Feynman integral reduction using Gröbner bases

A bstract We investigate the reduction of Feynman integrals to master integrals using Gröbner bases in a rational double-shift algebra Y in which the integration-by-parts (IBP) relations form a left ideal. The problem of reducing a given family of integrals to master integrals can then be solved onc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2023; číslo 5; s. 168 - 33
Hlavní autori: Barakat, Mohamed, Brüser, Robin, Fieker, Claus, Huber, Tobias, Piclum, Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 19.05.2023
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A bstract We investigate the reduction of Feynman integrals to master integrals using Gröbner bases in a rational double-shift algebra Y in which the integration-by-parts (IBP) relations form a left ideal. The problem of reducing a given family of integrals to master integrals can then be solved once and for all by computing the Gröbner basis of the left ideal formed by the IBP relations. We demonstrate this explicitly for several examples. We introduce so-called first-order normal-form IBP relations which we obtain by reducing the shift operators in Y modulo the Gröbner basis of the left ideal of IBP relations. For more complicated cases, where the Gröbner basis is computationally expensive, we develop an ansatz based on linear algebra over a function field to obtain the normal-form IBP relations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP05(2023)168