Feynman integral reduction using Gröbner bases

A bstract We investigate the reduction of Feynman integrals to master integrals using Gröbner bases in a rational double-shift algebra Y in which the integration-by-parts (IBP) relations form a left ideal. The problem of reducing a given family of integrals to master integrals can then be solved onc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics Jg. 2023; H. 5; S. 168 - 33
Hauptverfasser: Barakat, Mohamed, Brüser, Robin, Fieker, Claus, Huber, Tobias, Piclum, Jan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 19.05.2023
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-8479, 1029-8479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We investigate the reduction of Feynman integrals to master integrals using Gröbner bases in a rational double-shift algebra Y in which the integration-by-parts (IBP) relations form a left ideal. The problem of reducing a given family of integrals to master integrals can then be solved once and for all by computing the Gröbner basis of the left ideal formed by the IBP relations. We demonstrate this explicitly for several examples. We introduce so-called first-order normal-form IBP relations which we obtain by reducing the shift operators in Y modulo the Gröbner basis of the left ideal of IBP relations. For more complicated cases, where the Gröbner basis is computationally expensive, we develop an ansatz based on linear algebra over a function field to obtain the normal-form IBP relations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP05(2023)168