Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages

An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use struct...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of virology Ročník 88; číslo 8; s. 4047
Hlavní autori: Whittle, James R R, Wheatley, Adam K, Wu, Lan, Lingwood, Daniel, Kanekiyo, Masaru, Ma, Steven S, Narpala, Sandeep R, Yassine, Hadi M, Frank, Gregory M, Yewdell, Jonathan W, Ledgerwood, Julie E, Wei, Chih-Jen, McDermott, Adrian B, Graham, Barney S, Koup, Richard A, Nabel, Gary J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2014
Predmet:
ISSN:1098-5514, 1098-5514
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles. Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.
AbstractList An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles. Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.
An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.UNLABELLEDAn understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.IMPORTANCEUniversal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.
Author Kanekiyo, Masaru
Yassine, Hadi M
Nabel, Gary J
Lingwood, Daniel
Frank, Gregory M
Wu, Lan
Whittle, James R R
Graham, Barney S
Yewdell, Jonathan W
Ledgerwood, Julie E
Wei, Chih-Jen
McDermott, Adrian B
Ma, Steven S
Narpala, Sandeep R
Koup, Richard A
Wheatley, Adam K
Author_xml – sequence: 1
  givenname: James R R
  surname: Whittle
  fullname: Whittle, James R R
  organization: Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 2
  givenname: Adam K
  surname: Wheatley
  fullname: Wheatley, Adam K
– sequence: 3
  givenname: Lan
  surname: Wu
  fullname: Wu, Lan
– sequence: 4
  givenname: Daniel
  surname: Lingwood
  fullname: Lingwood, Daniel
– sequence: 5
  givenname: Masaru
  surname: Kanekiyo
  fullname: Kanekiyo, Masaru
– sequence: 6
  givenname: Steven S
  surname: Ma
  fullname: Ma, Steven S
– sequence: 7
  givenname: Sandeep R
  surname: Narpala
  fullname: Narpala, Sandeep R
– sequence: 8
  givenname: Hadi M
  surname: Yassine
  fullname: Yassine, Hadi M
– sequence: 9
  givenname: Gregory M
  surname: Frank
  fullname: Frank, Gregory M
– sequence: 10
  givenname: Jonathan W
  surname: Yewdell
  fullname: Yewdell, Jonathan W
– sequence: 11
  givenname: Julie E
  surname: Ledgerwood
  fullname: Ledgerwood, Julie E
– sequence: 12
  givenname: Chih-Jen
  surname: Wei
  fullname: Wei, Chih-Jen
– sequence: 13
  givenname: Adrian B
  surname: McDermott
  fullname: McDermott, Adrian B
– sequence: 14
  givenname: Barney S
  surname: Graham
  fullname: Graham, Barney S
– sequence: 15
  givenname: Richard A
  surname: Koup
  fullname: Koup, Richard A
– sequence: 16
  givenname: Gary J
  surname: Nabel
  fullname: Nabel, Gary J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24501410$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URD9gY0YeWVL8Os7XiCpKiypYgDVynNetURIX2ynqyi8nEkViutPp0Z10UzLqbIeEXAObA_D87ul9PWex4DyC-IxMgBV5lCQgRv_8mEy9_2AMhEjFBRlzkQwe2IR8Lxv7RdUx2BaDO1KHB5SNp2EnA10lz0APUinTyWBsR7ExygRPlbPeRw6lCuaA1Adso9o4VAFrKrtgKlsb9FQ729K2b4LZN0jXW7pDeThGaidNRxvTodyivyTnepjEq5POyNvy4XWxijYvj-vF_SZSArIQxRxzLHJIhFJaS56llchqpjVXusiyTKY8ruu80qlKEpYOgQCM45QJnaWFqPiM3P727p397NGHsjVeYdPIDm3vS0gA4iKGDAb05oT2VYt1uXemle5Y_v3GfwBCDHJx
CitedBy_id crossref_primary_10_7554_eLife_57659
crossref_primary_10_1093_intimm_dxz049
crossref_primary_10_1038_nbt_4052
crossref_primary_10_1038_s41467_019_11821_6
crossref_primary_10_1016_j_immuni_2020_03_020
crossref_primary_10_1016_j_immuni_2019_03_010
crossref_primary_10_3389_fimmu_2022_960120
crossref_primary_10_1038_s41541_019_0101_0
crossref_primary_10_1126_scitranslmed_adr8373
crossref_primary_10_1016_j_str_2022_04_003
crossref_primary_10_1038_srep36298
crossref_primary_10_1128_JVI_01526_20
crossref_primary_10_1111_imr_12502
crossref_primary_10_1172_JCI123366
crossref_primary_10_1371_journal_pone_0233794
crossref_primary_10_1126_sciadv_ado1331
crossref_primary_10_1038_s41467_018_08165_y
crossref_primary_10_1073_pnas_1613225113
crossref_primary_10_1038_s41598_019_51860_z
crossref_primary_10_1128_mbio_02247_24
crossref_primary_10_4049_jimmunol_1701174
crossref_primary_10_1093_intimm_dxy069
crossref_primary_10_1126_scitranslmed_aav5701
crossref_primary_10_1016_j_coi_2018_04_009
crossref_primary_10_1016_j_vaccine_2017_08_053
crossref_primary_10_1080_21645515_2023_2292381
crossref_primary_10_1016_j_immuni_2021_08_017
crossref_primary_10_1007_s00705_020_04676_6
crossref_primary_10_3390_vaccines8030382
crossref_primary_10_1128_JVI_01833_14
crossref_primary_10_1016_j_str_2025_02_010
crossref_primary_10_1038_s41586_021_03365_x
crossref_primary_10_1016_j_clim_2020_108440
crossref_primary_10_1371_journal_pone_0254421
crossref_primary_10_1016_S1473_3099_19_30584_5
crossref_primary_10_1128_JVI_02379_20
crossref_primary_10_1038_s41467_021_21954_2
crossref_primary_10_1016_j_immuni_2024_03_022
crossref_primary_10_1126_science_adf6591
crossref_primary_10_1038_s41541_024_00862_8
crossref_primary_10_3390_ijms25137259
crossref_primary_10_1038_ni_3680
crossref_primary_10_1084_jem_20200547
crossref_primary_10_3389_fimmu_2024_1399960
crossref_primary_10_3390_vaccines9070717
crossref_primary_10_1016_j_coviro_2016_03_002
crossref_primary_10_1126_sciimmunol_abf5314
crossref_primary_10_1016_j_immuni_2025_02_004
crossref_primary_10_1084_jem_20160789
crossref_primary_10_1089_vim_2017_0129
crossref_primary_10_1073_pnas_2503899122
crossref_primary_10_1126_scitranslmed_ade4976
crossref_primary_10_2217_fvl_2016_0045
crossref_primary_10_1126_sciimmunol_abi4710
crossref_primary_10_1016_j_vaccine_2025_127361
crossref_primary_10_1016_j_immuni_2023_06_019
crossref_primary_10_1038_s41541_022_00547_0
crossref_primary_10_1126_science_abm0271
crossref_primary_10_1007_s11684_020_0764_y
crossref_primary_10_1002_cti2_1199
crossref_primary_10_1126_sciimmunol_aan2676
crossref_primary_10_3390_v10120724
crossref_primary_10_1016_j_virol_2014_07_011
crossref_primary_10_1128_JVI_00859_18
crossref_primary_10_1038_srep22666
crossref_primary_10_1016_j_coviro_2015_04_002
crossref_primary_10_1371_journal_pmed_1003024
crossref_primary_10_1128_JVI_02372_15
crossref_primary_10_1016_j_str_2024_05_001
crossref_primary_10_1016_j_cell_2019_11_003
crossref_primary_10_1016_j_vaccine_2019_08_030
crossref_primary_10_4049_jimmunol_2001299
crossref_primary_10_3389_fimmu_2019_01452
crossref_primary_10_3389_fimmu_2019_01694
crossref_primary_10_3390_vaccines9020125
crossref_primary_10_1038_s41467_024_48555_z
crossref_primary_10_1080_22221751_2024_2396864
crossref_primary_10_1073_pnas_2109388118
crossref_primary_10_1038_s41586_025_08821_6
crossref_primary_10_1126_scitranslmed_ady3570
crossref_primary_10_1093_infdis_jiaf297
crossref_primary_10_1126_sciimmunol_adj9534
crossref_primary_10_3389_fmicb_2022_937192
crossref_primary_10_1371_journal_ppat_1011514
crossref_primary_10_3390_cells11223662
crossref_primary_10_4049_jimmunol_1900819
crossref_primary_10_1016_j_coi_2016_05_012
crossref_primary_10_1038_s41591_021_01636_8
crossref_primary_10_4049_jimmunol_1601106
crossref_primary_10_1038_s41541_022_00463_3
crossref_primary_10_1084_jem_20200901
crossref_primary_10_3390_cells10081843
crossref_primary_10_1128_JVI_01970_17
crossref_primary_10_3389_fimmu_2022_1026951
crossref_primary_10_3389_fimmu_2019_01086
crossref_primary_10_1038_s41467_020_14579_4
crossref_primary_10_1038_s41590_022_01345_5
crossref_primary_10_1038_s41598_019_38906_y
crossref_primary_10_1038_s41467_024_55193_y
crossref_primary_10_1126_sciimmunol_aau2710
crossref_primary_10_1126_sciimmunol_abn1250
crossref_primary_10_1038_s41590_018_0305_x
crossref_primary_10_1111_imcb_12508
crossref_primary_10_1158_2326_6066_CIR_20_0949
crossref_primary_10_1016_j_chom_2024_12_004
crossref_primary_10_1126_scitranslmed_aan8405
crossref_primary_10_1016_j_immuni_2019_06_024
crossref_primary_10_1093_infdis_jiw608
crossref_primary_10_1073_pnas_1816300116
crossref_primary_10_1371_journal_ppat_1010891
crossref_primary_10_1172_JCI74351
crossref_primary_10_1073_pnas_1414070111
crossref_primary_10_1016_j_celrep_2021_109961
crossref_primary_10_1002_cti2_1456
crossref_primary_10_1016_j_immuni_2019_09_001
crossref_primary_10_1126_scitranslmed_abe5449
crossref_primary_10_3390_vaccines8030462
crossref_primary_10_1126_sciimmunol_ado9572
crossref_primary_10_1016_j_immuni_2022_07_006
crossref_primary_10_1084_jem_20181624
crossref_primary_10_3389_fimmu_2019_00829
crossref_primary_10_1016_j_immuni_2022_10_015
crossref_primary_10_1016_j_cels_2020_09_005
crossref_primary_10_1016_j_immuni_2017_12_009
crossref_primary_10_1016_j_vaccine_2019_08_062
crossref_primary_10_1371_journal_pone_0222436
crossref_primary_10_1016_j_xpro_2025_103610
crossref_primary_10_1038_srep26478
crossref_primary_10_1080_14712598_2019_1604671
crossref_primary_10_1016_j_immuni_2024_07_022
crossref_primary_10_1038_s41573_019_0056_x
crossref_primary_10_1073_pnas_2216521120
crossref_primary_10_1038_nm_4224
crossref_primary_10_1016_j_cell_2019_11_032
crossref_primary_10_3389_fimmu_2022_1087018
crossref_primary_10_1016_j_jim_2017_07_001
crossref_primary_10_1128_spectrum_01902_22
crossref_primary_10_3389_fimmu_2019_00611
crossref_primary_10_1016_j_cell_2016_06_043
crossref_primary_10_1038_s41591_025_03599_6
crossref_primary_10_1038_srep20842
crossref_primary_10_4049_jimmunol_1402835
crossref_primary_10_1586_14760584_2015_1068125
crossref_primary_10_1038_nm_3927
crossref_primary_10_1128_mSphere_01342_20
crossref_primary_10_3390_ijms21197422
crossref_primary_10_1038_s41598_017_14931_7
crossref_primary_10_1016_j_immuni_2020_10_003
crossref_primary_10_1038_s41591_020_01145_0
crossref_primary_10_1038_s41598_018_26538_7
crossref_primary_10_1172_JCI81104
crossref_primary_10_1186_s12985_017_0918_y
crossref_primary_10_1073_pnas_1822062116
crossref_primary_10_1371_journal_pone_0247963
crossref_primary_10_1111_imcb_12383
crossref_primary_10_1038_s41423_020_00520_8
crossref_primary_10_1038_nprot_2016_009
crossref_primary_10_1038_s41541_019_0153_1
crossref_primary_10_1038_nrd4529
crossref_primary_10_1128_JVI_02133_14
crossref_primary_10_1016_j_chom_2021_10_009
crossref_primary_10_1126_scitranslmed_aad0522
crossref_primary_10_1128_JVI_01283_17
crossref_primary_10_1093_bib_bbac028
crossref_primary_10_1016_j_celrep_2024_114990
crossref_primary_10_1111_imm_70002
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/JVI.03422-13
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
ExternalDocumentID 24501410
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
7X8
AFPKN
ID FETCH-LOGICAL-c417t-32e8e98154ccffa276b47d0ff2cf9777a623dd8bf6c550677a41e33604f7694b2
IEDL.DBID 7X8
ISICitedReferencesCount 191
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333676400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5514
IngestDate Sun Nov 09 14:05:31 EST 2025
Mon Jul 21 06:03:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-32e8e98154ccffa276b47d0ff2cf9777a623dd8bf6c550677a41e33604f7694b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jvi.asm.org/content/jvi/88/8/4047.full.pdf
PMID 24501410
PQID 1511393171
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1511393171
pubmed_primary_24501410
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2014
References 21917953 - J Virol. 2011 Dec;85(23):12387-98
16045923 - J Immunol Methods. 2005 Aug;303(1-2):40-52
17996249 - J Immunol Methods. 2008 Jan 1;329(1-2):112-24
19251591 - Science. 2009 Apr 10;324(5924):246-51
22932267 - Nature. 2012 Sep 27;489(7417):566-70
21975270 - Lancet Infect Dis. 2011 Dec;11(12):916-24
14764886 - Science. 2004 Mar 19;303(5665):1838-42
21220454 - J Exp Med. 2011 Jan 17;208(1):181-93
21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11
22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8
23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105
23236069 - J Virol. 2013 Feb;87(4):2294-306
22787225 - J Virol. 2012 Oct;86(19):10302-7
20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
10966468 - Annu Rev Biochem. 2000;69:531-69
21460314 - Clin Infect Dis. 2011 Apr 15;52(8):1003-9
21798894 - Science. 2011 Aug 12;333(6044):850-6
19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
22878502 - Science. 2012 Sep 14;337(6100):1343-8
23633407 - J Infect Dis. 2013 Aug 1;208(3):418-22
22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
22586427 - Front Immunol. 2012 May 08;3:87
21825125 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14216-21
20389023 - J Clin Invest. 2010 May;120(5):1663-73
17690300 - Science. 2007 Aug 10;317(5839):825-8
21632778 - Cold Spring Harb Protoc. 2011 Jun;2011(6):695-715
19079604 - PLoS One. 2008;3(12):e3942
20161706 - PLoS One. 2010;5(2):e9106
18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8
23698367 - Nature. 2013 Jul 4;499(7456):102-6
22982990 - Nature. 2012 Sep 27;489(7417):526-32
21737702 - Science. 2011 Aug 12;333(6044):843-50
9454721 - Virology. 1998 Feb 1;241(1):101-11
20339031 - Science. 2010 Apr 16;328(5976):357-60
17516034 - Arch Virol. 2007;152(6):1047-59
References_xml – reference: 20161706 - PLoS One. 2010;5(2):e9106
– reference: 23236069 - J Virol. 2013 Feb;87(4):2294-306
– reference: 22982990 - Nature. 2012 Sep 27;489(7417):526-32
– reference: 17516034 - Arch Virol. 2007;152(6):1047-59
– reference: 23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105
– reference: 21975270 - Lancet Infect Dis. 2011 Dec;11(12):916-24
– reference: 21220454 - J Exp Med. 2011 Jan 17;208(1):181-93
– reference: 21798894 - Science. 2011 Aug 12;333(6044):850-6
– reference: 21460314 - Clin Infect Dis. 2011 Apr 15;52(8):1003-9
– reference: 9454721 - Virology. 1998 Feb 1;241(1):101-11
– reference: 22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
– reference: 23698367 - Nature. 2013 Jul 4;499(7456):102-6
– reference: 21737702 - Science. 2011 Aug 12;333(6044):843-50
– reference: 22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8
– reference: 14764886 - Science. 2004 Mar 19;303(5665):1838-42
– reference: 20339031 - Science. 2010 Apr 16;328(5976):357-60
– reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
– reference: 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8
– reference: 23633407 - J Infect Dis. 2013 Aug 1;208(3):418-22
– reference: 21632778 - Cold Spring Harb Protoc. 2011 Jun;2011(6):695-715
– reference: 21917953 - J Virol. 2011 Dec;85(23):12387-98
– reference: 22878502 - Science. 2012 Sep 14;337(6100):1343-8
– reference: 17996249 - J Immunol Methods. 2008 Jan 1;329(1-2):112-24
– reference: 17690300 - Science. 2007 Aug 10;317(5839):825-8
– reference: 10966468 - Annu Rev Biochem. 2000;69:531-69
– reference: 22787225 - J Virol. 2012 Oct;86(19):10302-7
– reference: 16045923 - J Immunol Methods. 2005 Aug;303(1-2):40-52
– reference: 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
– reference: 22932267 - Nature. 2012 Sep 27;489(7417):566-70
– reference: 19079604 - PLoS One. 2008;3(12):e3942
– reference: 19251591 - Science. 2009 Apr 10;324(5924):246-51
– reference: 21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11
– reference: 22586427 - Front Immunol. 2012 May 08;3:87
– reference: 20389023 - J Clin Invest. 2010 May;120(5):1663-73
– reference: 21825125 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14216-21
SSID ssj0014464
Score 2.5463836
Snippet An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4047
SubjectTerms Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
B-Lymphocytes - immunology
Cross Reactions
Flow Cytometry
Hemagglutinin Glycoproteins, Influenza Virus - administration & dosage
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Humans
Immunoglobulin G - genetics
Immunoglobulin G - immunology
Immunoglobulin Heavy Chains - genetics
Immunoglobulin Heavy Chains - immunology
Influenza A Virus, H5N1 Subtype - immunology
Influenza Vaccines - administration & dosage
Influenza Vaccines - immunology
Influenza, Human - immunology
Influenza, Human - prevention & control
Influenza, Human - virology
Molecular Sequence Data
Title Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages
URI https://www.ncbi.nlm.nih.gov/pubmed/24501410
https://www.proquest.com/docview/1511393171
Volume 88
WOSCitedRecordID wos000333676400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvC6msc2m5xExNKKhh609FZ2N7s2UJPaxEqu_nJn86AnQfCSQ0JCmBnm--axMwhd-dLnAD2CUNeyCOU6IoGQijDX15oBHtvllojhEwtDfzQKBnXCLavbKhufWDrqKJUmR34DyARkBdDOvp19ELM1ylRX6xUaq6jlwlNj1Wy0rCJAqFNWlc3MTMMMmsZ3x795HPavzfQ7h5jFBr-RyxJkutv__b0dtFXTS3xX2cMuWlHJHtqoFk4W--i7O02_sCzy9F3l8wKb-U1gfzif8Bz3OqGNF1zKuMoQYjWNZZxnuERSAuyy9I3YjH4mFRSqCINmYpGaXkRsjqrgpkMR998wOPpFQeSExwk2dBZ8V3aAXrsPL_c9Um9hIJLaLCeuo3wV-EC1pNSaO8wTlEWW1o7UQB4ZBwIVRb7QnoRox4Mb1Fau61lUMy-gwjlEa0maqGOEzTh7IQPHEwEH3WiI9Rh3BdPS0vAF0UaXjXDHYOWmdMETlX5m46V42-io0tB4Vo3jGDu0U3arnvzh7VO0CYynbr05Qy0NMlbnaF0u8jibX5TmA9dw8PwDisfRTA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+cytometry+reveals+that+H5N1+vaccination+elicits+cross-reactive+stem-directed+antibodies+from+multiple+Ig+heavy-chain+lineages&rft.jtitle=Journal+of+virology&rft.au=Whittle%2C+James+R+R&rft.au=Wheatley%2C+Adam+K&rft.au=Wu%2C+Lan&rft.au=Lingwood%2C+Daniel&rft.date=2014-04-01&rft.eissn=1098-5514&rft.volume=88&rft.issue=8&rft.spage=4047&rft_id=info:doi/10.1128%2FJVI.03422-13&rft_id=info%3Apmid%2F24501410&rft_id=info%3Apmid%2F24501410&rft.externalDocID=24501410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5514&client=summon