page: 2919 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0170 publication-title: J. Phys. Chem. C doi: 10.1021/jp2092048 – volume: 41 start-page: 3409 year: 2011 ident: 10.1016/j.apcatb.2019.118273_bib0315 publication-title: Synth. Commun. doi: 10.1080/00397911.2010.518276 – volume: 156 start-page: 31 year: 2010 ident: 10.1016/j.apcatb.2019.118273_bib0200 publication-title: Catal. Today doi: 10.1016/j.cattod.2010.01.007 – volume: 3 start-page: 19314 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0290 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03985A – volume: 549 start-page: 197 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0355 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2017.09.032 – volume: 55 start-page: 474 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0120 publication-title: Top. Catal. doi: 10.1007/s11244-012-9823-1 – volume: 48 start-page: 9391 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0370 publication-title: Chem. Commun. doi: 10.1039/c2cc34178f – volume: 6 start-page: 13397 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0395 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01609G – volume: 268 start-page: 268 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0255 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.09.025 – volume: 147 start-page: 464 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0130 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.026 – volume: 497 start-page: 1 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0205 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2015.02.041 – volume: 23 start-page: 3853 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0335 publication-title: Energy Fuels doi: 10.1021/ef900259h – volume: 9 start-page: 3314 year: 2016 ident: 10.1016/j.apcatb.2019.118273_bib0165 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02002J – volume: 269 start-page: 411 year: 2010 ident: 10.1016/j.apcatb.2019.118273_bib0085 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.11.027 – volume: 50 start-page: 5951 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0380 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.08.035 – volume: 107 start-page: 2411 year: 2007 ident: 10.1016/j.apcatb.2019.118273_bib0005 publication-title: Chem. Rev. doi: 10.1021/cr050989d – volume: 100 start-page: 260 year: 2005 ident: 10.1016/j.apcatb.2019.118273_bib0050 publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.100.260 – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.apcatb.2019.118273_bib0010 publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 249 start-page: 300 year: 2007 ident: 10.1016/j.apcatb.2019.118273_bib0235 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.05.004 – volume: 69 start-page: 967 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0320 publication-title: Polym. Bull. doi: 10.1007/s00289-012-0792-0 – volume: 4 start-page: 542 year: 2011 ident: 10.1016/j.apcatb.2019.118273_bib0400 publication-title: ChemSusChem doi: 10.1002/cssc.201000359 – volume: 37 start-page: 527 year: 2008 ident: 10.1016/j.apcatb.2019.118273_bib0040 publication-title: Chem. Soc. Rev. doi: 10.1039/B707343G – volume: 468 start-page: 260 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0185 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.08.048 – volume: 147 start-page: 92 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0110 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.07.068 – volume: 4 start-page: 2353 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0125 publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY00249K – volume: 236 start-page: 1254 year: 2019 ident: 10.1016/j.apcatb.2019.118273_bib0180 publication-title: Fuel doi: 10.1016/j.fuel.2018.09.069 – volume: 57 start-page: 226 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0100 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.08.028 – volume: 18 start-page: 3117 year: 2017 ident: 10.1016/j.apcatb.2019.118273_bib0225 publication-title: ChemPhysChem doi: 10.1002/cphc.201700529 – volume: 97 start-page: 101 year: 2009 ident: 10.1016/j.apcatb.2019.118273_bib0325 publication-title: React. Kinet. Catal. Lett. doi: 10.1007/s11144-009-0012-6 – volume: 16 start-page: 950 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0030 publication-title: Green Chem. doi: 10.1039/C3GC41935E – volume: 85 start-page: 2243 year: 2006 ident: 10.1016/j.apcatb.2019.118273_bib0250 publication-title: Fuel doi: 10.1016/j.fuel.2006.03.022 – volume: 147 start-page: 330 year: 2014 ident: 10.1016/j.apcatb.2019.118273_bib0295 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.006 – volume: 40 start-page: 5266 year: 2011 ident: 10.1016/j.apcatb.2019.118273_bib0340 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15131b – volume: 41 start-page: 8075 year: 2012 ident: 10.1016/j.apcatb.2019.118273_bib0020 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35188a – volume: 5 start-page: 36347 year: 2015 ident: 10.1016/j.apcatb.2019.118273_bib0375 publication-title: RSC Adv. doi: 10.1039/C5RA06354J – volume: 10 start-page: 13 year: 2008 ident: 10.1016/j.apcatb.2019.118273_bib0045 publication-title: Green Chem. doi: 10.1039/B710561D – volume: 107 start-page: 3900 year: 2007 ident: 10.1016/j.apcatb.2019.118273_bib0090 publication-title: Chem. Rev. doi: 10.1021/cr050200z – volume: 39 start-page: 2310 year: 2000 ident: 10.1016/j.apcatb.2019.118273_bib0360 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20000703)39:13<2310::AID-ANIE2310>3.0.CO;2-G – volume: 192 start-page: 126 year: 2016 ident: 10.1016/j.apcatb.2019.118273_bib0310 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.032 – volume: 262 start-page: 154 year: 2018 ident: 10.1016/j.apcatb.2019.118273_bib0305 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.11.027 – volume: 6 start-page: 1415 year: 2013 ident: 10.1016/j.apcatb.2019.118273_bib0060 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00069a – volume: 211 start-page: 1 year: 2001 ident: 10.1016/j.apcatb.2019.118273_bib0365 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(01)00472-0 – volume: 33 start-page: 4569 year: 2008 ident: 10.1016/j.apcatb.2019.118273_bib0215 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.06.019 |
| SSID | ssj0002328 |
| Score | 2.564053 |
| Snippet | [Display omitted]
•Efficient conversion of glycerol to lactate with concomitant transfer to various H2 acceptors.•A bimetallic NiCo/CeO2 catalyst showed much... Bimetallic Ni-Co catalysts supported on nanosized CeO2 were prepared and investigated as heterogeneous catalysts for the transfer hydrogenation between... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118273 |
| SubjectTerms | Acids Alloy effects Benzene Bimetals Catalysts Cerium oxides Co catalyst Cyclohexene Glycerol Hydrogen storage Hydrogenation Intermetallic compounds Lactic acid Levulinic acid Mapping Nanoparticles Ni catalyst Nickel Nitrobenzene Photoelectron spectroscopy Photoelectrons Scanning transmission electron microscopy Selectivity Sodium hydroxide Spectrum analysis Transfer hydrogenation Transmission electron microscopy X ray photoelectron spectroscopy X-ray diffraction X-ray spectroscopy |
| Title | Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid |
| URI | https://dx.doi.org/10.1016/j.apcatb.2019.118273 https://www.proquest.com/docview/2343106068 |
| Volume | 263 |
| WOSCitedRecordID | wos000510526000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002328 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LixNBEG5iVlAPotHF1VX64G2YOJlXd3uLYSUusgquEL0MPd09JktIwkx22dz8Nf5Oq195GGRV8DKEph-ZqS9V31TqgdBLmok0klyEZQkqMM0VCUvKqrDkIpIqi1KSmUTh9-TsjI5G7GOr9cPnwlxNyWxGr6_Z4r-KGsZA2Dp19i_Evd4UBuAzCB2uIHa4_pngDRVVdTBeyXoO01w4oc4j-TZdCaUj03XgZsABB-Fgrkvkqg9xYDw5q8b6CgNdx3i60vEeE5Mzaf5laLbSreq5DjEA6rowRWNVMDX5VgEXk53mn57nuu0nTTd4YzTwJsWOb8I8nPv66xge6XiTpjbgxqU7vIRNnK01s83oFzXeYHyoVG1V3xDuNDjtbvs14mgrHMY42_YSbqzXMs7DJLHdT7rK6mxKkjChth-OV-qxVZt7BsL6Ki66fAF3XerQPtbV71h-x53S25_0cfo0YLmwkpFb6CAmGaNtdNB_dzI6Xdt84KXG5vuv55M0TSTh_lm_I0G_0AHDcc4foPvu5QT3LageopaaddCdge8J2EH3tspXdtDhjgixMxPNI_TdYxDvYBBrDGKPQawxiDk2GHylEYg9Al_jPrb4w2v8YcAf3sIfNvjDyzl2-MMWf1jj7zH6_PbkfDAMXauPUKQ9sgwTSWNZCiHiXkIkqUgko4qDtogyAfY6y2JagiGOOWMC2AVLdUY5kGGegxLKuUoOUXs2n6knCCvJqpL0hGKZTKs8Z1KVFHg3bN6TLM2PUOKffSFcHXzdjmVa-IDHi8JKrNASK6zEjlC4XrWwdWBumE-8WAvHZS1HLQCJN6w89igonFppijgBoh_lUU6f_vPGz9Ddze_sGLWX9aV6jm6Lq-WkqV84RP8EcMnSqA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+hydrogenation+from+glycerol+over+a+Ni-Co%2FCeO2+catalyst%3A+A+highly+efficient+and+sustainable+route+to+produce+lactic+acid&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Tang%2C+Zhenchen&rft.au=Cao%2C+Huatang&rft.au=Tao%2C+Yehan&rft.au=Heeres%2C+Hero+J.&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=263&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118273&rft.externalDocID=S0926337319310197 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |