Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages
An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use struct...
Uložené v:
| Vydané v: | Journal of virology Ročník 88; číslo 8; s. 4047 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.04.2014
|
| Predmet: | |
| ISSN: | 1098-5514, 1098-5514 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.
Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought. |
|---|---|
| AbstractList | An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.
Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought. An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.UNLABELLEDAn understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles.Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.IMPORTANCEUniversal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought. |
| Author | Kanekiyo, Masaru Yassine, Hadi M Nabel, Gary J Lingwood, Daniel Frank, Gregory M Wu, Lan Whittle, James R R Graham, Barney S Yewdell, Jonathan W Ledgerwood, Julie E Wei, Chih-Jen McDermott, Adrian B Ma, Steven S Narpala, Sandeep R Koup, Richard A Wheatley, Adam K |
| Author_xml | – sequence: 1 givenname: James R R surname: Whittle fullname: Whittle, James R R organization: Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA – sequence: 2 givenname: Adam K surname: Wheatley fullname: Wheatley, Adam K – sequence: 3 givenname: Lan surname: Wu fullname: Wu, Lan – sequence: 4 givenname: Daniel surname: Lingwood fullname: Lingwood, Daniel – sequence: 5 givenname: Masaru surname: Kanekiyo fullname: Kanekiyo, Masaru – sequence: 6 givenname: Steven S surname: Ma fullname: Ma, Steven S – sequence: 7 givenname: Sandeep R surname: Narpala fullname: Narpala, Sandeep R – sequence: 8 givenname: Hadi M surname: Yassine fullname: Yassine, Hadi M – sequence: 9 givenname: Gregory M surname: Frank fullname: Frank, Gregory M – sequence: 10 givenname: Jonathan W surname: Yewdell fullname: Yewdell, Jonathan W – sequence: 11 givenname: Julie E surname: Ledgerwood fullname: Ledgerwood, Julie E – sequence: 12 givenname: Chih-Jen surname: Wei fullname: Wei, Chih-Jen – sequence: 13 givenname: Adrian B surname: McDermott fullname: McDermott, Adrian B – sequence: 14 givenname: Barney S surname: Graham fullname: Graham, Barney S – sequence: 15 givenname: Richard A surname: Koup fullname: Koup, Richard A – sequence: 16 givenname: Gary J surname: Nabel fullname: Nabel, Gary J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24501410$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC1URD9gY0YeWVL8Os7XiCpKiypYgDVynNetURIX2ynqyi8nEkViutPp0Z10UzLqbIeEXAObA_D87ul9PWex4DyC-IxMgBV5lCQgRv_8mEy9_2AMhEjFBRlzkQwe2IR8Lxv7RdUx2BaDO1KHB5SNp2EnA10lz0APUinTyWBsR7ExygRPlbPeRw6lCuaA1Adso9o4VAFrKrtgKlsb9FQ729K2b4LZN0jXW7pDeThGaidNRxvTodyivyTnepjEq5POyNvy4XWxijYvj-vF_SZSArIQxRxzLHJIhFJaS56llchqpjVXusiyTKY8ruu80qlKEpYOgQCM45QJnaWFqPiM3P727p397NGHsjVeYdPIDm3vS0gA4iKGDAb05oT2VYt1uXemle5Y_v3GfwBCDHJx |
| CitedBy_id | crossref_primary_10_7554_eLife_57659 crossref_primary_10_1093_intimm_dxz049 crossref_primary_10_1038_nbt_4052 crossref_primary_10_1038_s41467_019_11821_6 crossref_primary_10_1016_j_immuni_2020_03_020 crossref_primary_10_1016_j_immuni_2019_03_010 crossref_primary_10_3389_fimmu_2022_960120 crossref_primary_10_1038_s41541_019_0101_0 crossref_primary_10_1126_scitranslmed_adr8373 crossref_primary_10_1016_j_str_2022_04_003 crossref_primary_10_1038_srep36298 crossref_primary_10_1128_JVI_01526_20 crossref_primary_10_1111_imr_12502 crossref_primary_10_1172_JCI123366 crossref_primary_10_1371_journal_pone_0233794 crossref_primary_10_1126_sciadv_ado1331 crossref_primary_10_1038_s41467_018_08165_y crossref_primary_10_1073_pnas_1613225113 crossref_primary_10_1038_s41598_019_51860_z crossref_primary_10_1128_mbio_02247_24 crossref_primary_10_4049_jimmunol_1701174 crossref_primary_10_1093_intimm_dxy069 crossref_primary_10_1126_scitranslmed_aav5701 crossref_primary_10_1016_j_coi_2018_04_009 crossref_primary_10_1016_j_vaccine_2017_08_053 crossref_primary_10_1080_21645515_2023_2292381 crossref_primary_10_1016_j_immuni_2021_08_017 crossref_primary_10_1007_s00705_020_04676_6 crossref_primary_10_3390_vaccines8030382 crossref_primary_10_1128_JVI_01833_14 crossref_primary_10_1016_j_str_2025_02_010 crossref_primary_10_1038_s41586_021_03365_x crossref_primary_10_1016_j_clim_2020_108440 crossref_primary_10_1371_journal_pone_0254421 crossref_primary_10_1016_S1473_3099_19_30584_5 crossref_primary_10_1128_JVI_02379_20 crossref_primary_10_1038_s41467_021_21954_2 crossref_primary_10_1016_j_immuni_2024_03_022 crossref_primary_10_1126_science_adf6591 crossref_primary_10_1038_s41541_024_00862_8 crossref_primary_10_3390_ijms25137259 crossref_primary_10_1038_ni_3680 crossref_primary_10_1084_jem_20200547 crossref_primary_10_3389_fimmu_2024_1399960 crossref_primary_10_3390_vaccines9070717 crossref_primary_10_1016_j_coviro_2016_03_002 crossref_primary_10_1126_sciimmunol_abf5314 crossref_primary_10_1016_j_immuni_2025_02_004 crossref_primary_10_1084_jem_20160789 crossref_primary_10_1089_vim_2017_0129 crossref_primary_10_1073_pnas_2503899122 crossref_primary_10_1126_scitranslmed_ade4976 crossref_primary_10_2217_fvl_2016_0045 crossref_primary_10_1126_sciimmunol_abi4710 crossref_primary_10_1016_j_vaccine_2025_127361 crossref_primary_10_1016_j_immuni_2023_06_019 crossref_primary_10_1038_s41541_022_00547_0 crossref_primary_10_1126_science_abm0271 crossref_primary_10_1007_s11684_020_0764_y crossref_primary_10_1002_cti2_1199 crossref_primary_10_1126_sciimmunol_aan2676 crossref_primary_10_3390_v10120724 crossref_primary_10_1016_j_virol_2014_07_011 crossref_primary_10_1128_JVI_00859_18 crossref_primary_10_1038_srep22666 crossref_primary_10_1016_j_coviro_2015_04_002 crossref_primary_10_1371_journal_pmed_1003024 crossref_primary_10_1128_JVI_02372_15 crossref_primary_10_1016_j_str_2024_05_001 crossref_primary_10_1016_j_cell_2019_11_003 crossref_primary_10_1016_j_vaccine_2019_08_030 crossref_primary_10_4049_jimmunol_2001299 crossref_primary_10_3389_fimmu_2019_01452 crossref_primary_10_3389_fimmu_2019_01694 crossref_primary_10_3390_vaccines9020125 crossref_primary_10_1038_s41467_024_48555_z crossref_primary_10_1080_22221751_2024_2396864 crossref_primary_10_1073_pnas_2109388118 crossref_primary_10_1038_s41586_025_08821_6 crossref_primary_10_1126_scitranslmed_ady3570 crossref_primary_10_1093_infdis_jiaf297 crossref_primary_10_1126_sciimmunol_adj9534 crossref_primary_10_3389_fmicb_2022_937192 crossref_primary_10_1371_journal_ppat_1011514 crossref_primary_10_3390_cells11223662 crossref_primary_10_4049_jimmunol_1900819 crossref_primary_10_1016_j_coi_2016_05_012 crossref_primary_10_1038_s41591_021_01636_8 crossref_primary_10_4049_jimmunol_1601106 crossref_primary_10_1038_s41541_022_00463_3 crossref_primary_10_1084_jem_20200901 crossref_primary_10_3390_cells10081843 crossref_primary_10_1128_JVI_01970_17 crossref_primary_10_3389_fimmu_2022_1026951 crossref_primary_10_3389_fimmu_2019_01086 crossref_primary_10_1038_s41467_020_14579_4 crossref_primary_10_1038_s41590_022_01345_5 crossref_primary_10_1038_s41598_019_38906_y crossref_primary_10_1038_s41467_024_55193_y crossref_primary_10_1126_sciimmunol_aau2710 crossref_primary_10_1126_sciimmunol_abn1250 crossref_primary_10_1038_s41590_018_0305_x crossref_primary_10_1111_imcb_12508 crossref_primary_10_1158_2326_6066_CIR_20_0949 crossref_primary_10_1016_j_chom_2024_12_004 crossref_primary_10_1126_scitranslmed_aan8405 crossref_primary_10_1016_j_immuni_2019_06_024 crossref_primary_10_1093_infdis_jiw608 crossref_primary_10_1073_pnas_1816300116 crossref_primary_10_1371_journal_ppat_1010891 crossref_primary_10_1172_JCI74351 crossref_primary_10_1073_pnas_1414070111 crossref_primary_10_1016_j_celrep_2021_109961 crossref_primary_10_1002_cti2_1456 crossref_primary_10_1016_j_immuni_2019_09_001 crossref_primary_10_1126_scitranslmed_abe5449 crossref_primary_10_3390_vaccines8030462 crossref_primary_10_1126_sciimmunol_ado9572 crossref_primary_10_1016_j_immuni_2022_07_006 crossref_primary_10_1084_jem_20181624 crossref_primary_10_3389_fimmu_2019_00829 crossref_primary_10_1016_j_immuni_2022_10_015 crossref_primary_10_1016_j_cels_2020_09_005 crossref_primary_10_1016_j_immuni_2017_12_009 crossref_primary_10_1016_j_vaccine_2019_08_062 crossref_primary_10_1371_journal_pone_0222436 crossref_primary_10_1016_j_xpro_2025_103610 crossref_primary_10_1038_srep26478 crossref_primary_10_1080_14712598_2019_1604671 crossref_primary_10_1016_j_immuni_2024_07_022 crossref_primary_10_1038_s41573_019_0056_x crossref_primary_10_1073_pnas_2216521120 crossref_primary_10_1038_nm_4224 crossref_primary_10_1016_j_cell_2019_11_032 crossref_primary_10_3389_fimmu_2022_1087018 crossref_primary_10_1016_j_jim_2017_07_001 crossref_primary_10_1128_spectrum_01902_22 crossref_primary_10_3389_fimmu_2019_00611 crossref_primary_10_1016_j_cell_2016_06_043 crossref_primary_10_1038_s41591_025_03599_6 crossref_primary_10_1038_srep20842 crossref_primary_10_4049_jimmunol_1402835 crossref_primary_10_1586_14760584_2015_1068125 crossref_primary_10_1038_nm_3927 crossref_primary_10_1128_mSphere_01342_20 crossref_primary_10_3390_ijms21197422 crossref_primary_10_1038_s41598_017_14931_7 crossref_primary_10_1016_j_immuni_2020_10_003 crossref_primary_10_1038_s41591_020_01145_0 crossref_primary_10_1038_s41598_018_26538_7 crossref_primary_10_1172_JCI81104 crossref_primary_10_1186_s12985_017_0918_y crossref_primary_10_1073_pnas_1822062116 crossref_primary_10_1371_journal_pone_0247963 crossref_primary_10_1111_imcb_12383 crossref_primary_10_1038_s41423_020_00520_8 crossref_primary_10_1038_nprot_2016_009 crossref_primary_10_1038_s41541_019_0153_1 crossref_primary_10_1038_nrd4529 crossref_primary_10_1128_JVI_02133_14 crossref_primary_10_1016_j_chom_2021_10_009 crossref_primary_10_1126_scitranslmed_aad0522 crossref_primary_10_1128_JVI_01283_17 crossref_primary_10_1093_bib_bbac028 crossref_primary_10_1016_j_celrep_2024_114990 crossref_primary_10_1111_imm_70002 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JVI.03422-13 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1098-5514 |
| ExternalDocumentID | 24501410 |
| Genre | Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: Intramural NIH HHS |
| GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM 7X8 AFPKN |
| ID | FETCH-LOGICAL-c417t-32e8e98154ccffa276b47d0ff2cf9777a623dd8bf6c550677a41e33604f7694b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 191 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333676400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5514 |
| IngestDate | Sun Nov 09 14:05:31 EST 2025 Mon Jul 21 06:03:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-32e8e98154ccffa276b47d0ff2cf9777a623dd8bf6c550677a41e33604f7694b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://jvi.asm.org/content/jvi/88/8/4047.full.pdf |
| PMID | 24501410 |
| PQID | 1511393171 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1511393171 pubmed_primary_24501410 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of virology |
| PublicationTitleAlternate | J Virol |
| PublicationYear | 2014 |
| References | 21917953 - J Virol. 2011 Dec;85(23):12387-98 16045923 - J Immunol Methods. 2005 Aug;303(1-2):40-52 17996249 - J Immunol Methods. 2008 Jan 1;329(1-2):112-24 19251591 - Science. 2009 Apr 10;324(5924):246-51 22932267 - Nature. 2012 Sep 27;489(7417):566-70 21975270 - Lancet Infect Dis. 2011 Dec;11(12):916-24 14764886 - Science. 2004 Mar 19;303(5665):1838-42 21220454 - J Exp Med. 2011 Jan 17;208(1):181-93 21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11 22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8 23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105 23236069 - J Virol. 2013 Feb;87(4):2294-306 22787225 - J Virol. 2012 Oct;86(19):10302-7 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 10966468 - Annu Rev Biochem. 2000;69:531-69 21460314 - Clin Infect Dis. 2011 Apr 15;52(8):1003-9 21798894 - Science. 2011 Aug 12;333(6044):850-6 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73 22878502 - Science. 2012 Sep 14;337(6100):1343-8 23633407 - J Infect Dis. 2013 Aug 1;208(3):418-22 22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52 22586427 - Front Immunol. 2012 May 08;3:87 21825125 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14216-21 20389023 - J Clin Invest. 2010 May;120(5):1663-73 17690300 - Science. 2007 Aug 10;317(5839):825-8 21632778 - Cold Spring Harb Protoc. 2011 Jun;2011(6):695-715 19079604 - PLoS One. 2008;3(12):e3942 20161706 - PLoS One. 2010;5(2):e9106 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 23698367 - Nature. 2013 Jul 4;499(7456):102-6 22982990 - Nature. 2012 Sep 27;489(7417):526-32 21737702 - Science. 2011 Aug 12;333(6044):843-50 9454721 - Virology. 1998 Feb 1;241(1):101-11 20339031 - Science. 2010 Apr 16;328(5976):357-60 17516034 - Arch Virol. 2007;152(6):1047-59 |
| References_xml | – reference: 20161706 - PLoS One. 2010;5(2):e9106 – reference: 23236069 - J Virol. 2013 Feb;87(4):2294-306 – reference: 22982990 - Nature. 2012 Sep 27;489(7417):526-32 – reference: 17516034 - Arch Virol. 2007;152(6):1047-59 – reference: 23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105 – reference: 21975270 - Lancet Infect Dis. 2011 Dec;11(12):916-24 – reference: 21220454 - J Exp Med. 2011 Jan 17;208(1):181-93 – reference: 21798894 - Science. 2011 Aug 12;333(6044):850-6 – reference: 21460314 - Clin Infect Dis. 2011 Apr 15;52(8):1003-9 – reference: 9454721 - Virology. 1998 Feb 1;241(1):101-11 – reference: 22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52 – reference: 23698367 - Nature. 2013 Jul 4;499(7456):102-6 – reference: 21737702 - Science. 2011 Aug 12;333(6044):843-50 – reference: 22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8 – reference: 14764886 - Science. 2004 Mar 19;303(5665):1838-42 – reference: 20339031 - Science. 2010 Apr 16;328(5976):357-60 – reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 – reference: 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 – reference: 23633407 - J Infect Dis. 2013 Aug 1;208(3):418-22 – reference: 21632778 - Cold Spring Harb Protoc. 2011 Jun;2011(6):695-715 – reference: 21917953 - J Virol. 2011 Dec;85(23):12387-98 – reference: 22878502 - Science. 2012 Sep 14;337(6100):1343-8 – reference: 17996249 - J Immunol Methods. 2008 Jan 1;329(1-2):112-24 – reference: 17690300 - Science. 2007 Aug 10;317(5839):825-8 – reference: 10966468 - Annu Rev Biochem. 2000;69:531-69 – reference: 22787225 - J Virol. 2012 Oct;86(19):10302-7 – reference: 16045923 - J Immunol Methods. 2005 Aug;303(1-2):40-52 – reference: 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73 – reference: 22932267 - Nature. 2012 Sep 27;489(7417):566-70 – reference: 19079604 - PLoS One. 2008;3(12):e3942 – reference: 19251591 - Science. 2009 Apr 10;324(5924):246-51 – reference: 21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11 – reference: 22586427 - Front Immunol. 2012 May 08;3:87 – reference: 20389023 - J Clin Invest. 2010 May;120(5):1663-73 – reference: 21825125 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14216-21 |
| SSID | ssj0014464 |
| Score | 2.5463836 |
| Snippet | An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4047 |
| SubjectTerms | Antibodies, Neutralizing - immunology Antibodies, Viral - immunology B-Lymphocytes - immunology Cross Reactions Flow Cytometry Hemagglutinin Glycoproteins, Influenza Virus - administration & dosage Hemagglutinin Glycoproteins, Influenza Virus - genetics Hemagglutinin Glycoproteins, Influenza Virus - immunology Humans Immunoglobulin G - genetics Immunoglobulin G - immunology Immunoglobulin Heavy Chains - genetics Immunoglobulin Heavy Chains - immunology Influenza A Virus, H5N1 Subtype - immunology Influenza Vaccines - administration & dosage Influenza Vaccines - immunology Influenza, Human - immunology Influenza, Human - prevention & control Influenza, Human - virology Molecular Sequence Data |
| Title | Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24501410 https://www.proquest.com/docview/1511393171 |
| Volume | 88 |
| WOSCitedRecordID | wos000333676400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvC6msc2m5xExNKKhh609FZ2N7s2UJPaxEqu_nJn86AnQfCSQ0JCmBnm--axMwhd-dLnAD2CUNeyCOU6IoGQijDX15oBHtvllojhEwtDfzQKBnXCLavbKhufWDrqKJUmR34DyARkBdDOvp19ELM1ylRX6xUaq6jlwlNj1Wy0rCJAqFNWlc3MTMMMmsZ3x795HPavzfQ7h5jFBr-RyxJkutv__b0dtFXTS3xX2cMuWlHJHtqoFk4W--i7O02_sCzy9F3l8wKb-U1gfzif8Bz3OqGNF1zKuMoQYjWNZZxnuERSAuyy9I3YjH4mFRSqCINmYpGaXkRsjqrgpkMR998wOPpFQeSExwk2dBZ8V3aAXrsPL_c9Um9hIJLaLCeuo3wV-EC1pNSaO8wTlEWW1o7UQB4ZBwIVRb7QnoRox4Mb1Fau61lUMy-gwjlEa0maqGOEzTh7IQPHEwEH3WiI9Rh3BdPS0vAF0UaXjXDHYOWmdMETlX5m46V42-io0tB4Vo3jGDu0U3arnvzh7VO0CYynbr05Qy0NMlbnaF0u8jibX5TmA9dw8PwDisfRTA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+cytometry+reveals+that+H5N1+vaccination+elicits+cross-reactive+stem-directed+antibodies+from+multiple+Ig+heavy-chain+lineages&rft.jtitle=Journal+of+virology&rft.au=Whittle%2C+James+R+R&rft.au=Wheatley%2C+Adam+K&rft.au=Wu%2C+Lan&rft.au=Lingwood%2C+Daniel&rft.date=2014-04-01&rft.eissn=1098-5514&rft.volume=88&rft.issue=8&rft.spage=4047&rft_id=info:doi/10.1128%2FJVI.03422-13&rft_id=info%3Apmid%2F24501410&rft_id=info%3Apmid%2F24501410&rft.externalDocID=24501410 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5514&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5514&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5514&client=summon |