Nahm sums, quiver A-polynomials and topological recursion

A bstract We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q -series. These quantum quiver A-polyno...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2020; číslo 7; s. 1 - 52
Hlavní autori: Larraguível, Hélder, Noshchenko, Dmitry, Panfil, Miłosz, Sułkowski, Piotr
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A bstract We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q -series. These quantum quiver A-polynomials encode recursion relations satisfied by the above series, while classical A-polynomials encode asymptotic expansion of those series. Second, we postulate that those series, as well as their quantum quiver A-polynomials, can be reconstructed by means of the topological recursion. There is a large class of interesting quiver A-polynomials of genus zero, and for a number of them we confirm the above conjecture by explicit calculations. In view of recently found dualities, for an appropriate choice of quivers, these results have a direct interpretation in topological string theory, knot theory, counting of lattice paths, and related topics. In particular it follows, that various quantities characterizing those systems, such as motivic Donaldson-Thomas invariants, various knot invariants, etc., have the structure compatible with the topological recursion and can be reconstructed by its means.
AbstractList Abstract We consider a large class of q-series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q-series. These quantum quiver A-polynomials encode recursion relations satisfied by the above series, while classical A-polynomials encode asymptotic expansion of those series. Second, we postulate that those series, as well as their quantum quiver A-polynomials, can be reconstructed by means of the topological recursion. There is a large class of interesting quiver A-polynomials of genus zero, and for a number of them we confirm the above conjecture by explicit calculations. In view of recently found dualities, for an appropriate choice of quivers, these results have a direct interpretation in topological string theory, knot theory, counting of lattice paths, and related topics. In particular it follows, that various quantities characterizing those systems, such as motivic Donaldson-Thomas invariants, various knot invariants, etc., have the structure compatible with the topological recursion and can be reconstructed by its means.
We consider a large class of q-series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q-series. These quantum quiver A-polynomials encode recursion relations satisfied by the above series, while classical A-polynomials encode asymptotic expansion of those series. Second, we postulate that those series, as well as their quantum quiver A-polynomials, can be reconstructed by means of the topological recursion. There is a large class of interesting quiver A-polynomials of genus zero, and for a number of them we confirm the above conjecture by explicit calculations. In view of recently found dualities, for an appropriate choice of quivers, these results have a direct interpretation in topological string theory, knot theory, counting of lattice paths, and related topics. In particular it follows, that various quantities characterizing those systems, such as motivic Donaldson-Thomas invariants, various knot invariants, etc., have the structure compatible with the topological recursion and can be reconstructed by its means.
We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q -series. These quantum quiver A-polynomials encode recursion relations satisfied by the above series, while classical A-polynomials encode asymptotic expansion of those series. Second, we postulate that those series, as well as their quantum quiver A-polynomials, can be reconstructed by means of the topological recursion. There is a large class of interesting quiver A-polynomials of genus zero, and for a number of them we confirm the above conjecture by explicit calculations. In view of recently found dualities, for an appropriate choice of quivers, these results have a direct interpretation in topological string theory, knot theory, counting of lattice paths, and related topics. In particular it follows, that various quantities characterizing those systems, such as motivic Donaldson-Thomas invariants, various knot invariants, etc., have the structure compatible with the topological recursion and can be reconstructed by its means.
A bstract We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a systematic analysis and classification of classical and quantum A-polynomials associated to such q -series. These quantum quiver A-polynomials encode recursion relations satisfied by the above series, while classical A-polynomials encode asymptotic expansion of those series. Second, we postulate that those series, as well as their quantum quiver A-polynomials, can be reconstructed by means of the topological recursion. There is a large class of interesting quiver A-polynomials of genus zero, and for a number of them we confirm the above conjecture by explicit calculations. In view of recently found dualities, for an appropriate choice of quivers, these results have a direct interpretation in topological string theory, knot theory, counting of lattice paths, and related topics. In particular it follows, that various quantities characterizing those systems, such as motivic Donaldson-Thomas invariants, various knot invariants, etc., have the structure compatible with the topological recursion and can be reconstructed by its means.
ArticleNumber 151
Author Larraguível, Hélder
Panfil, Miłosz
Noshchenko, Dmitry
Sułkowski, Piotr
Author_xml – sequence: 1
  givenname: Hélder
  orcidid: 0000-0002-2894-5052
  surname: Larraguível
  fullname: Larraguível, Hélder
  email: helder.larraguivel@fuw.edu.pl
  organization: Faculty of Physics, University of Warsaw
– sequence: 2
  givenname: Dmitry
  surname: Noshchenko
  fullname: Noshchenko, Dmitry
  organization: Faculty of Physics, University of Warsaw
– sequence: 3
  givenname: Miłosz
  orcidid: 0000-0003-1525-4700
  surname: Panfil
  fullname: Panfil, Miłosz
  organization: Faculty of Physics, University of Warsaw
– sequence: 4
  givenname: Piotr
  surname: Sułkowski
  fullname: Sułkowski, Piotr
  organization: Faculty of Physics, University of Warsaw, Walter Burke Institute for Theoretical Physics, California Institute of Technology
BookMark eNp1kM1LxDAQxYOsoKuevRa8KFidpGnaHEXWLxb1oOcwTdM1S7fZTVrB_95oFUXwMGQY3u_x8qZk0rnOEHJI4YwCFOd3N7NHKI4ZMDihOd0iuxSYTEteyMmvfYdMQ1gCRImEXSLv8WWVhGEVTpPNYF-NTy7StWvfOrey2IYEuzrpXby4hdXYJt7owQfrun2y3USBOfh698jz1ezp8iadP1zfXl7MU81p0ae0AYqYoyhkGQdLWWU15WWVVaxmUGFWUpAmy1mt0TAZk5W54Hldci0Fr7I9cjv61g6Xau3tCv2bcmjV58H5hULfW90aJXSdUVFhg5LxPGeVYJmmomgqEIyLOnodjV5r7zaDCb1ausF3Mb5inIlMlByKqMpHlfYuBG8apW2Pffxz79G2ioL6aFyNjauPxlWsM3Lnf7jvtP8TMBIhKruF8T95_kPeARWjkTc
CitedBy_id crossref_primary_10_1007_JHEP09_2020_075
crossref_primary_10_1007_s00220_023_04753_2
crossref_primary_10_1007_JHEP03_2021_236
crossref_primary_10_1007_s00023_025_01604_9
Cites_doi 10.1112/S0010437X1000521X
10.4310/ATMP.2012.v16.n5.a3
10.1007/JHEP02(2012)070
10.1007/s00220-015-2361-5
10.1016/0370-2693(93)90292-P
10.1007/978-0-8176-4771-1
10.4310/ATMP.2019.v23.n7.a4
10.4310/CNTP.2011.v5.n2.a1
10.1007/JHEP02(2020)018
10.1007/s00220-008-0620-4
10.1088/1126-6708/2006/12/026
10.1016/j.nuclphysb.2011.03.014
10.4171/dm/359
10.1007/s00220-016-2682-z
10.1007/978-3-540-30308-4_2
10.1088/1126-6708/2004/11/031
10.1007/JHEP08(2017)139
10.1007/s002200100374
10.1088/1126-6708/2000/11/007
10.1103/PhysRevD.96.121902
10.1016/S0550-3213(00)00118-8
10.1088/1126-6708/2006/03/014
10.1007/BF01049953
10.1007/978-3-540-30308-4_1
10.1016/S0550-3213(00)00761-6
10.1090/conm/593/11867
10.1007/s11232-011-0012-3
10.1007/JHEP01(2019)124
10.1007/JHEP11(2016)120
10.1186/2197-9847-2-1
10.1007/JHEP02(2013)143
10.4310/CNTP.2007.v1.n2.a4
10.1103/PhysRevD.98.026022
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP07(2020)151
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 52
ExternalDocumentID oai_doaj_org_article_6cd316bafa924552b623c167fb06246d
10_1007_JHEP07_2020_151
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-1f01aa5a6798679a89b3d148b3b2d20ba38109e352dcae2900185645d84c964b3
IEDL.DBID C24
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555932400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:51:50 EDT 2025
Sat Oct 18 23:02:22 EDT 2025
Sat Nov 29 06:04:40 EST 2025
Tue Nov 18 21:51:59 EST 2025
Fri Feb 21 02:48:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Topological Strings
Matrix Models
Differential and Algebraic Geometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-1f01aa5a6798679a89b3d148b3b2d20ba38109e352dcae2900185645d84c964b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2894-5052
0000-0003-1525-4700
OpenAccessLink https://link.springer.com/10.1007/JHEP07(2020)151
PQID 2426368407
PQPubID 2034718
PageCount 52
ParticipantIDs doaj_primary_oai_doaj_org_article_6cd316bafa924552b623c167fb06246d
proquest_journals_2426368407
crossref_citationtrail_10_1007_JHEP07_2020_151
crossref_primary_10_1007_JHEP07_2020_151
springer_journals_10_1007_JHEP07_2020_151
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References S. Meinhardt and M. Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, arXiv:1411.4062.
EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJHEP2004110312004JHEP...11..031E211880710.1088/1126-6708/2004/11/031[hep-th/0407261] [INSPIRE]
BouchardVEynardBThink globally, compute locallyJHEP2013021432013JHEP...02..143B304653210.1007/JHEP02(2013)143[arXiv:1211.2302] [INSPIRE]
KucharskiPReinekeMStosicMSułkowskiPKnots-quivers correspondenceAdv. Theor. Math. Phys.2019231849410164510.4310/ATMP.2019.v23.n7.a4[arXiv:1707.04017] [INSPIRE]
ReinekeMCohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariantsCompos. Math.2011147943280140610.1112/S0010437X1000521X
J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, math.QA/0104180 [INSPIRE].
GaroufalidisSKucharskiPSułkowskiPKnots, BPS states and algebraic curvesCommun. Math. Phys.2016346752016CMaPh.346...75G352841710.1007/s00220-016-2682-z[arXiv:1504.06327] [INSPIRE]
DumitrescuOMulaseMSafnukBSorkinAThe spectral curve of the Eynard-Orantin recursion via the Laplace transformContemp. Math.2013593263308796010.1090/conm/593/11867[arXiv:1202.1159] [INSPIRE]
G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].
V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].
V. Bouchard, P. Ciosmak, L. Hadasz, K. Osuga, B. Ruba and P. Sułkowski, Super quantum Airy structures, arXiv:1907.08913 [INSPIRE].
M. Stosic and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].
M.o. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots and lattice paths, Phys. Rev. D98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].
ChekhovLEynardBHermitean matrix model free energy: Feynman graph technique for all generaJHEP2006030142006JHEP...03..014C10.1088/1126-6708/2006/03/014[hep-th/0504116] [INSPIRE]
DijkgraafRFujiHManabeMThe volume conjecture, perturbative knot invariants and recursion relations for topological stringsNucl. Phys. B20118491662011NuPhB.849..166D279527610.1016/j.nuclphysb.2011.03.014[arXiv:1010.4542] [INSPIRE]
GukovSSulkowskiPA-polynomial, B-model and quantizationJHEP2012020702012JHEP...02..070G299611010.1007/JHEP02(2012)070[arXiv:1108.0002] [INSPIRE]
V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys.287 (2009) 117 [arXiv:0709.1453] [INSPIRE].
RamadeviPSarkarTOn link invariants and topological string amplitudesNucl. Phys. B20016004872001NuPhB.600..487R183340910.1016/S0550-3213(00)00761-6[hep-th/0009188] [INSPIRE]
A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V.K. Singh and A. Sleptsov, Checks of integrality properties in topological strings, JHEP08 (2017) 139 [Addendum ibid.01 (2018) 143] [arXiv:1702.06316] [INSPIRE].
RISC Combinatorics group, A. Riese, qZeil.m webpage, http://www.risc.jku.at/research/combinat/software/qZeil/.
KucharskiPReinekeMStosicMSułkowskiPBPS states, knots and quiversPhys. Rev. D2017961219022017PhRvD..96l1902K386989210.1103/PhysRevD.96.121902[arXiv:1707.02991] [INSPIRE]
B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys.1 (2007) 347 [math-ph/0702045] [INSPIRE].
M. Kontsevich and Y. Soibelman, Airy structures and symplectic geometry of topological recursion, arXiv:1701.09137 [INSPIRE].
J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large N, JHEP11 (2000) 007 [hep-th/0010102] [INSPIRE].
W. Luo and S. Zhu, Integrality structures in topological strings I: framed unknot, arXiv:1611.06506 [INSPIRE].
T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, arXiv:1811.03110 [INSPIRE].
M.o. Panfil and P. Sułkowski, Topological strings, strips and quivers, JHEP01 (2019) 124 [arXiv:1811.03556] [INSPIRE].
J.E. Andersen, G. Borot, L.O. Chekhov and N. Orantin, The ABCD of topological recursion, arXiv:1703.03307 [INSPIRE].
J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys.217 (2001) 423 [hep-th/0004196] [INSPIRE].
GaroufalidisSLêTTNahm sums, stability and the colored Jones polynomialRes. Math. Sci.201521337565110.1186/2197-9847-2-1
ReinekeMDegenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quiversDoc. Math.20121712012JNuM..423....1R28897421280.16018[arXiv:1102.3978]
EkholmTKucharskiPLonghiPMulti-cover skeins, quivers and 3d N = 2 dualitiesJHEP2020020182020JHEP...02..018E408934910.1007/JHEP02(2020)018[arXiv:1910.06193] [INSPIRE]
KedemRKlassenTRMcCoyBMMelzerEFermionic quasiparticle representations for characters of G(1)1 × G(1)1/G(1)2Phys. Lett. B19933042631993PhLB..304..263K121589710.1016/0370-2693(93)90292-P[hep-th/9211102] [INSPIRE]
H. Franzen and M. Reineke, Semi-stable Chow-Hall algebras of quivers and quantized Donaldson-Thomas invariants, arXiv:1512.03748.
S. Garoufalidis and D. Zagier, Asymptotics of Nahm sums at roots of unity, arXiv:1812.07690 [INSPIRE].
D. Zagier, The dilogarithm function, in Frontiers in number theory, physics and geometry II, Springer, Berlin, Heidelberg, Germany (2007), pg. 3.
S. Garoufalidis and T.T.Q. Lê, A survey of q-holonomic functions, arXiv:1601.07487 [INSPIRE].
L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP12 (2006) 026 [math-ph/0604014] [INSPIRE].
KedemRMcCoyBMConstruction of modular branching functions from Bethe’s equations in the three state Potts chainJ. Statist. Phys.1993718651993JSP....71..865K122638110.1007/BF01049953[hep-th/9210129] [INSPIRE]
ChekhovLOEynardBMarchalOTopological expansion of β-ensemble model and quantum algebraic geometry in the sectorwise approachTheor. Math. Phys.2011166141316580410.1007/s11232-011-0012-3[arXiv:1009.6007] [INSPIRE]
GelfandIKapranovMZelevinskyADiscriminants, resultants and multidimensional determinants1994U.S.A.Wiley10.1007/978-0-8176-4771-1
KucharskiPSu-lkowskiPBPS counting for knots and combinatorics on wordsJHEP2016111202016JHEP...11..120K359478310.1007/JHEP11(2016)120[arXiv:1608.06600] [INSPIRE]
M. Stosic and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].
W. Nahm, Conformal field theory and torsion elements of the Bloch group, in Les Houches School of Physics: frontiers in number theory, physics and geometry, Springer, Berlin, Heidelberg, Germany (2007), pg. 67 [hep-th/0404120] [INSPIRE].
KontsevichMSoibelmanYCohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariantsCommun. Num. Theor. Phys.20115231285115310.4310/CNTP.2011.v5.n2.a1[arXiv:1006.2706] [INSPIRE]
OoguriHVafaCKnot invariants and topological stringsNucl. Phys. B20005774192000NuPhB.577..419O176541110.1016/S0550-3213(00)00118-8[hep-th/9912123] [INSPIRE]
BouchardVSulkowskiPTopological recursion and mirror curvesAdv. Theor. Math. Phys.2012161443305695410.4310/ATMP.2012.v16.n5.a3[arXiv:1105.2052] [INSPIRE]
EynardBOrantinNComputation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjectureCommun. Math. Phys.20153374832015CMaPh.337..483E333915710.1007/s00220-015-2361-5[arXiv:1205.1103] [INSPIRE]
S Garoufalidis (13435_CR28) 2016; 346
I Gelfand (13435_CR46) 1994
LO Chekhov (13435_CR40) 2011; 166
B Eynard (13435_CR31) 2004; 11
R Kedem (13435_CR2) 1993; 304
13435_CR27
B Eynard (13435_CR48) 2015; 337
13435_CR24
13435_CR6
13435_CR25
13435_CR47
13435_CR44
13435_CR4
M Reineke (13435_CR9) 2012; 17
13435_CR23
V Bouchard (13435_CR41) 2013; 02
13435_CR3
13435_CR42
13435_CR21
13435_CR43
13435_CR19
P Kucharski (13435_CR12) 2017; 96
13435_CR17
13435_CR39
P Kucharski (13435_CR14) 2016; 11
13435_CR18
O Dumitrescu (13435_CR35) 2013; 593
S Garoufalidis (13435_CR5) 2015; 2
P Ramadevi (13435_CR26) 2001; 600
13435_CR30
R Kedem (13435_CR1) 1993; 71
13435_CR15
13435_CR37
13435_CR16
M Kontsevich (13435_CR7) 2011; 5
S Gukov (13435_CR38) 2012; 02
13435_CR11
13435_CR33
M Reineke (13435_CR8) 2011; 147
13435_CR34
13435_CR10
P Kucharski (13435_CR13) 2019; 23
L Chekhov (13435_CR32) 2006; 03
T Ekholm (13435_CR20) 2020; 02
V Bouchard (13435_CR45) 2012; 16
H Ooguri (13435_CR22) 2000; 577
13435_CR29
R Dijkgraaf (13435_CR36) 2011; 849
References_xml – reference: V. Bouchard, P. Ciosmak, L. Hadasz, K. Osuga, B. Ruba and P. Sułkowski, Super quantum Airy structures, arXiv:1907.08913 [INSPIRE].
– reference: S. Garoufalidis and D. Zagier, Asymptotics of Nahm sums at roots of unity, arXiv:1812.07690 [INSPIRE].
– reference: M.o. Panfil and P. Sułkowski, Topological strings, strips and quivers, JHEP01 (2019) 124 [arXiv:1811.03556] [INSPIRE].
– reference: J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large N, JHEP11 (2000) 007 [hep-th/0010102] [INSPIRE].
– reference: GelfandIKapranovMZelevinskyADiscriminants, resultants and multidimensional determinants1994U.S.A.Wiley10.1007/978-0-8176-4771-1
– reference: W. Nahm, Conformal field theory and torsion elements of the Bloch group, in Les Houches School of Physics: frontiers in number theory, physics and geometry, Springer, Berlin, Heidelberg, Germany (2007), pg. 67 [hep-th/0404120] [INSPIRE].
– reference: RamadeviPSarkarTOn link invariants and topological string amplitudesNucl. Phys. B20016004872001NuPhB.600..487R183340910.1016/S0550-3213(00)00761-6[hep-th/0009188] [INSPIRE]
– reference: KucharskiPSu-lkowskiPBPS counting for knots and combinatorics on wordsJHEP2016111202016JHEP...11..120K359478310.1007/JHEP11(2016)120[arXiv:1608.06600] [INSPIRE]
– reference: T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, arXiv:1811.03110 [INSPIRE].
– reference: ReinekeMCohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariantsCompos. Math.2011147943280140610.1112/S0010437X1000521X
– reference: DijkgraafRFujiHManabeMThe volume conjecture, perturbative knot invariants and recursion relations for topological stringsNucl. Phys. B20118491662011NuPhB.849..166D279527610.1016/j.nuclphysb.2011.03.014[arXiv:1010.4542] [INSPIRE]
– reference: KedemRKlassenTRMcCoyBMMelzerEFermionic quasiparticle representations for characters of G(1)1 × G(1)1/G(1)2Phys. Lett. B19933042631993PhLB..304..263K121589710.1016/0370-2693(93)90292-P[hep-th/9211102] [INSPIRE]
– reference: ChekhovLOEynardBMarchalOTopological expansion of β-ensemble model and quantum algebraic geometry in the sectorwise approachTheor. Math. Phys.2011166141316580410.1007/s11232-011-0012-3[arXiv:1009.6007] [INSPIRE]
– reference: GaroufalidisSKucharskiPSułkowskiPKnots, BPS states and algebraic curvesCommun. Math. Phys.2016346752016CMaPh.346...75G352841710.1007/s00220-016-2682-z[arXiv:1504.06327] [INSPIRE]
– reference: M. Stosic and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].
– reference: M. Stosic and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].
– reference: G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].
– reference: J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, math.QA/0104180 [INSPIRE].
– reference: J.E. Andersen, G. Borot, L.O. Chekhov and N. Orantin, The ABCD of topological recursion, arXiv:1703.03307 [INSPIRE].
– reference: M.o. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots and lattice paths, Phys. Rev. D98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].
– reference: M. Kontsevich and Y. Soibelman, Airy structures and symplectic geometry of topological recursion, arXiv:1701.09137 [INSPIRE].
– reference: KucharskiPReinekeMStosicMSułkowskiPKnots-quivers correspondenceAdv. Theor. Math. Phys.2019231849410164510.4310/ATMP.2019.v23.n7.a4[arXiv:1707.04017] [INSPIRE]
– reference: D. Zagier, The dilogarithm function, in Frontiers in number theory, physics and geometry II, Springer, Berlin, Heidelberg, Germany (2007), pg. 3.
– reference: ReinekeMDegenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quiversDoc. Math.20121712012JNuM..423....1R28897421280.16018[arXiv:1102.3978]
– reference: H. Franzen and M. Reineke, Semi-stable Chow-Hall algebras of quivers and quantized Donaldson-Thomas invariants, arXiv:1512.03748.
– reference: BouchardVEynardBThink globally, compute locallyJHEP2013021432013JHEP...02..143B304653210.1007/JHEP02(2013)143[arXiv:1211.2302] [INSPIRE]
– reference: ChekhovLEynardBHermitean matrix model free energy: Feynman graph technique for all generaJHEP2006030142006JHEP...03..014C10.1088/1126-6708/2006/03/014[hep-th/0504116] [INSPIRE]
– reference: S. Meinhardt and M. Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, arXiv:1411.4062.
– reference: RISC Combinatorics group, A. Riese, qZeil.m webpage, http://www.risc.jku.at/research/combinat/software/qZeil/.
– reference: KucharskiPReinekeMStosicMSułkowskiPBPS states, knots and quiversPhys. Rev. D2017961219022017PhRvD..96l1902K386989210.1103/PhysRevD.96.121902[arXiv:1707.02991] [INSPIRE]
– reference: J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys.217 (2001) 423 [hep-th/0004196] [INSPIRE].
– reference: B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys.1 (2007) 347 [math-ph/0702045] [INSPIRE].
– reference: KontsevichMSoibelmanYCohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariantsCommun. Num. Theor. Phys.20115231285115310.4310/CNTP.2011.v5.n2.a1[arXiv:1006.2706] [INSPIRE]
– reference: EkholmTKucharskiPLonghiPMulti-cover skeins, quivers and 3d N = 2 dualitiesJHEP2020020182020JHEP...02..018E408934910.1007/JHEP02(2020)018[arXiv:1910.06193] [INSPIRE]
– reference: OoguriHVafaCKnot invariants and topological stringsNucl. Phys. B20005774192000NuPhB.577..419O176541110.1016/S0550-3213(00)00118-8[hep-th/9912123] [INSPIRE]
– reference: EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJHEP2004110312004JHEP...11..031E211880710.1088/1126-6708/2004/11/031[hep-th/0407261] [INSPIRE]
– reference: V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys.287 (2009) 117 [arXiv:0709.1453] [INSPIRE].
– reference: BouchardVSulkowskiPTopological recursion and mirror curvesAdv. Theor. Math. Phys.2012161443305695410.4310/ATMP.2012.v16.n5.a3[arXiv:1105.2052] [INSPIRE]
– reference: V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].
– reference: W. Luo and S. Zhu, Integrality structures in topological strings I: framed unknot, arXiv:1611.06506 [INSPIRE].
– reference: A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V.K. Singh and A. Sleptsov, Checks of integrality properties in topological strings, JHEP08 (2017) 139 [Addendum ibid.01 (2018) 143] [arXiv:1702.06316] [INSPIRE].
– reference: DumitrescuOMulaseMSafnukBSorkinAThe spectral curve of the Eynard-Orantin recursion via the Laplace transformContemp. Math.2013593263308796010.1090/conm/593/11867[arXiv:1202.1159] [INSPIRE]
– reference: L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP12 (2006) 026 [math-ph/0604014] [INSPIRE].
– reference: GukovSSulkowskiPA-polynomial, B-model and quantizationJHEP2012020702012JHEP...02..070G299611010.1007/JHEP02(2012)070[arXiv:1108.0002] [INSPIRE]
– reference: EynardBOrantinNComputation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjectureCommun. Math. Phys.20153374832015CMaPh.337..483E333915710.1007/s00220-015-2361-5[arXiv:1205.1103] [INSPIRE]
– reference: KedemRMcCoyBMConstruction of modular branching functions from Bethe’s equations in the three state Potts chainJ. Statist. Phys.1993718651993JSP....71..865K122638110.1007/BF01049953[hep-th/9210129] [INSPIRE]
– reference: GaroufalidisSLêTTNahm sums, stability and the colored Jones polynomialRes. Math. Sci.201521337565110.1186/2197-9847-2-1
– reference: S. Garoufalidis and T.T.Q. Lê, A survey of q-holonomic functions, arXiv:1601.07487 [INSPIRE].
– volume: 147
  start-page: 943
  year: 2011
  ident: 13435_CR8
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X1000521X
– volume: 16
  start-page: 1443
  year: 2012
  ident: 13435_CR45
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2012.v16.n5.a3
– volume: 02
  start-page: 070
  year: 2012
  ident: 13435_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)070
– volume: 337
  start-page: 483
  year: 2015
  ident: 13435_CR48
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-015-2361-5
– ident: 13435_CR10
– volume: 304
  start-page: 263
  year: 1993
  ident: 13435_CR2
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(93)90292-P
– volume-title: Discriminants, resultants and multidimensional determinants
  year: 1994
  ident: 13435_CR46
  doi: 10.1007/978-0-8176-4771-1
– volume: 23
  start-page: 1849
  year: 2019
  ident: 13435_CR13
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2019.v23.n7.a4
– volume: 5
  start-page: 231
  year: 2011
  ident: 13435_CR7
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2011.v5.n2.a1
– ident: 13435_CR15
– volume: 02
  start-page: 018
  year: 2020
  ident: 13435_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)018
– ident: 13435_CR34
  doi: 10.1007/s00220-008-0620-4
– ident: 13435_CR33
  doi: 10.1088/1126-6708/2006/12/026
– ident: 13435_CR37
– ident: 13435_CR39
– volume: 849
  start-page: 166
  year: 2011
  ident: 13435_CR36
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2011.03.014
– volume: 17
  start-page: 1
  year: 2012
  ident: 13435_CR9
  publication-title: Doc. Math.
  doi: 10.4171/dm/359
– ident: 13435_CR21
– ident: 13435_CR44
– ident: 13435_CR29
– ident: 13435_CR42
– volume: 346
  start-page: 75
  year: 2016
  ident: 13435_CR28
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2682-z
– ident: 13435_CR3
  doi: 10.1007/978-3-540-30308-4_2
– ident: 13435_CR25
– volume: 11
  start-page: 031
  year: 2004
  ident: 13435_CR31
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/11/031
– ident: 13435_CR27
  doi: 10.1007/JHEP08(2017)139
– ident: 13435_CR23
  doi: 10.1007/s002200100374
– ident: 13435_CR24
  doi: 10.1088/1126-6708/2000/11/007
– volume: 96
  start-page: 121902
  year: 2017
  ident: 13435_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.121902
– volume: 577
  start-page: 419
  year: 2000
  ident: 13435_CR22
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00118-8
– volume: 03
  start-page: 014
  year: 2006
  ident: 13435_CR32
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/03/014
– volume: 71
  start-page: 865
  year: 1993
  ident: 13435_CR1
  publication-title: J. Statist. Phys.
  doi: 10.1007/BF01049953
– ident: 13435_CR4
  doi: 10.1007/978-3-540-30308-4_1
– volume: 600
  start-page: 487
  year: 2001
  ident: 13435_CR26
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00761-6
– volume: 593
  start-page: 263
  year: 2013
  ident: 13435_CR35
  publication-title: Contemp. Math.
  doi: 10.1090/conm/593/11867
– volume: 166
  start-page: 141
  year: 2011
  ident: 13435_CR40
  publication-title: Theor. Math. Phys.
  doi: 10.1007/s11232-011-0012-3
– ident: 13435_CR11
– ident: 13435_CR18
– ident: 13435_CR16
– ident: 13435_CR19
  doi: 10.1007/JHEP01(2019)124
– volume: 11
  start-page: 120
  year: 2016
  ident: 13435_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)120
– volume: 2
  start-page: 1
  year: 2015
  ident: 13435_CR5
  publication-title: Res. Math. Sci.
  doi: 10.1186/2197-9847-2-1
– volume: 02
  start-page: 143
  year: 2013
  ident: 13435_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)143
– ident: 13435_CR30
  doi: 10.4310/CNTP.2007.v1.n2.a4
– ident: 13435_CR17
  doi: 10.1103/PhysRevD.98.026022
– ident: 13435_CR6
– ident: 13435_CR47
– ident: 13435_CR43
SSID ssj0015190
Score 2.3913558
Snippet A bstract We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we...
We consider a large class of q -series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a...
We consider a large class of q-series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate a...
Abstract We consider a large class of q-series that have the structure of Nahm sums, or equivalently motivic generating series for quivers. First, we initiate...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Asymptotic series
Classical and Quantum Gravitation
Differential and Algebraic Geometry
Elementary Particles
High energy physics
Invariants
Knot theory
Matrix Models
Physics
Physics and Astronomy
Polynomials
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Sums
Topological Strings
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kKHgRn1itkoOHFozNJtnd7LFKSxEpPaj0FvYVFGpam1Tw37uTR7VC8eIhl2QThpnZzHO_QejKUKkkkcZlhiVwJIe6EQ-JmwRScSmwCouE2_MDG42iyYSPf4z6gp6wEh64ZFyXKh1gKkUibKRAiC-tvVaYskR61A-phr-vx3gdTFX1A-uXeDWQj8e698P-2GNtG-h7HUzwmg0qoPrX_MtfJdHC0gz20V7lIjq9krQDtGXSQ7RTtGqq7AjxkXh5c6wCZdfO-xLaKpyeO59NP-GAsVUmR6TaycvZByABZwEpdUiKHaOnQf_xbuhWAxBcFWKWuzjxsBBEQKXEXiLiMtA2fpGB9LXvSQHwXNxYH0orYXwOE_YAHUZHoeI0lMEJaqSz1JwihwSaEV9oIUUYShJFxCRcWTUiADmYRE10U7MkVhU6OAypmMY1rnHJwxh4GFseNlF79cK8BMbYvPQWeLxaBojWxQ0r57iSc_yXnJuoVUsorrZZFhdw8wBXw5qoU0vt-_EGes7-g55ztAvfKzt3W6iRL5bmAm2rj_w1W1wW2vgF8hPfuQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60KnjxLdYXOXhQMDavzWZPotKioqUHFT2FfUWF2tYmCv57d5JNRUFPHnJJJmHJN7s7O49vAPZ0LKQgQrtU0wxLcmI3YRFxs1BIJrgvo9LhdndFu93k_p71bHl0btMq6zWxXKgrtmfM2zaLcEsNJXrMWyXPOPKU0OPRq4s9pDDWahtqTMMMEm95DZjpXVz3HiZRBWOteDW9j0dbl-ftnkf3zfHfO_CJ_21nKgn8v1mdPwKl5f7TWfzfkS_BgrVDnZNKcZZhSg9WYK7MB5X5KrAuf3pxjHh-6Ly-Ye6Gc-KOhv0PrGI2GuvwgXKKqsECwuyM0W-Pnrc1uO20b87OXdtlwZWRTwvXzzyfc8IxHGMunjARKnNIEqEIVOAJjhxgTBtDTUmuA4Zt_JCCRiWRZHEkwnVoDIYDvQEOCRUlAVdc8CgSJEmIzpg0ukqQ1zBLmnBU_-FUWgpy7ITRT2vy5AqSFCFJDSRN2J-8MKrYN34XPUXIJmJIm13eGI4fUzsL01iq0I8Fz7g5dhISCGP8ST-mmfDiIIpVE7ZrCFM7l_P0C7EmHNRK8PX4l_Fs_v2pLZhHySrxdxsaxfhN78CsfC-e8_GuVdxPAcf7EQ
  priority: 102
  providerName: ProQuest
Title Nahm sums, quiver A-polynomials and topological recursion
URI https://link.springer.com/article/10.1007/JHEP07(2020)151
https://www.proquest.com/docview/2426368407
https://doaj.org/article/6cd316bafa924552b623c167fb06246d
Volume 2020
WOSCitedRecordID wos000555932400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KVfDiW4yPkoOHCkby2iR7bKVFRUsQleol7Csq1Fb7EPz37mwSRcWDHhLCPmCZmc3O7Mx8A7CvIi444cqJVZxjSk7kJDQkTh5wQTnzRGgu3G7O414v6fdpWgOvyoUx0e6VS9L8qatkt7OTTurGTW2suwceJk3XEUsMo7iOMcGhdBxohcStEHx-Tvpy-BiM_i-K5TdfqDliusv_WNwKLJX6pN0qBGAVamq4BgsmrlNM1oH22MOTraVtcmi_zDAGw245z6PBG2Yja8mz2VDa06JQArLLHuP9O96gbcB1t3N1fOKU1RIcEXrx1PFy12OMMHSr6IcllAdSGzs84L70Xc4Qy4sqrXBJwZRPsRwfQsnIJBQ0CnmwCXPD0VBtgU0CGROfScZZGHKSJETlVGiZI4hPmCcWHFVkzEQJJY4VLQZZBYJc0CNDemSaHhY0PyY8Fygavw9tI18-hiH8tWkYje-zcjdlkZCBF3GWM20-EuJzrcQJL4pz7kZ-GEkLdiuuZuWenGQGmx6xbWILDioufnb_sp7tP4zdgUX8LKJ5d2FuOp6pPZgXr9PHybgB9Xanl142jMA2jPGv3ym50z3p6UV6-w561-bv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceLZioYAPILUSaRPHjuMDQgVa7dLtag8FlZPxK4BUdrebLVX_VH8jnjy2KlK59cAhl8S2rMzn8Xhm_A3AK58Za7jxkfCiwCs5WZRLxqMiNVYanVhWOdy-DMRwmB8dydESXLR3YTCtstWJlaJ2E4s-8u2KWRyZScS76UmEVaMwutqW0Khhse_Pz8KRrXzb_xjk-5rSvd3DD72oqSoQWZaIeZQUcaI11xh-CI_OpUldOBSY1FBHY6OR80r6YJg4qz2VWLYOKVdczqzMmEnDuLdgmQWwxx1YHvUPRl8XcYtgD8UtgVAstj_1dkex2KDBJttMeHJl76tKBFyxa_8KxVY73N79_-3fPIB7jS1NdmrwP4QlP34Ed6qcVls-BjnUP36RML3yDTk5xfwTshNNJ8fneBM7rDqix47M6yIRCFUyw9gDeg9X4fONzHsNOuPJ2D8BwlMnONVOG82Y4XnOfSFtWG8cuRmLvAtbrQyVbWjUsZrHsWoJoGuhKxS6CkLvwsaiw7RmELm-6XsExaIZUn9XLyaz76rRJCqzLk0yowsdjs6cUxMMWJtkojBxRlnmurDegkQ1-qhUlwjpwmYLs8vP18zn6b-HegkrvcODgRr0h_vP4C72qhOZ16Ezn53653Db_p7_LGcvmmVC4NtNo-8PU6ZJ-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7Rpa24tLSl6vJofWglkBpInDiODxWCsisoKFpVbcXN-JW2EuwumwXEX-uvqyePRVSiNw4ccklsy4q_Gc94xt8AvHepNpppF3DHC7ySkwaZSFhQxNoIrSKTVAduP454nmfHx2IwB3_auzCYVtnqxEpR25HBM_KtilkcmUn4VtGkRQz2-tvj8wArSGGktS2nUUPk0F1fefet_HSw59f6A6X93rfP-0FTYSAwScSnQVSEkVJMYSjCPyoTOrbeQdCxppaGWiH_lXDeSLFGOSqwhB3Sr9gsMSJNdOzHfQTzPPZOTwfmd3v54OsshuFto7AlE_Kz_rLfG4R8nXr7bCNi0a19sCoXcMvG_ScsW-12_ecP-T8twrPGxiY7tVC8gDk3fAlPqlxXU74CkatfZ8RPr_xIzi8wL4XsBOPR6TXe0PbSSNTQkmldPAIhTCYYk8BTxSX4fi_zfg2d4Wjo3gBhseWMKqu0ShLNsoy5Qhgvhww5G4usC5vtekrT0KtjlY9T2RJD1wCQCADpAdCF9VmHcc0scnfTXQTIrBlSglcvRpOfstEwMjU2jlKtCuVdasao9oatiVJe6DClSWq7sNoCRjZ6qpQ3aOnCRgu5m893zGf5_0O9g6cecvLoID9cgQXsVOc3r0JnOrlwa_DYXE5_l5O3jcQQOLlv8P0F3JBSkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nahm+sums%2C+quiver+A-polynomials+and+topological+recursion&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Larragu%C3%ADvel%2C+H%C3%A9lder&rft.au=Noshchenko%2C+Dmitry&rft.au=Panfil%2C+Mi%C5%82osz&rft.au=Su%C5%82kowski%2C+Piotr&rft.date=2020-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2020&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282020%29151&rft.externalDocID=10_1007_JHEP07_2020_151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon