A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources Jg. 376; S. 191 - 199
Hauptverfasser: Zhang, Xu, Wang, Yujie, Liu, Chang, Chen, Zonghai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2018
Schlagworte:
ISSN:0378-7753, 1873-2755
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed. •A novel battery pack SOH definition is proposed.•A PSO-GA estimator is applied in parameters identification.•The accuracy and robustness of the method is verified by different profiles.•The influential battery pack SOH factors are performed.
AbstractList An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed. •A novel battery pack SOH definition is proposed.•A PSO-GA estimator is applied in parameters identification.•The accuracy and robustness of the method is verified by different profiles.•The influential battery pack SOH factors are performed.
Author Chen, Zonghai
Wang, Yujie
Zhang, Xu
Liu, Chang
Author_xml – sequence: 1
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 2
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
– sequence: 3
  givenname: Chang
  orcidid: 0000-0002-7292-6107
  surname: Liu
  fullname: Liu, Chang
– sequence: 4
  givenname: Zonghai
  orcidid: 0000-0001-9312-9089
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
BookMark eNqFkF1LwzAUhoNMcJv-BckfaE2apmnBC8fwCwbe6HVI09M1tWtKkinz19s6vfFmVwcO53k577NAs972gNA1JTElNLtp43awn97uXZwQKmJKY5LlZ2hOc8GiRHA-Q3PCRB4JwdkFWnjfEkIoFWSOhhXu7Qd0WA2Ds0o32Na4VCGAO-BB6XfsgwowbRtQXWgw-GB2Khjb4703_RYrF0xttFEdNn2ArjNb6PWIDOOh-Tqeqm5rnQnN7hKd16rzcPU7l-jt4f51_RRtXh6f16tNpFMqQkTLshjfV5zzmlW80FWaVIXIWKlVApwVnOc1ZyQtBeNVDQCJSgtO9FgroblmS3R7zNXOeu-gltqEn1-CU6aTlMjJnmzlnz052ZOUytHeiGf_8MGNtd3hNHh3BGEs92HASa_N5KMyDnSQlTWnIr4BGhGUNA
CitedBy_id crossref_primary_10_1016_j_energy_2024_134258
crossref_primary_10_3390_electronics11111789
crossref_primary_10_1155_2021_7049857
crossref_primary_10_3390_batteries9090437
crossref_primary_10_1007_s10479_020_03856_6
crossref_primary_10_1007_s42154_020_00128_8
crossref_primary_10_1016_j_cirpj_2021_02_004
crossref_primary_10_1016_j_energy_2024_130656
crossref_primary_10_1155_2024_6488186
crossref_primary_10_3390_en12214031
crossref_primary_10_1109_ACCESS_2019_2891063
crossref_primary_10_3390_electronics10131588
crossref_primary_10_1016_j_est_2023_107083
crossref_primary_10_1007_s11227_024_06092_y
crossref_primary_10_1109_TVT_2019_2932605
crossref_primary_10_1016_j_est_2023_109148
crossref_primary_10_1109_ACCESS_2019_2943558
crossref_primary_10_3390_en12244772
crossref_primary_10_1155_2022_6842974
crossref_primary_10_1016_j_est_2018_04_020
crossref_primary_10_1002_ente_202400488
crossref_primary_10_4018_JOEUC_336277
crossref_primary_10_1016_j_etran_2020_100064
crossref_primary_10_1109_TVT_2021_3125194
crossref_primary_10_1016_j_est_2022_105752
crossref_primary_10_1016_j_est_2021_103591
crossref_primary_10_1016_j_apenergy_2018_02_117
crossref_primary_10_1016_j_apenergy_2020_114569
crossref_primary_10_1016_j_ijhydene_2023_03_194
crossref_primary_10_1109_ACCESS_2019_2948291
crossref_primary_10_3390_electronics11172695
crossref_primary_10_1016_j_energy_2022_124851
crossref_primary_10_1016_j_fuel_2022_126862
crossref_primary_10_1016_j_energy_2023_126855
crossref_primary_10_1016_j_jpowsour_2019_05_092
crossref_primary_10_1016_j_asoc_2022_109688
crossref_primary_10_1016_j_energy_2021_120235
crossref_primary_10_1109_TTE_2021_3115597
crossref_primary_10_1016_j_energy_2019_04_070
crossref_primary_10_3390_en12060987
crossref_primary_10_1016_j_est_2023_107159
crossref_primary_10_1016_j_jpowsour_2022_231733
crossref_primary_10_1109_ACCESS_2021_3058018
crossref_primary_10_3390_wevj12030113
crossref_primary_10_1016_j_memsci_2020_118668
crossref_primary_10_1016_j_est_2022_106206
crossref_primary_10_1109_TIM_2019_2910919
crossref_primary_10_3390_wevj14090247
crossref_primary_10_1016_j_ress_2018_11_013
crossref_primary_10_1016_j_energy_2018_10_131
crossref_primary_10_1080_1206212X_2019_1639353
crossref_primary_10_1016_j_eswa_2022_117192
crossref_primary_10_1016_j_jiec_2018_11_034
crossref_primary_10_1016_j_apenergy_2020_115504
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1063_5_0092074
crossref_primary_10_1016_j_jclepro_2021_128015
crossref_primary_10_1049_enc2_12125
crossref_primary_10_1016_j_applthermaleng_2021_117088
crossref_primary_10_1016_j_energy_2024_132856
crossref_primary_10_1016_j_est_2024_114711
crossref_primary_10_1088_1742_6596_1757_1_012015
crossref_primary_10_1088_1742_6596_1757_1_012014
crossref_primary_10_3390_en18143750
crossref_primary_10_3390_en17092145
crossref_primary_10_3390_batteries10110394
crossref_primary_10_1109_TIE_2021_3108715
crossref_primary_10_1016_j_est_2023_107102
crossref_primary_10_1016_j_measurement_2019_06_052
crossref_primary_10_1049_ell2_12523
crossref_primary_10_1016_j_heliyon_2024_e38985
crossref_primary_10_3390_en15165981
crossref_primary_10_1016_j_energy_2022_123537
crossref_primary_10_1109_TTE_2023_3274819
crossref_primary_10_1007_s43236_020_00122_7
crossref_primary_10_1007_s43236_025_01072_8
crossref_primary_10_3389_fphy_2023_1161977
crossref_primary_10_1016_j_est_2023_106604
crossref_primary_10_1016_j_energy_2021_119901
crossref_primary_10_1016_j_energy_2019_07_127
crossref_primary_10_3390_en16248088
crossref_primary_10_1051_e3sconf_202560100071
crossref_primary_10_1088_1755_1315_645_1_012006
crossref_primary_10_1016_j_est_2024_112703
crossref_primary_10_1155_2021_7480599
crossref_primary_10_1109_ACCESS_2019_2930680
crossref_primary_10_1016_j_est_2024_114446
crossref_primary_10_1016_j_eswa_2023_121904
crossref_primary_10_1002_er_7360
crossref_primary_10_1016_j_est_2023_107493
crossref_primary_10_1109_TIE_2020_3045745
crossref_primary_10_1016_j_electacta_2020_136576
Cites_doi 10.1007/s10008-015-2910-z
10.1016/j.jpowsour.2014.06.111
10.1016/j.jpowsour.2016.11.104
10.1016/j.jpowsour.2016.10.040
10.1016/j.jpowsour.2015.11.087
10.1021/acsami.5b02729
10.1016/j.jpowsour.2015.12.001
10.1016/j.jpowsour.2013.01.018
10.1016/j.autcon.2016.08.004
10.1016/j.carbon.2016.06.076
10.1016/j.apenergy.2008.11.021
10.1016/j.jpowsour.2016.07.065
10.1016/j.jpowsour.2017.05.004
10.1016/j.jpowsour.2003.12.001
10.1016/j.enpol.2011.11.090
10.1016/j.ijepes.2012.04.050
10.1016/j.jpowsour.2013.10.114
10.1109/TSMC.2013.2296276
10.1016/j.jpowsour.2004.02.032
10.1016/j.apenergy.2015.12.063
10.1109/TVT.2005.847211
10.1016/j.egypro.2017.03.673
10.1016/j.jpowsour.2010.08.035
10.1109/TCAPT.2002.803653
10.1109/TVT.2016.2572163
10.1016/j.jpowsour.2017.01.054
10.1016/j.jpowsour.2012.10.060
10.1016/j.energy.2016.08.109
10.1016/j.apenergy.2015.03.110
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2017.11.068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 199
ExternalDocumentID 10_1016_j_jpowsour_2017_11_068
S0378775317315434
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c417t-1bb9873a555f3d59cd42d9763bca2e539558f5304b735dfeee2a4950c117218c3
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419810700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Sat Nov 29 02:55:44 EST 2025
Tue Nov 18 20:50:27 EST 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm optimization-genetic algorithm
Battery pack state of health
Particle filter
Battery pack model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-1bb9873a555f3d59cd42d9763bca2e539558f5304b735dfeee2a4950c117218c3
ORCID 0000-0002-7292-6107
0000-0001-9312-9089
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2017_11_068
crossref_primary_10_1016_j_jpowsour_2017_11_068
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_11_068
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Wang, Pan, Chen, Chen (bib13) 2017
Nik, Nejad, Zakeri (bib34) 2016; 71
Zenati, Desprez, Razik (bib19) 2010
Yuan, Dung (bib21) 2017; 66
Feng, Li, Ouyang, Lu, Li, He (bib24) 2013; 232
Plett (bib31) 2004; 134
Wang, Zhang, Chen (bib28) 2016; 305
Eddahech, Briat, Vinassa (bib17) 2012
Yu, Wei, Wang (bib33) 2012; 42
Nair, Destro, Bella, Appetecchi, Gerbaldi (bib5) 2016; 306
Nair, Porcarelli, Bella, Gerbaldi (bib3) 2015; 7
Zhang, Wang, Liu, Chen (bib27) 2017; 343
Richardson, Osborne, Howey (bib12) 2017; 357
Koot, Kessels, de Jager, Heemels, Van den Bosch, Steinbuch (bib25) 2005; 54
Leijen, Steyn-Ross, Kularatna (bib14) 2017
Zolin, Nair, Beneventi, Bella, Destro, Jagdale, Cannavaro, Tagliaferro, Chaussy, Geobaldo (bib1) 2016; 107
Zhang, Wang, Yang, Chen (bib30) 2016; 115
Ng, Moo, Chen, Hsieh (bib11) 2009; 86
Yang, Xu, Cao, Xu, Li, Wang (bib16) 2017; 105
Lu, Han, Li, Hua, Ouyang (bib2) 2013; 226
Radzir, Hanifah, Ahmad, Hassan, Bella (bib4) 2015; 19
Abu-Sharkh, Doerffel (bib32) 2004; 130
Ouyang, Feng, Han, Lu, Li, He (bib9) 2016; 165
Han, Ouyang, Lu, Li (bib7) 2014; 268
Zou, Manzie, Nešić, Kallapur (bib15) 2016; 335
Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bib18) 2011; 196
Kim, Qiao, Qu (bib10) 2013
Liu, Ouyang, Lu, Li, Hua (bib26) 2015; 149
Gao, Liu, Dougal (bib29) 2002; 25
Raghavan, Kiesel, Sommer, Schwartz, Lochbaum, Hegyi, Schuh, Arakaki, Saha, Ganguli (bib6) 2017; 341
Li, Pan, Chen (bib22) 2014; 44
Wu, Wang, Zhang, Chen (bib8) 2016; 327
Guo, Qiu, Hou, Liaw, Zhang (bib23) 2014; 249
Eddahech, Briat, Bertrand, Delétage, Vinassa (bib20) 2012; 42
Zolin (10.1016/j.jpowsour.2017.11.068_bib1) 2016; 107
Liu (10.1016/j.jpowsour.2017.11.068_bib26) 2015; 149
Han (10.1016/j.jpowsour.2017.11.068_bib7) 2014; 268
Koot (10.1016/j.jpowsour.2017.11.068_bib25) 2005; 54
Zou (10.1016/j.jpowsour.2017.11.068_bib15) 2016; 335
Wu (10.1016/j.jpowsour.2017.11.068_bib8) 2016; 327
Radzir (10.1016/j.jpowsour.2017.11.068_bib4) 2015; 19
Raghavan (10.1016/j.jpowsour.2017.11.068_bib6) 2017; 341
Richardson (10.1016/j.jpowsour.2017.11.068_bib12) 2017; 357
Yang (10.1016/j.jpowsour.2017.11.068_bib16) 2017; 105
Guo (10.1016/j.jpowsour.2017.11.068_bib23) 2014; 249
Gao (10.1016/j.jpowsour.2017.11.068_bib29) 2002; 25
Plett (10.1016/j.jpowsour.2017.11.068_bib31) 2004; 134
Leijen (10.1016/j.jpowsour.2017.11.068_bib14) 2017
Zhang (10.1016/j.jpowsour.2017.11.068_bib30) 2016; 115
Remmlinger (10.1016/j.jpowsour.2017.11.068_bib18) 2011; 196
Nair (10.1016/j.jpowsour.2017.11.068_bib5) 2016; 306
Abu-Sharkh (10.1016/j.jpowsour.2017.11.068_bib32) 2004; 130
Kim (10.1016/j.jpowsour.2017.11.068_bib10) 2013
Eddahech (10.1016/j.jpowsour.2017.11.068_bib17) 2012
Li (10.1016/j.jpowsour.2017.11.068_bib22) 2014; 44
Ng (10.1016/j.jpowsour.2017.11.068_bib11) 2009; 86
Eddahech (10.1016/j.jpowsour.2017.11.068_bib20) 2012; 42
Yang (10.1016/j.jpowsour.2017.11.068_bib13) 2017
Zhang (10.1016/j.jpowsour.2017.11.068_bib27) 2017; 343
Nair (10.1016/j.jpowsour.2017.11.068_bib3) 2015; 7
Yu (10.1016/j.jpowsour.2017.11.068_bib33) 2012; 42
Lu (10.1016/j.jpowsour.2017.11.068_bib2) 2013; 226
Zenati (10.1016/j.jpowsour.2017.11.068_bib19) 2010
Wang (10.1016/j.jpowsour.2017.11.068_bib28) 2016; 305
Nik (10.1016/j.jpowsour.2017.11.068_bib34) 2016; 71
Ouyang (10.1016/j.jpowsour.2017.11.068_bib9) 2016; 165
Yuan (10.1016/j.jpowsour.2017.11.068_bib21) 2017; 66
Feng (10.1016/j.jpowsour.2017.11.068_bib24) 2013; 232
References_xml – volume: 232
  start-page: 209
  year: 2013
  end-page: 218
  ident: bib24
  publication-title: J. Power Sources
– volume: 130
  start-page: 266
  year: 2004
  end-page: 274
  ident: bib32
  publication-title: J. Power Sources
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib2
  publication-title: J. power sources
– volume: 42
  start-page: 487
  year: 2012
  end-page: 494
  ident: bib20
  publication-title: Int. J. Electr. Power & Energy Syst.
– volume: 357
  start-page: 209
  year: 2017
  end-page: 219
  ident: bib12
  publication-title: J. Power Sources
– start-page: 4501
  year: 2012
  end-page: 4505
  ident: bib17
  publication-title: Energy Conversion Congress and Exposition (ECCE)
– volume: 66
  start-page: 2019
  year: 2017
  end-page: 2032
  ident: bib21
  publication-title: IEEE Trans. Veh. Technol.
– volume: 19
  start-page: 3079
  year: 2015
  end-page: 3085
  ident: bib4
  publication-title: J. Solid State Electrochem.
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: bib31
  publication-title: J. Power Sources
– volume: 7
  start-page: 12961
  year: 2015
  end-page: 12971
  ident: bib3
  publication-title: ACS Appl. Mater. interfaces
– volume: 42
  start-page: 329
  year: 2012
  end-page: 340
  ident: bib33
  publication-title: Energy Policy
– volume: 335
  start-page: 121
  year: 2016
  end-page: 130
  ident: bib15
  publication-title: J. Power Sources
– volume: 115
  start-page: 219
  year: 2016
  end-page: 229
  ident: bib30
  publication-title: Energy
– volume: 306
  start-page: 258
  year: 2016
  end-page: 267
  ident: bib5
  publication-title: J. Power Sources
– volume: 165
  start-page: 48
  year: 2016
  end-page: 59
  ident: bib9
  publication-title: Appl. Energy
– volume: 327
  start-page: 457
  year: 2016
  end-page: 464
  ident: bib8
  publication-title: J. Power Sources
– start-page: 1773
  year: 2010
  end-page: 1778
  ident: bib19
  publication-title: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society
– volume: 341
  start-page: 466
  year: 2017
  end-page: 473
  ident: bib6
  publication-title: J. Power Sources
– volume: 268
  start-page: 658
  year: 2014
  end-page: 669
  ident: bib7
  publication-title: J. Power Sources
– volume: 54
  start-page: 771
  year: 2005
  end-page: 782
  ident: bib25
  publication-title: IEEE Trans. Veh. Technol.
– year: 2017
  ident: bib13
  publication-title: Appl. Energy
– volume: 105
  start-page: 2342
  year: 2017
  end-page: 2347
  ident: bib16
  publication-title: Energy Procedia
– year: 2017
  ident: bib14
  publication-title: IEEE Trans. Veh. Technol.
– volume: 71
  start-page: 325
  year: 2016
  end-page: 345
  ident: bib34
  publication-title: Automation Constr.
– volume: 249
  start-page: 457
  year: 2014
  end-page: 462
  ident: bib23
  publication-title: J. Power Sources
– volume: 149
  start-page: 297
  year: 2015
  end-page: 314
  ident: bib26
  publication-title: Appl. Energy
– volume: 343
  start-page: 216
  year: 2017
  end-page: 225
  ident: bib27
  publication-title: J. Power Sources
– volume: 107
  start-page: 811
  year: 2016
  end-page: 822
  ident: bib1
  publication-title: Carbon
– volume: 196
  start-page: 5357
  year: 2011
  end-page: 5363
  ident: bib18
  publication-title: J. Power Sources
– volume: 305
  start-page: 80
  year: 2016
  end-page: 88
  ident: bib28
  publication-title: J. Power Sources
– volume: 44
  start-page: 851
  year: 2014
  end-page: 862
  ident: bib22
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– start-page: 292
  year: 2013
  end-page: 298
  ident: bib10
  publication-title: Energy Conversion Congress and Exposition (ECCE)
– volume: 86
  start-page: 1506
  year: 2009
  end-page: 1511
  ident: bib11
  publication-title: Appl. energy
– volume: 25
  start-page: 495
  year: 2002
  end-page: 505
  ident: bib29
  publication-title: IEEE Trans. components Packag. Technol.
– volume: 19
  start-page: 3079
  year: 2015
  ident: 10.1016/j.jpowsour.2017.11.068_bib4
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-2910-z
– start-page: 292
  year: 2013
  ident: 10.1016/j.jpowsour.2017.11.068_bib10
– volume: 268
  start-page: 658
  year: 2014
  ident: 10.1016/j.jpowsour.2017.11.068_bib7
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.111
– volume: 341
  start-page: 466
  year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib6
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.104
– start-page: 4501
  year: 2012
  ident: 10.1016/j.jpowsour.2017.11.068_bib17
– volume: 335
  start-page: 121
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib15
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.040
– volume: 305
  start-page: 80
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib28
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.087
– volume: 7
  start-page: 12961
  year: 2015
  ident: 10.1016/j.jpowsour.2017.11.068_bib3
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/acsami.5b02729
– volume: 306
  start-page: 258
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.001
– volume: 232
  start-page: 209
  year: 2013
  ident: 10.1016/j.jpowsour.2017.11.068_bib24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.018
– volume: 71
  start-page: 325
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib34
  publication-title: Automation Constr.
  doi: 10.1016/j.autcon.2016.08.004
– volume: 107
  start-page: 811
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.076
– volume: 86
  start-page: 1506
  year: 2009
  ident: 10.1016/j.jpowsour.2017.11.068_bib11
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2008.11.021
– volume: 327
  start-page: 457
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.065
– volume: 357
  start-page: 209
  year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.004
– volume: 130
  start-page: 266
  year: 2004
  ident: 10.1016/j.jpowsour.2017.11.068_bib32
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.001
– volume: 42
  start-page: 329
  year: 2012
  ident: 10.1016/j.jpowsour.2017.11.068_bib33
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.11.090
– volume: 42
  start-page: 487
  year: 2012
  ident: 10.1016/j.jpowsour.2017.11.068_bib20
  publication-title: Int. J. Electr. Power & Energy Syst.
  doi: 10.1016/j.ijepes.2012.04.050
– volume: 249
  start-page: 457
  year: 2014
  ident: 10.1016/j.jpowsour.2017.11.068_bib23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.114
– volume: 44
  start-page: 851
  year: 2014
  ident: 10.1016/j.jpowsour.2017.11.068_bib22
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2013.2296276
– volume: 134
  start-page: 262
  year: 2004
  ident: 10.1016/j.jpowsour.2017.11.068_bib31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 165
  start-page: 48
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib9
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.063
– volume: 54
  start-page: 771
  year: 2005
  ident: 10.1016/j.jpowsour.2017.11.068_bib25
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2005.847211
– volume: 105
  start-page: 2342
  year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib16
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.673
– start-page: 1773
  year: 2010
  ident: 10.1016/j.jpowsour.2017.11.068_bib19
– year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib14
  publication-title: IEEE Trans. Veh. Technol.
– volume: 196
  start-page: 5357
  year: 2011
  ident: 10.1016/j.jpowsour.2017.11.068_bib18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.035
– volume: 25
  start-page: 495
  year: 2002
  ident: 10.1016/j.jpowsour.2017.11.068_bib29
  publication-title: IEEE Trans. components Packag. Technol.
  doi: 10.1109/TCAPT.2002.803653
– volume: 66
  start-page: 2019
  year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib21
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2572163
– volume: 343
  start-page: 216
  year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib27
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.054
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.jpowsour.2017.11.068_bib2
  publication-title: J. power sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 115
  start-page: 219
  year: 2016
  ident: 10.1016/j.jpowsour.2017.11.068_bib30
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.109
– year: 2017
  ident: 10.1016/j.jpowsour.2017.11.068_bib13
  publication-title: Appl. Energy
– volume: 149
  start-page: 297
  year: 2015
  ident: 10.1016/j.jpowsour.2017.11.068_bib26
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.110
SSID ssj0001170
Score 2.551991
Snippet An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Battery pack model
Battery pack state of health
Particle filter
Particle swarm optimization-genetic algorithm
Title A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm
URI https://dx.doi.org/10.1016/j.jpowsour.2017.11.068
Volume 376
WOSCitedRecordID wos000419810700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOiJ9iDJAP3KKUpo5n51ihIUDThMRAhUsUO86arkuqklbb38I_y3uxnUZsaCDEpaqsOnX8vjx_fvH7HiGvgDNInUVxqBIJGxSV52HC5SiMjVGFNrlSbTmgL0fi-FhOp8nHweCHz4XZLERVyYuLZPlfTQ1tYGxMnf0Lc3cXhQb4DkaHTzA7fP6R4SdBVW_MolMLRzqoWhXNywA2yGdBm0PkSWIzC1BnwyYwBus2coAXdcISZV-xswb3cu7yNoNscVqvymZ2_ht6u8Tya4F9N9Dx9i48PV1vI_m25et6XnYgOyrX7iyAW1jbAwjWQ36rq9NZVvbDFZH0J5x9DO1KHo3N3YK9rBBWNnhorCuWgoVjYUV8va9mou9tI1voyy3cka20dGVNsOGJ-XAON453jef5xBClW21Bn1_0tj_hYHAskWARJt7eIrswjAS8_u7k_eH0Q7fQY9Ge9iWVG3wvAf36f7ue-_T4zMl9cs9Zik4sgB6Qgakekrs9ecpHZDmhLZSohxKtC-qgRBFKtIUStloo0S2UaAsluoUS7UOJ9qFEOyg9Jp_fHp68eRe6Ch2hjiPRhJGCR1ywjHNesJwnOo_HORBcpnQ2NpwlnMuCs1GsBON5YYwZZ7AjH-kIIw9Ssydkp6or85RQifWVka5rfRArmSkp8rjIkhH8-MCweI9wP3epdvL1WEVlkfpzivPUz3mKcw572xTmfI-87votrYDLjT0Sb5rU0VBLL1NA1A19n_1D331yZ_vAPCc7zWptXpDbetOU31cvHfh-ArICtq4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+of+battery+pack+state+of+health+estimation+using+artificial+intelligence+optimization+algorithm&rft.jtitle=Journal+of+power+sources&rft.au=Zhang%2C+Xu&rft.au=Wang%2C+Yujie&rft.au=Liu%2C+Chang&rft.au=Chen%2C+Zonghai&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=376&rft.spage=191&rft.epage=199&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.11.068&rft.externalDocID=S0378775317315434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon