Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo

The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enteroba...

Full description

Saved in:
Bibliographic Details
Published in:Infection and immunity Vol. 83; no. 8; p. 3325
Main Authors: Russo, Thomas A, Olson, Ruth, MacDonald, Ulrike, Beanan, Janet, Davidson, Bruce A
Format: Journal Article
Language:English
Published: United States 01.08.2015
Subjects:
ISSN:1098-5522, 1098-5522
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.
AbstractList The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.
The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.
Author Davidson, Bruce A
Russo, Thomas A
MacDonald, Ulrike
Olson, Ruth
Beanan, Janet
Author_xml – sequence: 1
  givenname: Thomas A
  surname: Russo
  fullname: Russo, Thomas A
  email: trusso@acsu.buffalo.edu
  organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA Department of Microbiology and Immunology, University at Buffalo-State University of New York, Buffalo, New York, USA The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA trusso@acsu.buffalo.edu
– sequence: 2
  givenname: Ruth
  surname: Olson
  fullname: Olson, Ruth
  organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
– sequence: 3
  givenname: Ulrike
  surname: MacDonald
  fullname: MacDonald, Ulrike
  organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
– sequence: 4
  givenname: Janet
  surname: Beanan
  fullname: Beanan, Janet
  organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
– sequence: 5
  givenname: Bruce A
  surname: Davidson
  fullname: Davidson, Bruce A
  organization: Veterans Administration Western New York Healthcare System, Buffalo, New York, USA Department of Anesthesiology, University at Buffalo-State University of New York, Buffalo, New York, USA Department of Pathology and Anatomical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26056379$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwzAQtBCI8rpxRj6CRIrt2IlzrBCPikpc4Fytkw0NcuxiJ4V-Ez9JClTqaWdWM7OjPSb7zjsk5JyzMedC30wn0zFjMmUJV3vkiLNCJ0oJsb-DR-Q4xnfGuJRSH5KRyJjK0rw4It8TDN5A2TXumpq-o853dI0hNq6B7T6CbX25QLshPlB03Y4LHRiLkXYLpG_Bf3aLm9iHVbMCS31NF-slDiz0drDRy1_a9qVfNbH0fbyiTxZNbNBaoEuHfeuHy0jxiw4RnoKraON-8Sk5qMFGPPufJ-T1_u7l9jGZPT9MbyezpJQ875JUViXoFHVtAIUoU8h1DqCgqJmWuVF5anhdZKxCMELXsuS10kqlGWClpRYn5PIvdxn8R4-xm7dD101Bh0PjOc8KxbWSqRykF__S3rRYzZehaSGs59sHix9jrIM6
CitedBy_id crossref_primary_10_3390_diagnostics14080792
crossref_primary_10_1016_j_ebiom_2024_105302
crossref_primary_10_1128_aac_00030_23
crossref_primary_10_3390_antibiotics11081100
crossref_primary_10_1016_j_pdpdt_2019_08_012
crossref_primary_10_1080_09273948_2022_2161398
crossref_primary_10_1093_jambio_lxae192
crossref_primary_10_3390_pathogens14070648
crossref_primary_10_2147_IDR_S391468
crossref_primary_10_3390_biology13020078
crossref_primary_10_1128_msystems_01675_24
crossref_primary_10_3389_fmed_2022_889020
crossref_primary_10_1089_mdr_2021_0307
crossref_primary_10_1038_s41598_025_17084_0
crossref_primary_10_1128_spectrum_00719_23
crossref_primary_10_1128_spectrum_00788_22
crossref_primary_10_1073_pnas_2213116119
crossref_primary_10_1016_j_ijfoodmicro_2025_111170
crossref_primary_10_3389_fcimb_2018_00030
crossref_primary_10_1186_s13073_023_01159_6
crossref_primary_10_1016_j_micpath_2023_106221
crossref_primary_10_1128_jb_00012_25
crossref_primary_10_1016_j_jgar_2021_02_020
crossref_primary_10_3389_fcimb_2022_979219
crossref_primary_10_3389_fmicb_2020_00271
crossref_primary_10_1038_srep24099
crossref_primary_10_1186_s13073_023_01260_w
crossref_primary_10_3389_fmicb_2024_1355253
crossref_primary_10_3390_pathogens11121394
crossref_primary_10_1111_joim_13007
crossref_primary_10_1016_j_jgar_2020_12_012
crossref_primary_10_1128_spectrum_01929_21
crossref_primary_10_1017_S0950268818001826
crossref_primary_10_1186_s13756_019_0615_2
crossref_primary_10_1128_CMR_00001_19
crossref_primary_10_3390_microorganisms10061138
crossref_primary_10_1038_s41598_018_27420_2
crossref_primary_10_1177_0300060519863544
crossref_primary_10_1186_s13073_018_0587_5
crossref_primary_10_1016_j_heliyon_2024_e30187
crossref_primary_10_1016_j_toxicon_2021_04_007
crossref_primary_10_1016_j_microb_2025_100289
crossref_primary_10_3389_fcimb_2022_1083009
crossref_primary_10_1089_mdr_2019_0394
crossref_primary_10_1007_s10096_019_03676_y
crossref_primary_10_1128_jb_00024_24
crossref_primary_10_1080_21505594_2025_2550621
crossref_primary_10_1093_jambio_lxaf128
crossref_primary_10_1007_s10096_015_2551_2
crossref_primary_10_3389_fmicb_2023_1325077
crossref_primary_10_1016_j_ebiom_2024_105331
crossref_primary_10_1007_s15010_024_02456_x
crossref_primary_10_1016_j_jbc_2022_101651
crossref_primary_10_1080_21505594_2025_2563018
crossref_primary_10_1097_MRM_0000000000000322
crossref_primary_10_1128_mSphere_00341_17
crossref_primary_10_1111_1462_2920_15721
crossref_primary_10_3390_tropicalmed9040080
crossref_primary_10_1016_j_micpath_2020_104114
crossref_primary_10_4103_ijabmr_ijabmr_747_21
crossref_primary_10_1371_journal_ppat_1013499
crossref_primary_10_3389_fcimb_2018_00004
crossref_primary_10_3389_fmicb_2016_00849
crossref_primary_10_3389_fmicb_2024_1367422
crossref_primary_10_1186_s12941_022_00494_7
crossref_primary_10_1016_j_micpath_2018_01_030
crossref_primary_10_1186_s13099_024_00667_z
crossref_primary_10_3389_fmicb_2017_01984
crossref_primary_10_1186_s12941_018_0302_9
crossref_primary_10_1371_journal_pone_0200835
crossref_primary_10_1080_22221751_2024_2427793
crossref_primary_10_1186_s12879_020_05143_y
crossref_primary_10_1007_s00203_023_03665_y
crossref_primary_10_1128_AAC_01031_18
crossref_primary_10_1002_jcla_24743
crossref_primary_10_1007_s00438_018_1477_7
crossref_primary_10_1128_spectrum_01242_22
crossref_primary_10_3389_fmicb_2022_1001169
crossref_primary_10_1073_pnas_2110227118
crossref_primary_10_1186_s12866_017_1148_6
crossref_primary_10_1039_C7CC05197B
crossref_primary_10_1016_j_imbio_2016_06_014
crossref_primary_10_1016_j_ijantimicag_2024_107275
crossref_primary_10_1038_s41467_023_43802_1
crossref_primary_10_1186_s13756_018_0371_8
crossref_primary_10_1128_mbio_03838_24
crossref_primary_10_1128_mSphere_00045_21
crossref_primary_10_1093_lambio_ovac005
crossref_primary_10_1146_annurev_physiol_052521_121810
crossref_primary_10_1186_s12941_019_0343_8
crossref_primary_10_1159_000518679
crossref_primary_10_1556_030_2020_01143
crossref_primary_10_1016_j_ebiom_2025_105683
crossref_primary_10_2147_IDR_S461903
crossref_primary_10_1099_jmm_0_000942
crossref_primary_10_1128_JCM_00959_18
crossref_primary_10_1097_MD_0000000000020360
crossref_primary_10_3389_fcimb_2021_752011
crossref_primary_10_1007_s10096_022_04407_6
crossref_primary_10_1186_s12866_023_03022_5
crossref_primary_10_1186_s12879_022_07558_1
crossref_primary_10_3389_fcimb_2017_00103
crossref_primary_10_2147_IDR_S387187
crossref_primary_10_1186_s13073_019_0706_y
crossref_primary_10_2147_IDR_S276642
crossref_primary_10_3389_fmicb_2024_1385724
crossref_primary_10_1186_s12866_023_03124_0
crossref_primary_10_3389_fmicb_2023_1193274
crossref_primary_10_1093_infdis_jiw378
crossref_primary_10_1007_s12088_023_01112_6
crossref_primary_10_2217_fmb_2021_0222
crossref_primary_10_1016_j_jiac_2023_09_028
crossref_primary_10_1128_mSphere_00537_18
crossref_primary_10_1089_fpd_2020_2847
crossref_primary_10_1128_spectrum_01910_24
crossref_primary_10_3390_microorganisms11030661
crossref_primary_10_1007_s12088_024_01247_0
crossref_primary_10_1080_10409238_2025_2476476
crossref_primary_10_3389_fpubh_2022_991306
crossref_primary_10_1080_29986990_2025_2525100
crossref_primary_10_2147_IDR_S252637
crossref_primary_10_1186_s13099_021_00439_z
crossref_primary_10_3389_fmicb_2020_00436
crossref_primary_10_1097_INF_0000000000003253
crossref_primary_10_1038_s41598_018_29353_2
crossref_primary_10_3389_fcimb_2017_00483
crossref_primary_10_1016_j_vetmic_2021_109307
crossref_primary_10_3389_fmicb_2022_1003783
crossref_primary_10_1016_j_cld_2025_03_002
crossref_primary_10_3390_pharmaceutics13050603
crossref_primary_10_1128_spectrum_01062_22
crossref_primary_10_1016_j_vetmic_2022_109361
crossref_primary_10_3389_fcimb_2016_00014
crossref_primary_10_3389_fcimb_2021_709681
crossref_primary_10_2147_IDR_S243836
crossref_primary_10_2147_IDR_S371477
crossref_primary_10_3390_pathogens12020221
crossref_primary_10_1007_s11033_019_04843_2
crossref_primary_10_3389_fcimb_2021_688989
crossref_primary_10_1016_j_jprot_2016_04_006
crossref_primary_10_1016_j_micres_2024_127896
crossref_primary_10_1016_j_vetmic_2019_108481
crossref_primary_10_3389_fcimb_2022_968955
crossref_primary_10_2147_IDR_S370273
crossref_primary_10_1089_mdr_2019_0433
crossref_primary_10_1016_j_hlife_2024_06_005
crossref_primary_10_1093_femsle_fnw219
crossref_primary_10_2147_IDR_S404202
crossref_primary_10_1007_s10517_022_05424_3
crossref_primary_10_3390_ph18050724
crossref_primary_10_1097_QCO_0000000000000464
crossref_primary_10_3390_microorganisms10102063
crossref_primary_10_1016_j_ijheh_2022_114075
crossref_primary_10_1016_j_micres_2025_128242
crossref_primary_10_3389_fpubh_2022_946370
crossref_primary_10_1186_s13568_022_01437_3
crossref_primary_10_1128_JCM_00776_18
crossref_primary_10_1080_10409238_2018_1476449
crossref_primary_10_1002_jcla_23364
crossref_primary_10_1128_AAC_01127_16
crossref_primary_10_1002_iub_1612
crossref_primary_10_1007_s10096_018_3324_5
crossref_primary_10_3390_microorganisms9051022
crossref_primary_10_1124_jpet_118_253617
crossref_primary_10_1186_s12941_023_00632_9
crossref_primary_10_1007_s10096_021_04177_7
crossref_primary_10_1016_j_jhin_2022_09_014
crossref_primary_10_3389_fcimb_2024_1411658
crossref_primary_10_1016_j_ejmech_2019_111615
crossref_primary_10_1038_s41579_019_0315_1
crossref_primary_10_1016_j_jgar_2022_10_006
crossref_primary_10_1074_jbc_RA118_002798
crossref_primary_10_1155_2023_3624497
crossref_primary_10_1128_spectrum_00031_25
crossref_primary_10_3389_fmicb_2020_00804
crossref_primary_10_1038_s41467_021_24448_3
crossref_primary_10_1016_j_scitotenv_2021_149859
crossref_primary_10_1016_j_vaccine_2022_05_061
crossref_primary_10_1128_MMBR_00078_15
crossref_primary_10_1186_s12866_024_03205_8
crossref_primary_10_1038_s41598_022_17995_2
crossref_primary_10_1128_IAI_00093_17
crossref_primary_10_1007_s12223_025_01261_9
crossref_primary_10_1002_mas_21755
crossref_primary_10_3390_microorganisms12122469
crossref_primary_10_1038_s41467_023_39428_y
crossref_primary_10_1099_mgen_0_000960
crossref_primary_10_3390_microorganisms10030564
crossref_primary_10_1016_j_ijheh_2021_113831
crossref_primary_10_1186_s12879_022_07785_6
crossref_primary_10_1371_journal_pone_0282245
crossref_primary_10_3390_microorganisms9061282
crossref_primary_10_3390_microorganisms8081203
crossref_primary_10_1371_journal_pone_0224731
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/IAI.00430-15
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
ExternalDocumentID 26056379
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI088318
– fundername: NIAID NIH HHS
  grantid: 1R21AI088318-01A1
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UPT
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c417t-34dca83e8fbae22c3a787aa5a9f0847b573b1f960deab28f4c1f585536aed8482
IEDL.DBID 7X8
ISICitedReferencesCount 230
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357618300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5522
IngestDate Thu Sep 04 18:32:52 EDT 2025
Thu Apr 03 07:08:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-34dca83e8fbae22c3a787aa5a9f0847b573b1f960deab28f4c1f585536aed8482
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://iai.asm.org/content/iai/83/8/3325.full.pdf
PMID 26056379
PQID 1695185434
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1695185434
pubmed_primary_26056379
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2015
References 24678611 - BMC Infect Dis. 2014;14:176
19342674 - J Immunol. 2009 Apr 15;182(8):4947-56
10376834 - Microbiology. 1999 May;145 ( Pt 5):1181-90
21158655 - N Engl J Med. 2010 Dec 16;363(25):2377-9
19319196 - PLoS One. 2009;4(3):e4982
23302790 - Virulence. 2013 Feb 15;4(2):107-18
18433330 - J Infect Dis. 2008 Jun 15;197(12):1717-27
17220312 - Infect Immun. 2007 Mar;75(3):1463-72
15276215 - Gene. 2004 Aug 4;337:189-98
20887813 - Nanomedicine. 2011 Feb;7(1):88-96
15531878 - Nature. 2004 Dec 16;432(7019):917-21
21576334 - Infect Immun. 2011 Aug;79(8):3309-16
19143563 - J Infect Dis. 2009 Feb 15;199(4):513-21
20382770 - J Bacteriol. 2010 Jun;192(12):3144-58
24236613 - Microb Drug Resist. 2014 Apr;20(2):150-5
24664504 - Infect Immun. 2014 Jun;82(6):2356-67
9636876 - Clin Infect Dis. 1998 Jun;26(6):1434-8
1872659 - Arch Intern Med. 1991 Aug;151(8):1557-9
6234017 - Biochemistry. 1984 May 8;23(10):2122-7
10231495 - Mol Microbiol. 1999 Apr;32(2):403-14
20376388 - Nat Prod Rep. 2010 May;27(5):637-57
16704562 - J Intern Med. 2006 Jun;259(6):606-14
17804665 - Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51
379572 - Microbiol Rev. 1978 Mar;42(1):45-66
19447910 - J Bacteriol. 2009 Jul;191(14):4492-501
3532983 - Arch Intern Med. 1986 Oct;146(10):1913-6
23466435 - MMWR Morb Mortal Wkly Rep. 2013 Mar 8;62(9):165-70
2643575 - Infect Immun. 1989 Feb;57(2):546-52
21964731 - Microbiology. 2011 Dec;157(Pt 12):3446-57
6295467 - Biochemistry. 1982 Dec 7;21(25):6503-8
24476533 - J Proteome Res. 2014 Mar 7;13(3):1397-404
6455965 - Annu Rev Biochem. 1981;50:715-31
8335346 - Infect Immun. 1993 Aug;61(8):3164-74
22914622 - Sci Transl Med. 2012 Aug 22;4(148):148ra116
19433545 - Infect Immun. 2009 Jul;77(7):2657-71
21220482 - Infect Immun. 2011 Mar;79(3):1225-35
11897067 - Emerg Infect Dis. 2002 Feb;8(2):160-6
21918907 - Eur J Clin Microbiol Infect Dis. 2012 Jun;31(6):981-9
22039542 - PLoS One. 2011;6(10):e26734
23169997 - MBio. 2012;3(6). pii: e00224-11. doi: 10.1128/mBio.00224-11
15501752 - Infect Immun. 2004 Nov;72(11):6262-70
23516199 - Genome Announc. 2013 Mar 14;1(2):e0006513
23592085 - JAMA. 2013 Apr 17;309(15):1573-4
18486404 - Diagn Microbiol Infect Dis. 2008 Sep;62(1):1-6
24099919 - Clin Infect Dis. 2014 Jan;58(2):225-32
References_xml – reference: 24664504 - Infect Immun. 2014 Jun;82(6):2356-67
– reference: 20382770 - J Bacteriol. 2010 Jun;192(12):3144-58
– reference: 23592085 - JAMA. 2013 Apr 17;309(15):1573-4
– reference: 6234017 - Biochemistry. 1984 May 8;23(10):2122-7
– reference: 24678611 - BMC Infect Dis. 2014;14:176
– reference: 18433330 - J Infect Dis. 2008 Jun 15;197(12):1717-27
– reference: 18486404 - Diagn Microbiol Infect Dis. 2008 Sep;62(1):1-6
– reference: 23466435 - MMWR Morb Mortal Wkly Rep. 2013 Mar 8;62(9):165-70
– reference: 21220482 - Infect Immun. 2011 Mar;79(3):1225-35
– reference: 10231495 - Mol Microbiol. 1999 Apr;32(2):403-14
– reference: 19319196 - PLoS One. 2009;4(3):e4982
– reference: 23516199 - Genome Announc. 2013 Mar 14;1(2):e0006513
– reference: 21918907 - Eur J Clin Microbiol Infect Dis. 2012 Jun;31(6):981-9
– reference: 22914622 - Sci Transl Med. 2012 Aug 22;4(148):148ra116
– reference: 11897067 - Emerg Infect Dis. 2002 Feb;8(2):160-6
– reference: 23169997 - MBio. 2012;3(6). pii: e00224-11. doi: 10.1128/mBio.00224-11
– reference: 8335346 - Infect Immun. 1993 Aug;61(8):3164-74
– reference: 23302790 - Virulence. 2013 Feb 15;4(2):107-18
– reference: 24099919 - Clin Infect Dis. 2014 Jan;58(2):225-32
– reference: 24236613 - Microb Drug Resist. 2014 Apr;20(2):150-5
– reference: 16704562 - J Intern Med. 2006 Jun;259(6):606-14
– reference: 19447910 - J Bacteriol. 2009 Jul;191(14):4492-501
– reference: 15276215 - Gene. 2004 Aug 4;337:189-98
– reference: 19143563 - J Infect Dis. 2009 Feb 15;199(4):513-21
– reference: 10376834 - Microbiology. 1999 May;145 ( Pt 5):1181-90
– reference: 3532983 - Arch Intern Med. 1986 Oct;146(10):1913-6
– reference: 22039542 - PLoS One. 2011;6(10):e26734
– reference: 2643575 - Infect Immun. 1989 Feb;57(2):546-52
– reference: 15501752 - Infect Immun. 2004 Nov;72(11):6262-70
– reference: 20887813 - Nanomedicine. 2011 Feb;7(1):88-96
– reference: 6295467 - Biochemistry. 1982 Dec 7;21(25):6503-8
– reference: 6455965 - Annu Rev Biochem. 1981;50:715-31
– reference: 21158655 - N Engl J Med. 2010 Dec 16;363(25):2377-9
– reference: 20376388 - Nat Prod Rep. 2010 May;27(5):637-57
– reference: 21576334 - Infect Immun. 2011 Aug;79(8):3309-16
– reference: 1872659 - Arch Intern Med. 1991 Aug;151(8):1557-9
– reference: 24476533 - J Proteome Res. 2014 Mar 7;13(3):1397-404
– reference: 19342674 - J Immunol. 2009 Apr 15;182(8):4947-56
– reference: 379572 - Microbiol Rev. 1978 Mar;42(1):45-66
– reference: 19433545 - Infect Immun. 2009 Jul;77(7):2657-71
– reference: 17804665 - Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51
– reference: 9636876 - Clin Infect Dis. 1998 Jun;26(6):1434-8
– reference: 21964731 - Microbiology. 2011 Dec;157(Pt 12):3446-57
– reference: 15531878 - Nature. 2004 Dec 16;432(7019):917-21
– reference: 17220312 - Infect Immun. 2007 Mar;75(3):1463-72
SSID ssj0014448
Score 2.5892384
Snippet The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3325
SubjectTerms Animals
Enterobactin - analogs & derivatives
Enterobactin - metabolism
Glucosides - metabolism
Humans
Hydroxamic Acids - metabolism
Klebsiella Infections - microbiology
Klebsiella pneumoniae - genetics
Klebsiella pneumoniae - growth & development
Klebsiella pneumoniae - metabolism
Klebsiella pneumoniae - pathogenicity
Male
Mice
Microbial Viability - drug effects
Phenols - metabolism
Siderophores - metabolism
Thiazoles - metabolism
Virulence
Young Adult
Title Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/26056379
https://www.proquest.com/docview/1695185434
Volume 83
WOSCitedRecordID wos000357618300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaAAuLCo7xKAQ0SB5Bwu4njxDlVK0RFBV31AGhvKz_GNNLWWTZJRX8Tf7LjJKs9ISFxiWJLjmJ5PP4-z4uxt6m0rrCY80QbwzOUlpuYCFIXaSwHmbu8j_D-8bWYzdR8Xp6NF27N6Fa50Ym9ona1jXfkh0lOWEDFQMij1S8eq0ZF6-pYQuMm2xEEZaJUF_OtFSHLsiEUrlRcEtDYOL6n6vBkenLQ57viifw7uOwPmeMH__t7D9n9EV7CdJCHR-wGhl12Zyg4ebXL7p6OpvTH7M8U17SXSd2FD2C6FkLdQsTfVaj0pr_Ry4tYUmsZG_UaYgLP7Sjs464aIAwJP4nOt-ck16R6SHih9nBOFJda6y4ebPCub150tr6sGlt3zXv4skTTVNH9ClYBO5pCpRHwN9AnatDBQRX69yfs-_Gnbx8_87FyA7dZUrRcZM5qJVB5ozFNrdCkF7SWuvQTOg6NLIRJPJEnh9qkymc28cRbpMg1OpWp9Cm7FeqAzxkQHUqsQkKdKVF5iXqSexST0jrvBGGvPfZmsyAL2hnR3KED0iwW2yXZY8-GVV2shhQei8jiclGUL_5h9D67RyhJDl5_L9mOJ72Ar9hte9lWzfp1L3L0nJ2dXgOYRuUC
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobactin%2C+but+not+yersiniabactin%2C+salmochelin%2C+or+enterobactin%2C+enables+the+growth%2Fsurvival+of+hypervirulent+%28hypermucoviscous%29+Klebsiella+pneumoniae+ex+vivo+and+in+vivo&rft.jtitle=Infection+and+immunity&rft.au=Russo%2C+Thomas+A&rft.au=Olson%2C+Ruth&rft.au=MacDonald%2C+Ulrike&rft.au=Beanan%2C+Janet&rft.date=2015-08-01&rft.issn=1098-5522&rft.eissn=1098-5522&rft.volume=83&rft.issue=8&rft.spage=3325&rft_id=info:doi/10.1128%2FIAI.00430-15&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5522&client=summon