Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo
The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enteroba...
Saved in:
| Published in: | Infection and immunity Vol. 83; no. 8; p. 3325 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.08.2015
|
| Subjects: | |
| ISSN: | 1098-5522, 1098-5522 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target. |
|---|---|
| AbstractList | The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target. The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target. |
| Author | Davidson, Bruce A Russo, Thomas A MacDonald, Ulrike Olson, Ruth Beanan, Janet |
| Author_xml | – sequence: 1 givenname: Thomas A surname: Russo fullname: Russo, Thomas A email: trusso@acsu.buffalo.edu organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA Department of Microbiology and Immunology, University at Buffalo-State University of New York, Buffalo, New York, USA The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA trusso@acsu.buffalo.edu – sequence: 2 givenname: Ruth surname: Olson fullname: Olson, Ruth organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA – sequence: 3 givenname: Ulrike surname: MacDonald fullname: MacDonald, Ulrike organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA – sequence: 4 givenname: Janet surname: Beanan fullname: Beanan, Janet organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA – sequence: 5 givenname: Bruce A surname: Davidson fullname: Davidson, Bruce A organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Anesthesiology, University at Buffalo-State University of New York, Buffalo, New York, USA Department of Pathology and Anatomical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26056379$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMtOwzAQtBCI8rpxRj6CRIrt2IlzrBCPikpc4Fytkw0NcuxiJ4V-Ez9JClTqaWdWM7OjPSb7zjsk5JyzMedC30wn0zFjMmUJV3vkiLNCJ0oJsb-DR-Q4xnfGuJRSH5KRyJjK0rw4It8TDN5A2TXumpq-o853dI0hNq6B7T6CbX25QLshPlB03Y4LHRiLkXYLpG_Bf3aLm9iHVbMCS31NF-slDiz0drDRy1_a9qVfNbH0fbyiTxZNbNBaoEuHfeuHy0jxiw4RnoKraON-8Sk5qMFGPPufJ-T1_u7l9jGZPT9MbyezpJQ875JUViXoFHVtAIUoU8h1DqCgqJmWuVF5anhdZKxCMELXsuS10kqlGWClpRYn5PIvdxn8R4-xm7dD101Bh0PjOc8KxbWSqRykF__S3rRYzZehaSGs59sHix9jrIM6 |
| CitedBy_id | crossref_primary_10_3390_diagnostics14080792 crossref_primary_10_1016_j_ebiom_2024_105302 crossref_primary_10_1128_aac_00030_23 crossref_primary_10_3390_antibiotics11081100 crossref_primary_10_1016_j_pdpdt_2019_08_012 crossref_primary_10_1080_09273948_2022_2161398 crossref_primary_10_1093_jambio_lxae192 crossref_primary_10_3390_pathogens14070648 crossref_primary_10_2147_IDR_S391468 crossref_primary_10_3390_biology13020078 crossref_primary_10_1128_msystems_01675_24 crossref_primary_10_3389_fmed_2022_889020 crossref_primary_10_1089_mdr_2021_0307 crossref_primary_10_1038_s41598_025_17084_0 crossref_primary_10_1128_spectrum_00719_23 crossref_primary_10_1128_spectrum_00788_22 crossref_primary_10_1073_pnas_2213116119 crossref_primary_10_1016_j_ijfoodmicro_2025_111170 crossref_primary_10_3389_fcimb_2018_00030 crossref_primary_10_1186_s13073_023_01159_6 crossref_primary_10_1016_j_micpath_2023_106221 crossref_primary_10_1128_jb_00012_25 crossref_primary_10_1016_j_jgar_2021_02_020 crossref_primary_10_3389_fcimb_2022_979219 crossref_primary_10_3389_fmicb_2020_00271 crossref_primary_10_1038_srep24099 crossref_primary_10_1186_s13073_023_01260_w crossref_primary_10_3389_fmicb_2024_1355253 crossref_primary_10_3390_pathogens11121394 crossref_primary_10_1111_joim_13007 crossref_primary_10_1016_j_jgar_2020_12_012 crossref_primary_10_1128_spectrum_01929_21 crossref_primary_10_1017_S0950268818001826 crossref_primary_10_1186_s13756_019_0615_2 crossref_primary_10_1128_CMR_00001_19 crossref_primary_10_3390_microorganisms10061138 crossref_primary_10_1038_s41598_018_27420_2 crossref_primary_10_1177_0300060519863544 crossref_primary_10_1186_s13073_018_0587_5 crossref_primary_10_1016_j_heliyon_2024_e30187 crossref_primary_10_1016_j_toxicon_2021_04_007 crossref_primary_10_1016_j_microb_2025_100289 crossref_primary_10_3389_fcimb_2022_1083009 crossref_primary_10_1089_mdr_2019_0394 crossref_primary_10_1007_s10096_019_03676_y crossref_primary_10_1128_jb_00024_24 crossref_primary_10_1080_21505594_2025_2550621 crossref_primary_10_1093_jambio_lxaf128 crossref_primary_10_1007_s10096_015_2551_2 crossref_primary_10_3389_fmicb_2023_1325077 crossref_primary_10_1016_j_ebiom_2024_105331 crossref_primary_10_1007_s15010_024_02456_x crossref_primary_10_1016_j_jbc_2022_101651 crossref_primary_10_1080_21505594_2025_2563018 crossref_primary_10_1097_MRM_0000000000000322 crossref_primary_10_1128_mSphere_00341_17 crossref_primary_10_1111_1462_2920_15721 crossref_primary_10_3390_tropicalmed9040080 crossref_primary_10_1016_j_micpath_2020_104114 crossref_primary_10_4103_ijabmr_ijabmr_747_21 crossref_primary_10_1371_journal_ppat_1013499 crossref_primary_10_3389_fcimb_2018_00004 crossref_primary_10_3389_fmicb_2016_00849 crossref_primary_10_3389_fmicb_2024_1367422 crossref_primary_10_1186_s12941_022_00494_7 crossref_primary_10_1016_j_micpath_2018_01_030 crossref_primary_10_1186_s13099_024_00667_z crossref_primary_10_3389_fmicb_2017_01984 crossref_primary_10_1186_s12941_018_0302_9 crossref_primary_10_1371_journal_pone_0200835 crossref_primary_10_1080_22221751_2024_2427793 crossref_primary_10_1186_s12879_020_05143_y crossref_primary_10_1007_s00203_023_03665_y crossref_primary_10_1128_AAC_01031_18 crossref_primary_10_1002_jcla_24743 crossref_primary_10_1007_s00438_018_1477_7 crossref_primary_10_1128_spectrum_01242_22 crossref_primary_10_3389_fmicb_2022_1001169 crossref_primary_10_1073_pnas_2110227118 crossref_primary_10_1186_s12866_017_1148_6 crossref_primary_10_1039_C7CC05197B crossref_primary_10_1016_j_imbio_2016_06_014 crossref_primary_10_1016_j_ijantimicag_2024_107275 crossref_primary_10_1038_s41467_023_43802_1 crossref_primary_10_1186_s13756_018_0371_8 crossref_primary_10_1128_mbio_03838_24 crossref_primary_10_1128_mSphere_00045_21 crossref_primary_10_1093_lambio_ovac005 crossref_primary_10_1146_annurev_physiol_052521_121810 crossref_primary_10_1186_s12941_019_0343_8 crossref_primary_10_1159_000518679 crossref_primary_10_1556_030_2020_01143 crossref_primary_10_1016_j_ebiom_2025_105683 crossref_primary_10_2147_IDR_S461903 crossref_primary_10_1099_jmm_0_000942 crossref_primary_10_1128_JCM_00959_18 crossref_primary_10_1097_MD_0000000000020360 crossref_primary_10_3389_fcimb_2021_752011 crossref_primary_10_1007_s10096_022_04407_6 crossref_primary_10_1186_s12866_023_03022_5 crossref_primary_10_1186_s12879_022_07558_1 crossref_primary_10_3389_fcimb_2017_00103 crossref_primary_10_2147_IDR_S387187 crossref_primary_10_1186_s13073_019_0706_y crossref_primary_10_2147_IDR_S276642 crossref_primary_10_3389_fmicb_2024_1385724 crossref_primary_10_1186_s12866_023_03124_0 crossref_primary_10_3389_fmicb_2023_1193274 crossref_primary_10_1093_infdis_jiw378 crossref_primary_10_1007_s12088_023_01112_6 crossref_primary_10_2217_fmb_2021_0222 crossref_primary_10_1016_j_jiac_2023_09_028 crossref_primary_10_1128_mSphere_00537_18 crossref_primary_10_1089_fpd_2020_2847 crossref_primary_10_1128_spectrum_01910_24 crossref_primary_10_3390_microorganisms11030661 crossref_primary_10_1007_s12088_024_01247_0 crossref_primary_10_1080_10409238_2025_2476476 crossref_primary_10_3389_fpubh_2022_991306 crossref_primary_10_1080_29986990_2025_2525100 crossref_primary_10_2147_IDR_S252637 crossref_primary_10_1186_s13099_021_00439_z crossref_primary_10_3389_fmicb_2020_00436 crossref_primary_10_1097_INF_0000000000003253 crossref_primary_10_1038_s41598_018_29353_2 crossref_primary_10_3389_fcimb_2017_00483 crossref_primary_10_1016_j_vetmic_2021_109307 crossref_primary_10_3389_fmicb_2022_1003783 crossref_primary_10_1016_j_cld_2025_03_002 crossref_primary_10_3390_pharmaceutics13050603 crossref_primary_10_1128_spectrum_01062_22 crossref_primary_10_1016_j_vetmic_2022_109361 crossref_primary_10_3389_fcimb_2016_00014 crossref_primary_10_3389_fcimb_2021_709681 crossref_primary_10_2147_IDR_S243836 crossref_primary_10_2147_IDR_S371477 crossref_primary_10_3390_pathogens12020221 crossref_primary_10_1007_s11033_019_04843_2 crossref_primary_10_3389_fcimb_2021_688989 crossref_primary_10_1016_j_jprot_2016_04_006 crossref_primary_10_1016_j_micres_2024_127896 crossref_primary_10_1016_j_vetmic_2019_108481 crossref_primary_10_3389_fcimb_2022_968955 crossref_primary_10_2147_IDR_S370273 crossref_primary_10_1089_mdr_2019_0433 crossref_primary_10_1016_j_hlife_2024_06_005 crossref_primary_10_1093_femsle_fnw219 crossref_primary_10_2147_IDR_S404202 crossref_primary_10_1007_s10517_022_05424_3 crossref_primary_10_3390_ph18050724 crossref_primary_10_1097_QCO_0000000000000464 crossref_primary_10_3390_microorganisms10102063 crossref_primary_10_1016_j_ijheh_2022_114075 crossref_primary_10_1016_j_micres_2025_128242 crossref_primary_10_3389_fpubh_2022_946370 crossref_primary_10_1186_s13568_022_01437_3 crossref_primary_10_1128_JCM_00776_18 crossref_primary_10_1080_10409238_2018_1476449 crossref_primary_10_1002_jcla_23364 crossref_primary_10_1128_AAC_01127_16 crossref_primary_10_1002_iub_1612 crossref_primary_10_1007_s10096_018_3324_5 crossref_primary_10_3390_microorganisms9051022 crossref_primary_10_1124_jpet_118_253617 crossref_primary_10_1186_s12941_023_00632_9 crossref_primary_10_1007_s10096_021_04177_7 crossref_primary_10_1016_j_jhin_2022_09_014 crossref_primary_10_3389_fcimb_2024_1411658 crossref_primary_10_1016_j_ejmech_2019_111615 crossref_primary_10_1038_s41579_019_0315_1 crossref_primary_10_1016_j_jgar_2022_10_006 crossref_primary_10_1074_jbc_RA118_002798 crossref_primary_10_1155_2023_3624497 crossref_primary_10_1128_spectrum_00031_25 crossref_primary_10_3389_fmicb_2020_00804 crossref_primary_10_1038_s41467_021_24448_3 crossref_primary_10_1016_j_scitotenv_2021_149859 crossref_primary_10_1016_j_vaccine_2022_05_061 crossref_primary_10_1128_MMBR_00078_15 crossref_primary_10_1186_s12866_024_03205_8 crossref_primary_10_1038_s41598_022_17995_2 crossref_primary_10_1128_IAI_00093_17 crossref_primary_10_1007_s12223_025_01261_9 crossref_primary_10_1002_mas_21755 crossref_primary_10_3390_microorganisms12122469 crossref_primary_10_1038_s41467_023_39428_y crossref_primary_10_1099_mgen_0_000960 crossref_primary_10_3390_microorganisms10030564 crossref_primary_10_1016_j_ijheh_2021_113831 crossref_primary_10_1186_s12879_022_07785_6 crossref_primary_10_1371_journal_pone_0282245 crossref_primary_10_3390_microorganisms9061282 crossref_primary_10_3390_microorganisms8081203 crossref_primary_10_1371_journal_pone_0224731 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/IAI.00430-15 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1098-5522 |
| ExternalDocumentID | 26056379 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI088318 – fundername: NIAID NIH HHS grantid: 1R21AI088318-01A1 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S ABOCM ACGFO ADBBV AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ NPM O9- OHT OK1 P2P RHI RNS RPM RSF SJN TR2 TWZ UPT VH1 W2D W8F WH7 WHG WOQ X7M Y6R ZGI ZXP ~KM 7X8 AAGFI |
| ID | FETCH-LOGICAL-c417t-34dca83e8fbae22c3a787aa5a9f0847b573b1f960deab28f4c1f585536aed8482 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 230 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357618300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5522 |
| IngestDate | Thu Sep 04 18:32:52 EDT 2025 Thu Apr 03 07:08:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-34dca83e8fbae22c3a787aa5a9f0847b573b1f960deab28f4c1f585536aed8482 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://iai.asm.org/content/iai/83/8/3325.full.pdf |
| PMID | 26056379 |
| PQID | 1695185434 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1695185434 pubmed_primary_26056379 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Infection and immunity |
| PublicationTitleAlternate | Infect Immun |
| PublicationYear | 2015 |
| References | 24678611 - BMC Infect Dis. 2014;14:176 19342674 - J Immunol. 2009 Apr 15;182(8):4947-56 10376834 - Microbiology. 1999 May;145 ( Pt 5):1181-90 21158655 - N Engl J Med. 2010 Dec 16;363(25):2377-9 19319196 - PLoS One. 2009;4(3):e4982 23302790 - Virulence. 2013 Feb 15;4(2):107-18 18433330 - J Infect Dis. 2008 Jun 15;197(12):1717-27 17220312 - Infect Immun. 2007 Mar;75(3):1463-72 15276215 - Gene. 2004 Aug 4;337:189-98 20887813 - Nanomedicine. 2011 Feb;7(1):88-96 15531878 - Nature. 2004 Dec 16;432(7019):917-21 21576334 - Infect Immun. 2011 Aug;79(8):3309-16 19143563 - J Infect Dis. 2009 Feb 15;199(4):513-21 20382770 - J Bacteriol. 2010 Jun;192(12):3144-58 24236613 - Microb Drug Resist. 2014 Apr;20(2):150-5 24664504 - Infect Immun. 2014 Jun;82(6):2356-67 9636876 - Clin Infect Dis. 1998 Jun;26(6):1434-8 1872659 - Arch Intern Med. 1991 Aug;151(8):1557-9 6234017 - Biochemistry. 1984 May 8;23(10):2122-7 10231495 - Mol Microbiol. 1999 Apr;32(2):403-14 20376388 - Nat Prod Rep. 2010 May;27(5):637-57 16704562 - J Intern Med. 2006 Jun;259(6):606-14 17804665 - Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51 379572 - Microbiol Rev. 1978 Mar;42(1):45-66 19447910 - J Bacteriol. 2009 Jul;191(14):4492-501 3532983 - Arch Intern Med. 1986 Oct;146(10):1913-6 23466435 - MMWR Morb Mortal Wkly Rep. 2013 Mar 8;62(9):165-70 2643575 - Infect Immun. 1989 Feb;57(2):546-52 21964731 - Microbiology. 2011 Dec;157(Pt 12):3446-57 6295467 - Biochemistry. 1982 Dec 7;21(25):6503-8 24476533 - J Proteome Res. 2014 Mar 7;13(3):1397-404 6455965 - Annu Rev Biochem. 1981;50:715-31 8335346 - Infect Immun. 1993 Aug;61(8):3164-74 22914622 - Sci Transl Med. 2012 Aug 22;4(148):148ra116 19433545 - Infect Immun. 2009 Jul;77(7):2657-71 21220482 - Infect Immun. 2011 Mar;79(3):1225-35 11897067 - Emerg Infect Dis. 2002 Feb;8(2):160-6 21918907 - Eur J Clin Microbiol Infect Dis. 2012 Jun;31(6):981-9 22039542 - PLoS One. 2011;6(10):e26734 23169997 - MBio. 2012;3(6). pii: e00224-11. doi: 10.1128/mBio.00224-11 15501752 - Infect Immun. 2004 Nov;72(11):6262-70 23516199 - Genome Announc. 2013 Mar 14;1(2):e0006513 23592085 - JAMA. 2013 Apr 17;309(15):1573-4 18486404 - Diagn Microbiol Infect Dis. 2008 Sep;62(1):1-6 24099919 - Clin Infect Dis. 2014 Jan;58(2):225-32 |
| References_xml | – reference: 24664504 - Infect Immun. 2014 Jun;82(6):2356-67 – reference: 20382770 - J Bacteriol. 2010 Jun;192(12):3144-58 – reference: 23592085 - JAMA. 2013 Apr 17;309(15):1573-4 – reference: 6234017 - Biochemistry. 1984 May 8;23(10):2122-7 – reference: 24678611 - BMC Infect Dis. 2014;14:176 – reference: 18433330 - J Infect Dis. 2008 Jun 15;197(12):1717-27 – reference: 18486404 - Diagn Microbiol Infect Dis. 2008 Sep;62(1):1-6 – reference: 23466435 - MMWR Morb Mortal Wkly Rep. 2013 Mar 8;62(9):165-70 – reference: 21220482 - Infect Immun. 2011 Mar;79(3):1225-35 – reference: 10231495 - Mol Microbiol. 1999 Apr;32(2):403-14 – reference: 19319196 - PLoS One. 2009;4(3):e4982 – reference: 23516199 - Genome Announc. 2013 Mar 14;1(2):e0006513 – reference: 21918907 - Eur J Clin Microbiol Infect Dis. 2012 Jun;31(6):981-9 – reference: 22914622 - Sci Transl Med. 2012 Aug 22;4(148):148ra116 – reference: 11897067 - Emerg Infect Dis. 2002 Feb;8(2):160-6 – reference: 23169997 - MBio. 2012;3(6). pii: e00224-11. doi: 10.1128/mBio.00224-11 – reference: 8335346 - Infect Immun. 1993 Aug;61(8):3164-74 – reference: 23302790 - Virulence. 2013 Feb 15;4(2):107-18 – reference: 24099919 - Clin Infect Dis. 2014 Jan;58(2):225-32 – reference: 24236613 - Microb Drug Resist. 2014 Apr;20(2):150-5 – reference: 16704562 - J Intern Med. 2006 Jun;259(6):606-14 – reference: 19447910 - J Bacteriol. 2009 Jul;191(14):4492-501 – reference: 15276215 - Gene. 2004 Aug 4;337:189-98 – reference: 19143563 - J Infect Dis. 2009 Feb 15;199(4):513-21 – reference: 10376834 - Microbiology. 1999 May;145 ( Pt 5):1181-90 – reference: 3532983 - Arch Intern Med. 1986 Oct;146(10):1913-6 – reference: 22039542 - PLoS One. 2011;6(10):e26734 – reference: 2643575 - Infect Immun. 1989 Feb;57(2):546-52 – reference: 15501752 - Infect Immun. 2004 Nov;72(11):6262-70 – reference: 20887813 - Nanomedicine. 2011 Feb;7(1):88-96 – reference: 6295467 - Biochemistry. 1982 Dec 7;21(25):6503-8 – reference: 6455965 - Annu Rev Biochem. 1981;50:715-31 – reference: 21158655 - N Engl J Med. 2010 Dec 16;363(25):2377-9 – reference: 20376388 - Nat Prod Rep. 2010 May;27(5):637-57 – reference: 21576334 - Infect Immun. 2011 Aug;79(8):3309-16 – reference: 1872659 - Arch Intern Med. 1991 Aug;151(8):1557-9 – reference: 24476533 - J Proteome Res. 2014 Mar 7;13(3):1397-404 – reference: 19342674 - J Immunol. 2009 Apr 15;182(8):4947-56 – reference: 379572 - Microbiol Rev. 1978 Mar;42(1):45-66 – reference: 19433545 - Infect Immun. 2009 Jul;77(7):2657-71 – reference: 17804665 - Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51 – reference: 9636876 - Clin Infect Dis. 1998 Jun;26(6):1434-8 – reference: 21964731 - Microbiology. 2011 Dec;157(Pt 12):3446-57 – reference: 15531878 - Nature. 2004 Dec 16;432(7019):917-21 – reference: 17220312 - Infect Immun. 2007 Mar;75(3):1463-72 |
| SSID | ssj0014448 |
| Score | 2.5892384 |
| Snippet | The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3325 |
| SubjectTerms | Animals Enterobactin - analogs & derivatives Enterobactin - metabolism Glucosides - metabolism Humans Hydroxamic Acids - metabolism Klebsiella Infections - microbiology Klebsiella pneumoniae - genetics Klebsiella pneumoniae - growth & development Klebsiella pneumoniae - metabolism Klebsiella pneumoniae - pathogenicity Male Mice Microbial Viability - drug effects Phenols - metabolism Siderophores - metabolism Thiazoles - metabolism Virulence Young Adult |
| Title | Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26056379 https://www.proquest.com/docview/1695185434 |
| Volume | 83 |
| WOSCitedRecordID | wos000357618300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaAAuLCo7xKAQ0SB5Bwu4njxDlVK0RFBV31AGhvKz_GNNLWWTZJRX8Tf7LjJKs9ISFxiWJLjmJ5PP4-z4uxt6m0rrCY80QbwzOUlpuYCFIXaSwHmbu8j_D-8bWYzdR8Xp6NF27N6Fa50Ym9ona1jXfkh0lOWEDFQMij1S8eq0ZF6-pYQuMm2xEEZaJUF_OtFSHLsiEUrlRcEtDYOL6n6vBkenLQ57viifw7uOwPmeMH__t7D9n9EV7CdJCHR-wGhl12Zyg4ebXL7p6OpvTH7M8U17SXSd2FD2C6FkLdQsTfVaj0pr_Ry4tYUmsZG_UaYgLP7Sjs464aIAwJP4nOt-ck16R6SHih9nBOFJda6y4ebPCub150tr6sGlt3zXv4skTTVNH9ClYBO5pCpRHwN9AnatDBQRX69yfs-_Gnbx8_87FyA7dZUrRcZM5qJVB5ozFNrdCkF7SWuvQTOg6NLIRJPJEnh9qkymc28cRbpMg1OpWp9Cm7FeqAzxkQHUqsQkKdKVF5iXqSexST0jrvBGGvPfZmsyAL2hnR3KED0iwW2yXZY8-GVV2shhQei8jiclGUL_5h9D67RyhJDl5_L9mOJ72Ar9hte9lWzfp1L3L0nJ2dXgOYRuUC |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobactin%2C+but+not+yersiniabactin%2C+salmochelin%2C+or+enterobactin%2C+enables+the+growth%2Fsurvival+of+hypervirulent+%28hypermucoviscous%29+Klebsiella+pneumoniae+ex+vivo+and+in+vivo&rft.jtitle=Infection+and+immunity&rft.au=Russo%2C+Thomas+A&rft.au=Olson%2C+Ruth&rft.au=MacDonald%2C+Ulrike&rft.au=Beanan%2C+Janet&rft.date=2015-08-01&rft.issn=1098-5522&rft.eissn=1098-5522&rft.volume=83&rft.issue=8&rft.spage=3325&rft_id=info:doi/10.1128%2FIAI.00430-15&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5522&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5522&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5522&client=summon |