Extracting quadratic propagators by refined graphic rule

A bstract One-loop integrands in Cachazo-He-Yuan (CHY) formula, which is based on the forward limit of tree-level amplitudes, involves linear propagators that are different from quadratic ones in traditional Feynman diagrams. In this paper, we provide a general approach to converting linear propagat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics Jg. 2025; H. 2; S. 68 - 72
Hauptverfasser: Xie, Chongsi, Du, Yi-Jian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 12.02.2025
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-8479, 1029-8479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract One-loop integrands in Cachazo-He-Yuan (CHY) formula, which is based on the forward limit of tree-level amplitudes, involves linear propagators that are different from quadratic ones in traditional Feynman diagrams. In this paper, we provide a general approach to converting linear propagators in one-loop CHY formula into quadratic propagators, by refined graphic rule stemming from the recursive expansion of tree-level Einstein-Yang-Mills amplitudes. Particularly, we establish the correspondence between refined graphs and bi-adjoint scalar (BS) Feynman diagrams with linear propagators. Using this correspondence and graph-based relations of Berends-Giele currents in BS theory, the nonlocal terms accompanied by refined graphs can either be canceled out or be collected into local ones. Once the locality has been achieved, the integrand with linear propagators can be directly arranged into that with quadratic propagators. Following this approach, we first convert the linear propagators in single-trace Yang-Mills-scalar (YMS) integrands (with a pure-scalar loop) into quadratic ones. This result is then demonstrated to match the traditional one-loop Feynman diagrams. The discussions on single-trace YMS integrands are generalized to multi-trace YMS and Yang-Mills integrands.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2025)068